New Higher Order Root Finding Algorithm
Using Interval Analysis*

Md. A. T. Ansary'
Department of Mathematics, Indian Institute of Tech-
nology Kharagpur, WB, India, 721302
md . abutalha2009@gmail . com

G. Panda
Department of Mathematics, Indian Institute of Tech-
nology Kharagpur, WB, India, 721302
geetanjali@maths.iitkgp.ernet.in

Abstract

We propose an implicit interval Newton algorithm for finding a root of a nonlin-
ear equation. Our implicit process avoids the burden of selecting an initial point very
close to the root as required by the classical Newton method. The conventional inter-
val Newton method converges quadratically, while our modified algorithm converges
cubically under some conditions and bi-quadratically under other conditions. These
convergence results are proved using an image extension of a Taylor expansion. The
algorithm is illustrated by numerical examples, and we provide a comparison between
the existing interval Newton method and our proposed method.

Keywords: interval analysis, image extension, inclusion isotonic extension, Lipschitz continuity,
interval Newton method
AMS subject classifications: 65B99 65G99 65H05

1 Introduction

Interval computation plays an important role in many mathematical models involving quantities
that are not exactly representable. In this situation, lower and upper bound of these parameters can
describe a solution rigorously. Interval analysis has been used for this purpose by many researchers
for root finding (Moore [19], Neumaier [21]), for solving a system of equations (Krawczyk [16]), for
optimization (Hansen [I4]), and for many real applications. In most of these algorithms, a solution
of a real problem is determined by considering an initial interval and reducing it in subsequent

*Submitted: April 1, 2014; Revised: August 14, 2015, January 14, 2015, and August 10, 2015; Accepted:
August 28, 2015.
t Author for correspondence

11

md.abutalha2009@gmail.com
geetanjali@maths.iitkgp.ernet.in

12 Ansary and Panda, Higher Order Root Finding

steps to an narrow interval containing the solution. A widely used algorithm in this category
is the interval Newton method (Moore in 1966 [19]) for finding an isolated root of an equation
and for solving a system of equations. The classical floating-point Newton method requires the
selection of the initial guess close to the root/solution, but the interval Newton method is free from
this burden. The interval Newton method for finding simple root of a real-valued single variable
function converges to the root quadratically if the image extension of derivative of this function
does not contain 0. This algorithm was modified by Alefeld [1] in 1968 and Hansen [10] in 1978
(independently) to include the case where image extension of derivative of the function may contain
0. The modified interval Newton method developed in [I0] finds the bounds of all real roots.

The interval Newton method for finding root of a system of equations introduced by Moore [19]
was extended by several researchers. The methods due to Hansen [§], Alefeld and Herzberger [2], and
Madsen [I7] avoid inverting an interval matrix, and the methods of Hansen and Sengupta [13] and
Hansen and Greenberg [12] focus on greater efficiency of the algorithm. Further developments due
to Petkovi¢ [26] [27] and Carstensen and Petkovi¢ [5] focus on higher order root finding algorithms.
Solution of the equations with interval coefficients is studied by several researchers (see [11], 23] 30}
31]). Readers may see |4}, [7, 18 251 29] [32] for some algorithms to find simple and multiple complex
polynomial zeros in the complex plane using circular complex arithmetic. These algorithms (|4} [7}
18], [25] [29] [32]) are applicable for finding root(s) of polynomials only; for transcendental equations,
these methods fail. Developments using interval computations are summarized in [3] 14} 20} 28].

Recently, many researchers have extended the classical point Newton method (with no interval
computations) for root finding with higher order convergence behavior using several techniques
(see [6] 24 33, [34]). These methods require an initial point be selected that is “sufficiently close”
to the root being sought. In this paper, we develop a new algorithm using an implicit interval
Newton method. Our algorithm has less restrictions on initial point selection, and it has higher
than second order convergence, converging cubically under certain conditions and bi-quadratically
under stronger conditions. Another advantage of this algorithm is that selection of an initial point
very close to the root is not essential; the user may select an initial interval containing the solution,
with milder restrictions on the size. We will apply such a higher order algorithm for a system of
equations in the future.

The paper is organized as follows. Some prerequisites on interval analysis and the classical
second order interval Newton method are discussed in Section[2] A new algorithm is proposed in
Section [3] and convergence of the algorithm is proved. The usual interval Newton algorithm and
our algorithm are compared in Section [4] with some numerical examples.

2 Prerequisites

We follow the interval notations of [I5]. Let IR be the set of all closed intervals. Bold letters denote
intervals. = € IR is the set # = [2,7] = {z € Rlz < 2 < z}. For = € IR, m(z) = ZiZ is the
midpoint of , and w(x) = T — z is the width of .
For and ye]I]Ra T = [§7f]a Y= [gvg]v
ex=yiffz=yandT=7.
e x is degenerate if x = 7. (Every real number can be expressed as a degenerate interval. A
degenerate interval [z, z] is denoted by Z.)

e Absolute value of @ is denoted by |z| = max{|Z|, |z|}.

Reliable Computing 21, 2015 13

e An algebraic operation * in I(R) is defined as #*y = {z xy, =z € ®, y € y, where %
is the algebraic operation{+, —, -, /} in the set of real numbers}. Hence,
xt+y=[z+y,T+Y, z-y =[x —7,T—yl,
z-y=mn{Z 7,7 y,2 y,z y}max{z-y,2-4,7 3,7 Y},

z/y = [min{Z/y,7/y,z/y, 2/¥}, max{z/y,z/Y,Z/y,T/7}], provided 0 ¢ y.

[ez, cz], ifc>0;

oForanyceR,cm:{ (Z.ca] fe<o.

Following results can be derived using the notation above:

wety) = w@)+wly), (1)
w(ex) = |cjw(®), (2)
w(l/xz) = %w(m), provided 0 ¢ «, (3)
w(zy) < |zfwy) + |ylw(z), (4)
w(x) = O0iff x is a degenerate interval, (5)
w(@ny) < min{w(z), w(y)} (6)
ife C ythen 1/x C1/y, provided 0 ¢ y. (7)

2.1 Set image and interval extension under a continuous function

The following results and definitions are from [3} [20].

Definition 1. The set image of the interval under a continuous function f : R — R is the set

J(@)={f(@): v €2} = |min f(z),max [(x)

Definition 2. F' is said to be an interval extension of f : R — R, if the degenerate interval
arguments of F agrees with f. That is, F ([z,z]) = f(x).

Definition 3. An interval extension ' of f : R — R s said to be an inclusion isotonic interval
extension of f if y C x implies F(y) C F(x) for any two intervals and y.

Definition 4. An interval extension F of f : R — R is said to be Lipschitz in x if w(F(y)) <
Lw(y) for every y C x for some constant L.

Note 1. The set image of an interval under a continuous function is an inclusion isotonic interval
extension.

Note 2. If f is a Lipschitz continuous function, then the set image of * under f is a Lipschitz
extension in .

14 Ansary and Panda, Higher Order Root Finding

Definition 5. For x = [z,7] and y = [g, y], the distance between x and y, denoted by d(x,y), is

d(z,y) = max {|z — y|,[T — 7|} .

d is a metric.

Definition 6. A sequence of intervals {mk} is said to be convergent if there exists an interval x*
such that for every e > 0, there exists a natural number N = N (¢) such that d(x*,x*) < ¢ whenever
k> N. (In short, we may write klim " =x*.)

— 00

For a sequence of intervals {a:k} which converges to &* with * C «* for every k, there are two
ways to measure the deviation of ¥ from a*: calculating either d(x*, *) or w(x") — w(x*). Both
are nonnegative, and

d(z®, x*) =0 iff 2" = " iff w(z") — w(z*) = 0.

Definition 7. (See Appendiz A of [3]) Let {z*} be a nested sequence of intervals so that klim xh =
— 00

x*, and ©* C x" for every k. Then p > 1 is the order of convergence of {:ck} if there exists a
nonnegative constant vy such that

P

a (") <o (dah,2") orw@™) —w (@) < (w(h) - w @)

2.2 Existing classical interval Newton method (INM)

Before proposing a modification, we discuss the existing interval Newton method. For details, the
reader may see [19] and [3].

Let f : R — R be a continuously differentiable function, ¢ be a simple root of f(z), ° be an

initial interval containing &, and 0 ¢ F’'(x®) for some inclusion isotonic extension F’ of f’ in a°.

Then the sequence of nested intervals {a:k} generated by
2" = 2F N N(2b) k=0,1,2,..., (8)

where N(z*) = m/(a:\k) — %ﬁf:;), describes interval Newton iterates.

Theorem 1. [Theorem 4, Chapter 7, [3]]. Let f be a continuously differentiable function in 20 =
[z°, 2], and for any « C x°, f' satisfies w(f'(z)) < Cw(x), C > 0 . Furthermore, let f(z°) <0
and f(x0) > 0. Then the sequence {x"} generated by Equation (@ satisfies
i. fex® k>0,
i 2 D>axr >ax? D ..., and klim zk = §A or the sequence comes to rest at é = [£,€] after a finite
— 00

number of steps,

i, w(z) < B(w(x*))?, B> 0.

Reliable Computing 21, 2015 15

3 Modified Interval Newton Method (MINM)

In this section, we propose a new algorithm, which is a modified interval Newton algorithm with
higher order convergence to find the simple root £ of f: R — R.

3.1 Algorithm:

Step 1: (Initialization) Choose an initial interval 22° which contains & and error of tolerance . Set
k:=0.

Step 2: Compute set image f'(x*) of * under f'.

k

Step 3: Select a point z* in «*. In particular ¥ may be selected as m(x*). Compute Z* =

x" N (z"), where
— k —
N(z¥) = 2% — flz),andxk: z*, 2",
(@t = - L) 2%
Step 4: Compute the set image f(Z*) of " under f’.

Step 5: Select a point Z* in @*. In particular, ¥ may be sclected as m(%k) Compute z**! =

x* N N(z*), where
= 2f(z* e~ = ik~
N(xF) =7+ — L)wc’ ¢ e &%, and 7% = [@*, 7).
fr&@k) + f1(x)
Step 6: If w(x**') < ¢, then stop. Else set k := k + 1 and go to Step 2.

Theorem 2. Let f : R — R be a continuously differentiable function with a simple zero £ in a closed
interval °, and 0 ¢ f'(x°). Then the sequence of nested intervals {x"} generated by Algorithm
converges to &.

Proof. The statement é C x* for every k can be proved by induction. 2° is true from

c
assumption. Let £ C «* for some k. Denote f'(z*) £ [m*,m*] and f'(&") £ Mk,Mk]. Then

mh < f@) = £ = f(z) <m" for all z € ¥, and
z—=§ -£
m* < (@) = (&) = (@) < M" for all z € T".
r—£ r—£
Since " C x* for all k, so from above inequalities, 2;5? € [mk + M’“,m’“ + Mk] for all z € T*.
Hence using @ for every = € ", with = # £, we have
2 . 1 1 N 2
fzx—MEx—Zf(x) — o — | =7 - 7f(x) .
(Qf(ag)) mt 4+ M" mk + M [mk +Mk7ﬁk +Mk]

Hence, ¢ € N(z¥). So, ¢ € 2" N(x*) = "', By induction, £ C a* for every k.
Next, we show that w(z") — 0 as k — oo. Since 0 ¢ f’(a, without loss of generality, we may

assume f’(z) > 0 for all z € x*. From Step 5 of Algorithm [3.1} **! can be computed as
k ~k 27 (@* ~k 27 (@* ~k
LR [max{z"”, % — mis_ﬁ)k b at - W{E’,L}k]7 f(@%) = 0;
~ 2f (3% ek~ 2f(F* ~
[xk - W){ilﬁ)k’ mln{xk, :Ck - mii—ﬁ)k]a f(xk) < 0

16 Ansary and Panda, Higher Order Root Finding

Case 1. If f(z") = 0, then x**! = k. Hence, the process terminates, and & = Z*.

~k ~k
Case 2. If f(z%) >0, x**1 = [max {gk, - %}, - %] Two possibilities arise:

~k
Sub-case 1. If z* > &% — 21{fﬁ>k’ then

~ 2f(xk)

k41 k k
T =z x
) mk + M*

w

—k
— 2 — & _xk)mk+M
- m* + M*

~k k mk+ﬁk
M [1-= -
mF + M

kaer k

- <1m’“+Mk v

Sub-case 2. If z* < 7% — 2){(5’% then

IA

I
—~
8

+Mk7
- 2f (@ - 2f ("
S
m"+ M mk + M
. 1 1
= of (7" —
f(m)<mk—|—Mk mk+Mk>
mk + "

< @ -2"0- m)

mk+ﬁk k
(1 miart))

~ ~ zk gk o zk
Case 3. If f(2") < 0, then x"! = [xk — é{:ﬂrﬂ)k, min{z", " — Tjii.ﬁ)k]

Proceeding as in Case 2, we can derive

k ——k
m” + M
v (1 - m+M> v

From Case 2 and Case 3, we have

k —k
w(x) < <1 — m) w(x)

kaer mk—1+Mk—1 o1
1= —k | Ak == w(x"7)
m® + M mEl+ M

. mk_i_ﬁk . mk—1+Mk—l . m® + M° 0
T mF 4+ MF T 1 k1) T\ T =0 w(x”).
M m + M m° + M

IN

IN

Reliable Computing 21, 2015 17

mF 4+ Ar*
mk 4+ MF
w(z"!) = 0 as k — oo, the sequence {z"} generated by Algorithm converges to £. [

Since < 1 for every k, so w(:ck“) — 0 as £k — oo. Since f C z* for every k and

Theorem 3. Suppose the assumptions o Theorem@ hold. If f' is Lipschitz continuous in x°, the
sequence {cck} generated by Algorithm converges to & cubically.

Proof. Since f'(z) is a Lipschitz continuous function, f’(x°) is a Lipschitz interval extension
in x° (see Note . Hence from Definition |4} there exists L1 > 0 such that

w(f'(x)) < Liw(x) for all x C x°.

Z" is computed using Step 3 of Algorithm which is the classical interval Newton iterate .
From the proof of Theorem [1| (for a detailed proof, see Theorem 4 of Chapter 7 in [3] for the classical
interval Newton method), we borrow the result

w(@E) < %w(mk) .)

Expanding f by Taylor’s formula about &,
F@) =) + @ =8 (© +0((z =) = (z = O (&) + O((z —)*).

For any 7* € &",

If@E" < 7 =€l @1+ 0@ - €)%
< w@)|f)+ 0w @*)?)
< %w(wkarO(w(mk)zl) (from (3))- (10)
Next,
w k - w 3’~3_ 2f(5k)
= w Lﬁk) usin n
= (G @) e @ i @)
_ 20/ @) , s
C (mb 4+ 1)t + MP) (00 @) +w(r' @) (wsing @, @ end @)
2L (©)] (w(a")” + Ofw(=")")) . L
2L3| 1 (&) w(z)? wla™):
< mk(muw’“)(mum((@) + O(w(=*)"). (11)
Hence,
w@) = wE'[Nz"))
< min{w(a"), w(N(z"))}(by (6))
< w(N(z"))
< 2L/ (©)l (w(@)° + Ow(a*)")) (from @)).

m’“(mk +M’“)(mk Jerc)

18 Ansary and Panda, Higher Order Root Finding

Hence by Definition [7] {&*} converges to £ at least with cubic order. (Here, x* is the degenerate
interval &, so w(x*) =0.) O

Theorem 4. Suppose the assumptions of Theorem@ hold. If f' and f"” are Lipschitz continuous
in x°, and 0 € f""(x*) for all k, then the sequence {x*} generated by Algorzthm converges to &
with order of convergence four.

Proof. Since f”(z) is a Lipschitz continuous function, f”(z°) is a Lipschitz interval extension
in x° (see Note . Hence from Definition |4} there exists Lo > 0 such that

w(f"(x)) € Law(x) for all x C x°. (12)

Using Taylor’s expansion of f’ about &, for every z® ek, f(z*) = £ &)+ (=€) f"(0), 0 € (zF,¢).
Using image extensions of f’ and f” in =", we have

It < PO+ e -9 @,
w(f @) < w(FEO)+ @ - "))
= w((@" - §/"("))
< (@ = Qlw(f" @) + 11" (@")w(@" - &) (using @)
(13)
From the definition of absolute value of an interval (see Section , we get
(" — &) = maw{le" — ¢, [7" — €]} < w(="). (14)
Since 0 € " (x"),
(@) < w(f” (@) < Law(@"). (15)
Using 7 , and , Inequality can be simplified to
w(f'(@")) < 2Lyw(a®)?. (16)
Similarly from @D,
w(f (@) < 2Law(@) < 2Ly (a2 (1)
m

Next,

w@t) = wE (N @)

min{w(z"), w(N(z"))} (by ()
w(N ("))

v (? B f’(mz)f f ?f(az’w) '

INIA

Reliable Computing 21, 2015 19

Using results , , , and ,

~k
w(e) <]?/[{:)((xm)k M%) (0 @)+ ulr'@). (%)

Using , , and , Inequality can be simplified to

mk+1) < 2L1|f’(§)|w(mk)2+O(w(a:k)4)
mk(mk +Mk)(mk +Mk)
4L, Lo| f'(€)] 5

w(

2
(2L2w(mk)2 + 2L1L2 w(mk)Q)

— k2
mk

Hence by Definition [7, {"} converges to € at least bi-quadratically. (Here, x* is the degenerate
interval &, so w(x*) =0.) O

Remark 1. We have considered the set image of a function as an interval extension, but com-
puting a set image is not always easy for some complicated functions. In this situation, one may
consider some suitable Lipschitz inclusion isotonic interval extension of the given function and
execute Algorithm [3_1] without affecting the convergence of the algorithm.

4 Example

There are several higher order root fining methods in the literature (see Section . In this section,
we illustrate some advantages of our algorithm using examples. The existing algorithms are based
on certain restrictions on the selection of initial interval.

e The algorithm of [I8] converges cubically if the conditions of Theorem 3.1 of that paper are
satisfied for the initial interval, but it is difficult to search for such an initial interval. Our
algorithm has weaker assumptions on the initial interval.

e Some algorithms, e.g., [18] [26] need the second derivative f”’. Our algorithm needs only the
first derivative f’, so it requires less computation.

e Some algorithms are for polynomials only, e.g., [18] 26], but our algorithm works for first
order differentiable functions.

e The algorithm in [27] and our algorithm are distinct approaches. The algorithm in [27]
converges cubically, whereas our algorithm converges cubically (Theorem 3) under certain
conditions and bi-quadratically under the stronger conditions of Theorem 4. In addition, our
algorithm is simpler than the algorithm provided in [27].

We illustrate these algorithms in Example We consider a function f(x) = 2® 4+ 2 and solve
using both the algorithms [I8] and [27] with initial interval [0.5, 2] (with imaginary part zero in
algorithm of [I8]). The condition of Theorem 3.1 of [I8] is satisfied for this interval. Our algorithm
converges bi-quadratically, more rapidly than the algorithm of [18], and it requires fewer iterations.

To compare the results using the proposed algorithm and algorithms in [I8] and [27], we may
express an interval @ = [z,Z] in midpoint-radius form as @ = {c : r}, where ¢ = m(x) and
r =rad(x) = w(x)/2. Hence, z = [c —r,c+ 7).

20 Ansary and Panda, Higher Order Root Finding

Example 4.1. Consider f(z) = 2® + z, ° = [-0.49,0.51], ¢ = 1072°°.

Using our algorithm, we obtain the inclusion intervals {m(x*) : rad(z*)}

m(z') = 0.0003074212598 rad(z') = 0.00030743177

m(x®) = 4.11900800473 x 107" rad(z?) = 4.119008005 x 10~ '"
m(z®) = 1.7785023313 x 107%" rad(z”) = 1.7785023313 x 10~%"
m(x') = 2.669091444 x 107 rad(z*) = 2.669091444 x 10~*%

Using two step interval method in [27], we obtain the inclusion intervals {m(z") : rad(x*)}

m(z') = 0.00048008113 rad(x") = 0.00048009165
m(xz®) = 7.65090586827989 x 107'° rad(a?) = 7.65090586828 x 10~ °
m(x®) = 7.86476134093 x 10°7° rad(x®) = 7.864761340932 x 10~ "°
m(x') = 9.0271154416 x 107°" rad(=’) = 9.0271154416 x 107"
Using the method in [I8], we obtain the inclusion intervals {m(x*) : rad(x*)}
m(x') = —1.333692914 x 107° rad(z') = 4.2573862392 x 10°
m(x®) = 2368373121 x 107"* rad(=”) = 1.0708343125 x 10~ "7
m(x®) = —1.32633853 x 107°* rad(z®) = 5.996546905 x 10~ °
m(x') = 2.3295239102 x 107" rad(z") = 1.05320769066 x 10~ '
m(x®) = —3.790451123 x 10~*"® rad(z®) = 5.70627084977 x 10~ 7

Example 4.2. Consider the function

fl@) = ' — 2"+ 282" — 390z 4 6002z — 107622" — 29484z'" + 846040z"°
—768097072" + 1305834272° — 21133272162 4 24795890990°
—3393428026962° 4 1789577633362 4 7226702364672z
—88957569392640x> + 1984671888998400x — 1902803374080000,
with 2° = [0.5,2] and ¢ = 107,

Our algorithm yields the inclusion intervals {m(z") : rad(z")}

m(x') = 1+4.83243235x107°, rad(z') = 0.0002490466531

m(z®) = 141.621527 x 107'°, rad(z”) = 1.393803591252234 x 10~ *°
m(z®) = 1+6.124747 x 107°!, rad(z®) = 8.780408858477 x 10~°°

m(z*) = 1+3.300505 x 107'**, rad(z*) = 7.8914357407525282 x 10~ '%%,

while the two step interval method in [27] yields the interval inclusion

m(x') = 1.00012370843177, rad(z') = 0.0004943042

m(x®) = 14 5.44258215x 107", rad(z”) = 3.6264859955 x 10~
m(x®) = 144.6319176 x 10°*°, rad(z®) = 5.147435737112 x 10~ *°
m(z?) = 1+ 2.855146 x 107" rad(z*) = 5.29184999001 x 10~ 38

m(z®) = 1+6.686992 x 10~*"7, rad(z”) = 2.06708865402 x 10~ *'".

Reliable Computing 21, 2015 21

From this explicit calculation that at every iteration, one may observe that the radius of the interval
from our algorithm is less than half the radius of the algorithm of [27]. The conditions of Theorem
3.1 in [I8] are not satisfied in the initial interval [0.5, 2], so the algorithm of [I8] is not applicable
for this interval, while our algorithm performs well in this case.

Example for which classical Newton method fails and interval Newton method works:
Consider the following numerical example from [22]. The classical Newton method fails for some
initial points, but the interval Newton method works for any initial interval containing the root
being sought (provided extended interval arithmetic is implemented appropriately in the case f(x)
contains 0.). For 0 < a < b, fnic(z) is

g 1o 0<a<a
a?2
Frielz) = V& a<z<b
(2)3bs (x—b)5, b<u
_fnlc(_x)v <O

Here fnie € C*(—00,00), and 0 is the only root of fnic(z) = 0. The classical Newton method
fails if |x0| > a, while the interval Newton method provides a convergent sequence if 0 belongs
to the initial interval regardless of the initial point (see [9] [16], provided we use extended interval
arithmetic correctly). Our modified interval Newton method yields a convergent sequence whose
order of convergence is higher than that of the classical interval Newton method. We have solved
this problem for a = 4 and b = 64 using both the classical interval Newton method, our modified
interval Newton method, and the method in [27].

Other differences in the of number of iterations may be seen in numerical results summarized
in Table [l For z* = m(z*), ¥ = m(&"), and stopping criteria w(x®) < e = 1071 or 107,
we ran programs in INTLAB Version 6 (under MATLAB 2012b and the Multiprecision Computing
Toolbox) for some Lipschitz continuous functions including fr;.. Our algorithm is compared with
the classical interval Newton algorithm, the method by Milosevié et al. [18], and two step method by
Petkovié¢ [27]. Algorithm required fewer iterations than the classical interval Newton algorithm.
Moreover, the method proposed in [I8] fails for transcendental equations.

5 Conclusion and Future Work

In this paper, we present a new algorithm using interval analysis for finding a simple root of a
non-linear equation. The classical interval Newton method is used implicitly for greater efficiency.
Our algorithm has the following advantages:

e Has higher order of convergence than existing interval Newton methods.
e Avoids the burden of selection of a suitable initial point for classical point Newton methods.
e Is less restrictive in selection of initial interval than the methods in [18] 26].

However, there remain opportunities for improvement. Our algorithm is valid for finding simple
roots only, and we have not addressed the solution of systems of equations. While univariate
functions often can be evaluated in a fraction of second, that is not necessarily true for functions
of several variables. Our objective is to develop a higher order algorithm in several variables, so we
have begun with a higher order algorithm for univariate functions with an intent to extend it.

22 Ansary and Panda, Higher Order Root Finding

No. of No. of No. of No.of
Function =0 e iterations |iterations |iterations |iterations Root
in MINM | in INM in [18] in [27]
Fric [-5,70] |10~ 100 6 9 N. A. 6 0
23 4 422 — 10 [1,2] ” 4 7 5 5 1.36523001
25 4 @ — 10000 [6,6.5] 4 7 N. C. 4 6.3087771
23 — 10 [2,3] 5 7 N. C. 5 2.15443469
(z —1)3 —1 [1.5,3] 5 8 6 5 2
23 — 3w + 2.001 [-3,-1.5] 5 9 5 5 -2.0001
22 —eT — 3z 42 [0,1] 5 9 N. A. 5 0.2575302
2
e +72—30 _ 4 [1,3.5] s 14 N. A. 8 3
(3 — 27)e®/10 | cos(3 —) —1 |[[2.3,3.3] | 10—30 3 5 N.A. 3 1.4044916482
2
ze® — sin?(x) + 3cos(x) + 5 [-2,-1] 3 6 N. A. 3 -1.20764782713
sin? (z) — 2 + 1 [1,3.5] 3 5 N. A. 3 1.4044916482

Table 1: Comparison for different functions
MINM: Modified Interval Newton Method
INM: Interval Newton Method
N. A.: Not Applicable
N. C.: Not Convergent

Acknowledgement

The authors would like to thank the reviewer and the editor for their detailed comments and
suggestions which significantly improved the content as well as the presentation of our results.

References

[1] G. Alefeld. Intervallrechung tiber den komplexen Zahlen und einige Anwedungen. University
of Karlsruhe, Karlsruhe, 1968.

[2] G. Alefeld and J. G. Herzberger. Nullstelleinschliessung mit dem Newton-Varfahren ohne
Invertierung yon Intervallmatrizn. Num. Math., 19:56-64, 1972.

[3] G. Alefeld and J. G. Herzberger. Introduction to Interval Computation. Academic Press,
London, 1983.

[4] Y. R. Candau, T. Raissi, N. Ramdani, and L. Ibos. Complex interval arithmetic using polar
form. Reliab. Comput., 12(1):1-20, 2006.

[5] C. Carstensen and M. S. Petkovié. On some interval methods for algebraic, exponential and
trigonometric polynomials. Computing, 51(3—4):313-326, 1993.

[6] M. Frontini and E. Sormani. Some variant of Newton’s method with third-order convergence.
Appl. Math. Comput., 140:419-426, 2003.

[7] 1. Gargantini and P. Henrici. Circular arithmetic and the determination of polynomial zeros.
Numer. Math., 18(4):305-320, 1971.

Reliable Computing 21, 2015 23

8]

E. R. Hansen. On solving systems of equations using interval arithmetic. Math. Comput.,
22(102):374-384, 1968.

E. R. Hansen. Topics in Interval Analysis. Clarendon Press Oxford, 1969.

E. R. Hansen. A globally convergent interval method for computing and bounding real roots.
BIT, 18:415-424, 1978.

E. R. Hansen. Sharpening interval computations. Reliab. Comput., 12:21-34, 2006.

E. R. Hansen and R. I. Greenberg. An interval Newton method. Appl. Math. Comput., 12:89—
98, 1983.

E. R. Hansen and S. Sengupta. Bounding solutions of systems of equations using interval
analysis. BIT, 21:203-211, 1981.

E. R. Hansen and W. G. Walster. Global Optimization Using Interval Analysis. Marcel Dekker
Inc. and Sun. Microsystems, Inc., New York, 2004.

R. B. Kearfott, M. T. Nakao, A. Neumaier, S. M. Rump, S. P. Shary, and P. V. Hentenryck.
Standardized notation in interval analysis. In Proc. XIII Baikal International School-Seminar
Optimization Methods and Their Applications, volume 4, pages 106—-113, 2005.

R. Krawczyk. Newton-algorithmen zur bestimmung von nullstellen mit fehlerschranken. Com-
puting, 4:187-201, 1969.

K. Madsen. On the solution of nonlinear equations in interval arithmetic. BIT, 18:428-433,
1978.

D.M. Milosevic, M. S. Petkovi¢, and M. R. MiloSevic. On an interval method for the inclusion
of one polynomial zero. Facta Univ. Ser. Math. Inform., 28(4):403—416, 2013.

R. E. Moore. Interval Analysis. Prentice-Hall, Englewood Cliffs, New Jersey, 1966.

R. E. Moore, R. B. Kearfott, and M. J. Cloud. Introduction to Interval Analysis. SIAM,
Philadelphia, 2009.

A. Neumaier. An interval version of the secant method. BIT, 24(3):366-372, 1984.

K. L. Nickel. On the Newton method in interval analysis. Technical report, Mathematics
Research Center, University of Wisconsin, 1971.

W. Oettli. On the solution set of a linear system with inaccurate coefficients. SIAM J. Numer.
Anal., 2(1):115-118, 1965.

A.Y. Ozanan. Some new variants of Newton’s method. Appl. Math. Lett., 17:677-682, 2004.

M. S. Petkovié. Some interval methods of the second order for the simultaneous approximation
of polynomial roots. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz, 634(4577):74-81,
1979.

24

(26]

27]

(28]

29]

30]
31]

32]

33]

(34]

Ansary and Panda, Higher Order Root Finding

M. S. Petkovié¢. Some interval iterations for finding a zero of a polynomial with error bounds.
Comput. Math. Appl., 14(6):479-495, 1987.

M. S. Petkovié¢. Multi-step root solvers of Traubs type in real interval arithmetic. Appl. Math.
Comput., 248:430-440, 2014.

M. S. Petkovié¢, B. Neta, L. D. Petkovi¢, and J Dzunic. Multipoint Methods for Solving Non-
linear Equations. Academic Press, Elsevier, 2013.

M. S. Petkovi¢ and L. D. Petkovié. Complex interval arithmetic and its applications. Wiley-
VCH, 1998.

J. Rohn. Systems of linear interval equations. Linear Algebra Appl., 126:39-78, 1989.

S. P. Shary. On optimal solution of interval linear equations. SIAM J. Numer. Anal., 32(2):610—
630, 1995.

S. B. Trickovi¢ and S. M. Petkovié¢. Multipoint methods for the determination of multiple zeros
of a polynomial. Novi Sad J. Math, 29(1):221-233, 1999.

P. Wang. A third-order family of Newton-like iteration methods for solving nonlinear equations.
J. Numer. Math. Stoch., 3(1):13-19, 2011.

E. Weerakoon and T. G. I. Fernando. A variant of Newton’s method with accelarated third-
order convergence. Appl. Math. Lett., 13:87-93, 2000.

	Introduction
	Prerequisites
	Set image and interval extension under a continuous function
	Existing classical interval Newton method (INM)

	Modified Interval Newton Method (MINM)
	Algorithm:

	Example
	Conclusion and Future Work

