Validated Constructive Error Estimations for Biharmonic Problems*

Takehiko Kinoshita
26-1-306, Tanaka Nishiaracho, Sakyo-ku, Kyoto 606-8217, Japan
kinoshita314@outlook.com

Yoshitaka Watanabe
Research Institute for Information Technology, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
watanabe.yoshitaka.003@m.kyushu-u.ac.jp

Mitsuhiro T. Nakao
Faculty of Science and Engineering, Waseda University, Okubo 3-4-1, Shinjuku-ku, Tokyo 169-8555, Japan
mtnakao@aoni.waseda.jp

Abstract
This paper presents some constructive error estimates for two-dimensional biharmonic equations by using verified computational techniques. These estimations are expected to provide valuable information for computer-assisted proofs of nonlinear biharmonic problems. Several numerical examples that confirm the effectiveness are reported.

Keywords: computer-assisted proof, biharmonic problem, differential operators
AMS subject classifications: 65G20, 47F05, 35P15

1 Introduction

Let $\Omega \subset \mathbb{R}^2$ be a bounded polygonal domain. This paper provides a guaranteed error bound for finite-dimensional approximate solutions for the biharmonic problem

$$\begin{align*}
\Delta^2 u &= f \quad \text{in } \Omega, \\
u &= \frac{\partial u}{\partial n} = 0 \quad \text{on } \partial\Omega
\end{align*} \quad (1)
$$

for $f \in L^2(\Omega)$. Here, $\partial u/\partial n$ stands for the outer normal derivative of u. The biharmonic problem (1) arises in areas of continuum mechanics, including linear elasticity

*Submitted: November 30, 2016; Revised: June 19, 2017; Accepted: August 20, 2017.
In the one-dimensional case in which the domain is \(J := (a, b) \), several a priori error estimates satisfying

\[
\|u'' - u''_h\|_{L^2(J)} \leq \tilde{C}(h) \|u'''\|_{L^2(J)}
\]

have been presented \([2, 10]\) with numerically determined values for \(\tilde{C}(h) > 0 \). Then, for a rectangular domain such that \(\Omega = J \times J \), by using the estimation \([10]\), the inequality

\[
\|u - u_h\|_{H^2(\Omega)} \leq \tilde{C}(h)|u|_{H^4(\Omega)}
\]
can be derived with the H^4 semi-norm:

$$|u|_{H^4(\Omega)} := \left(\|u_{xxxx}\|_{L^2(\Omega)}^2 + 4\|u_{xxyy}\|_{L^2(\Omega)}^2 + 6\|u_{xxyy}\|_{L^2(\Omega)}^2 + 4\|u_{xyyy}\|_{L^2(\Omega)}^2 + \|u_{yyyy}\|_{L^2(\Omega)}^2 \right)^{\frac{1}{2}}.$$

However, it is not so easy to obtain a numerically determined upper bound $C > 0$ such that

$$|u|_{H^4(\Omega)} \leq C \|\Delta^2 u\|_{L^2(\Omega)}, \quad (12)$$

even if the domain Ω is a rectangle.

Remark 1 For example, when Ω is a unit square, by using the Fourier expansion in which $u = \sum_{m,n=1}^{\infty} a_{mn} \psi_{mn}$ with $\psi_{mn} := \sin(m\pi x)\sin(n\pi y)/2$, it may appear that (12) has been achieved with $C = 1$. It is true if $\hat{a}_{mn} = (\Delta^2 u, \psi_{mn})_{L^2(\Omega)}$ can be restored with $a_{mn} = (u, \psi_{mn})_{L^2(\Omega)}$ by partial integration and with the boundary condition $u = \partial u/\partial n = 0$. It has been reported that if $u \in H^4(\Omega)$ satisfies $u = \Delta u = 0$ on $\partial \Omega$, (12) holds when $C = 1$ [3].

To avoid the need to estimate (12), Nakao et al. [7] proposed a technique that directly determines the constant in the constructive a priori and a posteriori error estimates of (15); they do this by using the finite element approximation. Their procedure is based on verified computational techniques that use the Hermite spline functions for a two-dimensional rectangular domain; several numerical examples have confirmed the effectiveness of this approach.

In this paper, we take another computer-assisted approach that is expected to be applicable to a wide variety of approximation subspaces $S_h \subset H^3_0(\Omega)$.

This paper is organized as follows. Section 2 introduces the notation and several projections with related constants. Section 3 is devoted to some constructive error estimations of biharmonic problems. Several numerical examples are reported in Section 4.

2 Assumptions and Related Notation

We define the H^3_0-projection $P_1 : H^3_0(\Omega) \to S_h$ and the L^2-projection $P_0 : L^2(\Omega) \to S_h$ by

$$\left(\nabla (\varphi - P_1 \varphi), \nabla v_h \right)_{L^2(\Omega)} = 0, \quad \forall v_h \in S_h, \quad (13)$$

$$\left(\varphi - P_0 \varphi, v_h \right)_{L^2(\Omega)} = 0, \quad \forall v_h \in S_h, \quad (14)$$

and we assume that the H^3_0-projection P_1 has the following approximation property:

$$\|v - P_1 v\|_{L^2(\Omega)} \leq C_0(h) \|\Delta^2 v\|_{L^2(\Omega)}, \quad \forall v \in D(\Delta^2). \quad (15)$$

Here, $C_0(h) > 0$ is a positive constant that is numerically determined such that $C_0(h) \to 0$ as $h \to 0$. Using $C_0(h)$ of (15), we aim to construct $C(h)$ satisfying [9], namely [5].
We assume that the finite-dimensional approximation subspace S_h belongs to $D(\Delta^2)$, and we define the basis function of S_h by $\{\varphi_i\}_{i=1}^K$ for $K := \dim S_h$ and $K \times K$ matrices A_0, A_1, A_2, A_3, and A_4:

\[
[A_0]_{ij} = (\varphi_j, \varphi_i)_{L^2(\Omega)}, \quad (16)
\]
\[
[A_1]_{ij} = (\Delta \varphi_j, \varphi_i)_{L^2(\Omega)} = -(\nabla \varphi_j, \nabla \varphi_i)_{L^2(\Omega)}, \quad (17)
\]
\[
[A_2]_{ij} = (\Delta \varphi_j, \Delta \varphi_i)_{L^2(\Omega)}, \quad (18)
\]
\[
[A_3]_{ij} = (\Delta^2 \varphi_j, \varphi_i)_{L^2(\Omega)}, \quad (19)
\]
\[
[A_4]_{ij} = (\Delta^2 \varphi_j, \Delta^2 \varphi_i)_{L^2(\Omega)}. \quad (20)
\]

The matrices A_0, A_1, A_2, and A_4 are symmetric and nonsingular. Because A_0 is positive definite, it can be decomposed as $A_0 = A_0^{1/2} A_0^{T/2}$, where T indicates the transposition, and $A_0^{T/2}$ means $(A_0^{1/2})^T$. Usually, $A_0^{1/2}$ is a lower triangular matrix.

For each $u \in D(\Delta^2)$, by representing the L^2-projection $P_0 \Delta^2 u \in S_h$ by (14) and the H_0^2-projection $P_2 u \in S_h$ by (7) as

\[
P_0 \Delta^2 u = \sum_{i=1}^K v_i \varphi_i, \quad \mathbf{v} = [v_i] \in \mathbb{R}^K, \quad (21)
\]
\[
P_2 u = \sum_{i=1}^K u_i \varphi_i, \quad \mathbf{u} = [u_i] \in \mathbb{R}^K, \quad (22)
\]

the definition of projections P_0 and P_2 state that

\[
(P_0 \Delta^2 u, \varphi_i)_{L^2(\Omega)} = (\Delta^2 u, \varphi_i)_{L^2(\Omega)}
\]
\[
= (\Delta u, \Delta \varphi_i)_{L^2(\Omega)}
\]
\[
= (\Delta P_2 u, \Delta \varphi_i)_{L^2(\Omega)}
\]
\[
= (P_0 \Delta^2 P_2 u, \varphi_i)_{L^2(\Omega)}
\]

for all $1 \leq i \leq K$; then, it holds that

\[
\mathbf{u} = A_2^{-1} A_0 \mathbf{v}. \quad (23)
\]

We also assume that an element

\[
\chi_h = \sum_{i=1}^K w_i \varphi_i \in S_h, \quad \mathbf{w} = [w_i] \in \mathbb{R}^K \quad (24)
\]

can be expressed as

\[
\mathbf{w} = F \mathbf{v}, \quad (25)
\]

where \mathbf{v} is defined in (21) and $F \in \mathbb{R}^{K \times K}$. The element $\chi_h \in S_h$ is introduced by Lemma 3.1 in the next section, and the relation (25) between \mathbf{w} for χ_h and \mathbf{v} for $P_0 \Delta^2 u$ will be presented in connection with Lemmas 3.2 and 3.3 in the next section.
Finally, we define matrices
\[Q_1 := A_0^{-1/2} A_1 F A_0^{-T/2}, \]
\[Q_2 := -A_0^{T/2} A_2^{-1} A_1^T F A_0^{-T/2}, \]
\[Q_3 := A_0^{T/2} A_3^{-1} A_4 A_2^{-1} A_0^{T/2}, \]
\[Q_4 := A_0^{1/2} F^T A_4 F A_0^{-T/2}, \]
\[B_1 := Q_2 + Q_T^2 + Q_3 + Q_4, \]
\[B_2 := Q_1 + Q_T^1 + Q_2 + Q_T^2 + Q_3 + Q_4 - I, \]
where \(I \) stands for the identity matrix.

3 Constructive Error Estimations of Biharmonic Problems

For the error estimation of the \(P_2 \)-projection \(\tilde{u} \) with \(C_0(h) \), we begin by showing the following lemma.

Lemma 3.1 For each \(u \in D(\Delta^2) \) and \(\chi_h \in S_h \), it is true that
\[\| u - P_2u \|_{H^2(\Omega)} \leq C_0(h) \| \Delta^2(u - P_2u) + \Delta \chi_h \|_{L^2(\Omega)}. \] (32)

Proof: Set \(u_\perp = u - P_2u \in D(\Delta^2) \). Using \([7] \), two partial integrations, \([13] \), the Cauchy-Schwarz inequality, and \([15] \), we have
\[\| \Delta u_\perp \|_{L^2(\Omega)}^2 = (\Delta u_\perp, \Delta u_\perp)_{L^2(\Omega)} = (\Delta u_\perp, \Delta(u_\perp - P_1 u_\perp))_{L^2(\Omega)} = -(\nabla \Delta u_\perp, \nabla(u_\perp - P_1 u_\perp))_{L^2(\Omega)} = -(\nabla (\Delta u_\perp + \chi_h), \nabla(u_\perp - P_1 u_\perp))_{L^2(\Omega)} = (\Delta^2 u_\perp + \Delta \chi_h, u_\perp - P_1 u_\perp)_{L^2(\Omega)} \leq \| \Delta^2 u_\perp + \Delta \chi_h \|_{L^2(\Omega)} \| u_\perp - P_1 u_\perp \|_{L^2(\Omega)} \leq \| \Delta^2 u_\perp + \Delta \chi_h \|_{L^2(\Omega)} C_0(h) \| \Delta u_\perp \|_{L^2(\Omega)}, \]
which implies (32). \(\Box \)

Note that (32) holds for any \(\chi_h \in S_h \) and there are some choice of \(\chi_h \) depending on the finite-dimensional subspace \(S_h \). We show several concrete examples of \(\chi_h \) in the last section.

Now, we consider the estimation of \(C_1(h) > 0 \) satisfying
\[\| \Delta^2(u - P_2u) + \Delta \chi_h \|_{L^2(\Omega)} \leq C_1(h) \| \Delta^2 u \|_{L^2(\Omega)}. \] (33)

We show two approaches for \(C_1(h) \) satisfying (33). The choice will depend on \(S_h \) and the computational cost. The following lemma is one of the approaches.

Lemma 3.2 The constant \(C_1(h) > 0 \) of (33) can be taken as
\[C_1(h) = 1 + \sqrt{\| B_1 \|_2}. \] (34)
Proof: Because
\[
\|\Delta^2(u - P_2u) + \Delta \chi_h \|_{L^2(\Omega)} \leq \|\Delta^2 u\|_{L^2(\Omega)} + \|\Delta^2 P_2 u - \Delta \chi_h\|_{L^2(\Omega)},
\]
using (20), (19), (18), (22), (24), (25), (23), (28), (27), (29), and (30) we obtain
\[
\|\Delta^2 P_2 u - \Delta \chi_h\|_{L^2(\Omega)}^2 = (\Delta^2 P_2 u - \Delta \chi_h, \Delta^2 P_2 u - \Delta \chi_h)_{L^2(\Omega)}
\]
which, by (36) and Hölder’s inequality, yields
\[
\|\Delta^2 P_2 u - \Delta \chi_h\|_{L^2(\Omega)}^2 \leq u^T A_4 u - w^T A_3 u - u^T A_1 w + w^T A_2 w
\]
\[
= v^T A_0 A_2^{-1} A_4 A_2^{-1} A_0 v - v^T F^T A_3 A_2^{-1} A_0 v - v^T A_0 A_2^{-1} A_3^T F v + v^T F^T A_2 F v
\]
\[
= (A_0^{T/2} v)^T \left(A_0^{T/2} A_2^{-1} A_4 A_2^{-1} A_0^{1/2} - A_0^{1/2} F^T A_3 A_2^{-1} A_0^{1/2}
\right)
\]
\[
- A_0^{T/2} A_2^{-1} A_3^T F A_0^{-T/2} + A_0^{-1/2} F^T A_2 F A_0^{-T/2} \right) A_0^{T/2} v
\]
\[
= (A_0^{T/2} v)^T \left(Q_2 + Q_4^T \right) A_0^{T/2} v
\]
\[
= (A_0^{T/2} v)^T B_1 A_0^{T/2} v
\]
\[
\leq B_1 \|z(A_0^{T/2} v)^T A_0^{T/2} v\|
\]
\[
= B_1 \|z v^T A_0 v\|
\]
\[
\leq \|z\| \|\Delta^2 u\|_{L^2(\Omega)}^2
\]
\[
\leq \|z\| \|\Delta^2 u\|_{L^2(\Omega)}^2.
\]
then the conclusion. \hfill \Box

Remark 2 In the case of \(\chi_h = 0\), we can take
\[
C_1(h) = 1 + \sqrt{\|A_0^{T/2} A_2^{-1} A_4 A_2^{-1} A_0^{1/2}\|_2^2},
\]
which based on Lemma 3.2 and then \(\|A_0^{T/2} A_2^{-1} A_4 A_2^{-1} A_0^{1/2}\|_2\) coincides with the maximum eigenvalue of the matrix \(A_2^{-1} A_4 A_2^{-1} A_0\). For the verified bounds for the 2-norm (spectral norm) of a matrix, see [5].

Now we show an alternative to Lemma 3.2

Lemma 3.3 The constant \(C_2(h) > 0\) of \[[33]\] can be taken as
\[
C_1(h) = \sqrt{1 + \|B_2\|_2}.
\]

Proof: When there exists \(K_h > 0\) satisfying
\[
\|P_0 \Delta^2 u - \Delta^2 P_2 u + \Delta \chi_h\|_{L^2(\Omega)} \leq K_h \|P_0 \Delta^2 u\|_{L^2(\Omega)},
\]
using (36) and Hölder’s inequality, we obtain
\[
\|\Delta^2(u - P_2 u) + \Delta \chi_h\|_{L^2(\Omega)} = \|(I - P_0) \Delta^2 u + P_0 \Delta^2 u - \Delta^2 P_2 u + \Delta \chi_h\|_{L^2(\Omega)}
\]
\[
\leq \|(I - P_0) \Delta^2 u\|_{L^2(\Omega)} + K_h \|P_0 \Delta^2 u\|_{L^2(\Omega)}
\]
\[
\leq \sqrt{1 + K_h^2} \sqrt{\|(I - P_0) \Delta^2 u\|_{L^2(\Omega)}^2 + \|P_0 \Delta^2 u\|_{L^2(\Omega)}^2}
\]
\[
= \sqrt{1 + K_h^2} \|\Delta^2 u\|_{L^2(\Omega)}.
\]
For K_h satisfying (36), using partial integration and (16), (18), (19), and (20), we have

\[
\|P_0\Delta^2 u - \Delta^2 P_0 u + \Delta \chi_h\|^2_{L^2(\Omega)}
= (P_0\Delta^2 u - \Delta^2 P_0 u + \Delta \chi_h, P_0\Delta^2 u - \Delta^2 P_0 u + \Delta \chi_h)_{L^2(\Omega)}
= (P_0\Delta^2 u, P_0\Delta^2 u)_{L^2(\Omega)} - (P_0\Delta^2 u, \Delta \chi_h)_{L^2(\Omega)} + (\Delta \chi_h, P_0\Delta^2 u)_{L^2(\Omega)}
\]

Therefore, we can take

\[
\|A_0^{1/2} A_0^{T/2} v\|_{L^2(\Omega)} \leq \|B_2\| \|A_0^{T/2} A_0^{1/2} v\|_{L^2(\Omega)}.
\]

Then, noting that $A_0 = A_0^{1/2} A_0^{T/2}$, (22) and (20) can be used to derive

\[
\|P_0\Delta^2 u - \Delta^2 P_0 u + \Delta \chi_h\|^2_{L^2(\Omega)}
= v^T A_0 v - v^T A_0 A_0^{-1} A_0 v + v^T F^T A_1 v
- v^T A_2 A_2^{-1} A_2 v + v^T A_0 A_0^{-1} A_4 A_2^{-1} A_0 v
- v^T A_1 A_1 v - v^T A_0 A_0^{-1} A_3 A_2^{-1} A_0 v
\]

\[
\leq \|A_0^{1/2} v\|^2_{L^2(\Omega)} \|B_2\| \|A_0^{T/2} A_0^{1/2} v\|_{L^2(\Omega)}.
\]

Therefore, we can take $K_h^2 = \|B_2\|_2$.

\[\square\]

Remark 3 In the case of $\chi_h = 0$ in Lemma 3.3, we can take

\[
C_1(h) = \sqrt{1 + \|A_0^{1/2} A_0^{-1} A_4 A_2^{-1} A_0^{1/2} - I\|_2}.
\]

Lemma 3.1, Lemma 3.2, and Lemma 3.3 imply our main result.

Theorem 3.1 For the solution $u \in D(\Delta^2)$ of the biharmonic equation (1) and the approximate solution $u_h \in S_h$ satisfying (6), it is true that

\[
\|u - u_h\|_{H^2_0(\Omega)} \leq C(h) \|f\|_{L^2(\Omega)},
\]
with

\[
C(h) := C_0(h) C_1(h),
\]

where $C_1(h)$ is given constructively by (34) or (35).
4 Numerical Examples

In this section, we report several numerical examples of a finite-dimensional approximation of $H^2_0(\Omega)$ by Legendre polynomials [2] on the unit square domain $\Omega = (0, 1) \times (0, 1)$. For $N > 0$, define

$$\psi_n(x) := \frac{(-1)^{n+1}\sqrt{2n+3}}{(n+1)!} \left(\frac{d}{dx} \right)^{n-1} (x-x^2)^{n+1}, \quad 1 \leq n \leq N, \quad (41)$$

and

$$\varphi_k(x, y) := \psi_m(x) \times \psi_n(y), \quad (42)$$

with some change of indices $(m, n) \rightarrow k$. Then, we can assure that $K = N^2$, $h = 1/N$, and $S_h = \text{span} \{ \varphi_k \}_{k=1}^K$ is a finite-dimensional subspace of $H^2_0(\Omega)$ satisfying $S_h \subset D(\Delta^2)$. Moreover, $C_0(h) > 0$ of (15) can be taken as

$$C_0(h) = \begin{cases} \sqrt{c_2(N+3)/4} & \text{if } 1 \leq N \leq 16, \\ \sqrt{c_3(N+3)/4} & \text{if } N \geq 17, \end{cases} \quad (43)$$

where

$$c_2(L) := \frac{2}{\sqrt{2L-5(2L-3)^2\sqrt{2L-1}}(2L+1)} + \frac{4}{(2L-3)\sqrt{2L-1}(2L+1)\sqrt{2L+3(2L+5)}} + \frac{1}{\sqrt{2L-1}(2L+1)(2L+3)(2L+5)\sqrt{2L+7}} + \frac{10L-3}{(2L-3)^2(2L-1)(2L+1)(2L+3)}, \quad (44)$$

and

$$c_3(L) := \frac{1}{\sqrt{2L-5(2L-3)(2L-1)(2L+1)\sqrt{2L+3}}} + \frac{4}{(2L-3)\sqrt{2L-1}(2L+1)\sqrt{2L+3(2L+5)}} + \frac{6}{(2L-1)(2L+1)(2L+5)(2L+7)} + \frac{4}{(2L+1)\sqrt{2L+3(2L+5)\sqrt{2L+7(2L+9)}}} + \frac{1}{\sqrt{2L+3(2L+5)(2L+7)(2L+9)\sqrt{2L+11}}}, \quad (45)$$

Note that by using Theorem 3.7 in [2], it would be possible to further improve $C_0(h)$. Table 1 shows the bounds of $C_1(h)$ obtained by Wolfram Mathematica 10.0.2.0 with 100-digit multiple precision. To avoid rounding-error effects, this should be confirmed analytically, which can be accomplished by interval arithmetic software (e.g., [4, 9]). In Table 1, we consider three types of the matrix F. The notation "0" indicates $\chi_h = 0$, "$A_1^{-1}A_3^{-1}A_0^{-1}$" indicates that u in (24) satisfies

$$(\Delta \chi_h - \Delta^2 P_2u, \Delta \varphi_i)_{L^2(\Omega)} = 0, \quad 1 \leq i \leq K,$$
which ensures that $Q_2 + Q_4 = 0$, and $A_2^{-1}(A_3 A_2^{-1} A_0 - A_1)$ indicates that w is taken such that $$ (\Delta \chi_h - \Delta^2 P_2 u + P_0 \Delta^2 u, \Delta \varphi_i)_{L^2(\Omega)} = 0, \quad 1 \leq i \leq K. $$

The simplest case, $F = 0$, is very unstable; in other cases, there is some improvement in $C_1(h)$.

Table 1: Constructive constants of $C_1(h)$ in Lemma 3.2 and Lemma 3.3.

<table>
<thead>
<tr>
<th>F</th>
<th>$A_2^{-1} A_3 A_2^{-1} A_0$</th>
<th>$A_2^{-1}(A_3 A_2^{-1} A_0 - A_1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Lemma 2</td>
<td>Lemma 3</td>
</tr>
<tr>
<td>5</td>
<td>3.3305</td>
<td>2.3305</td>
</tr>
<tr>
<td>10</td>
<td>5.7256</td>
<td>4.7256</td>
</tr>
<tr>
<td>15</td>
<td>8.6612</td>
<td>7.6612</td>
</tr>
<tr>
<td>20</td>
<td>12.0622</td>
<td>11.0622</td>
</tr>
</tbody>
</table>

Table 2 shows the bounds of each constant by using Lemma 3 with $F = A_2^{-1}(A_3 A_2^{-1} A_0 - A_1)$.

$C(h)$ seems to be approximately $O(h)$, which means it should provide a “good” verification of nonlinear biharmonic problems.

Table 2: Constructive error estimates for the biharmonic equation.

<table>
<thead>
<tr>
<th>N</th>
<th>$C(h)$</th>
<th>$C_0(h)$</th>
<th>$C_1(h)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>3.7742×10^{-3}</td>
<td>1.3117×10^{-4}</td>
<td>2.8774</td>
</tr>
<tr>
<td>20</td>
<td>2.2329×10^{-3}</td>
<td>4.2161×10^{-4}</td>
<td>5.2962</td>
</tr>
<tr>
<td>30</td>
<td>1.6453×10^{-3}</td>
<td>2.1133×10^{-4}</td>
<td>7.7851</td>
</tr>
<tr>
<td>40</td>
<td>1.3051×10^{-3}</td>
<td>1.2672×10^{-4}</td>
<td>10.2997</td>
</tr>
<tr>
<td>50</td>
<td>1.0823×10^{-3}</td>
<td>8.4375×10^{-5}</td>
<td>12.8265</td>
</tr>
</tbody>
</table>

It is not clear why $C_1(h)$ shows a tendency to become large as $h \to 0$. As an area of future work, we intend to investigate much finer spacing of F for $C(h)$ and to use another finite-dimensional basis, e.g., finite element functions; we also will try to verify these solutions of nonlinear biharmonic equations, especially the two-dimensional Navier-Stokes equations.

Acknowledgments

The authors heartily thank the two anonymous referees for their thorough reading and valuable comments. This work was supported by a Grant-in-Aid from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (Nos. JP15K05012, JP15H03637) and CREST, JST. The computation was mainly carried out using the computer facilities at Research Institute for Information Technology, Kyushu University, Japan.
References

