
Fast Enclosure for Solutions of Generalized Least

Squares Problems∗

Shinya Miyajima
Faculty of Engineering, Gifu University, 1-1 Yanagido,
Gifu-shi, Gifu 501-1193, Japan

miyajima@gifu-u.ac.jp

Abstract

Fast algorithms for enclosing solutions of generalized least squares
problems are proposed. To develop these algorithms, theories for ob-
taining error bounds on numerical solutions are established. The error
bounds obtained by these algorithms are “verified” in the sense that all
the possible rounding errors have been taken into account. A technique
for obtaining smaller error bounds is introduced. Numerical results show
the properties of the proposed algorithms.

Keywords: Generalized least squares problems, Numerical enclosure, Verified error
bound
AMS subject classifications: 15A09, 65F20, 65G20

1 Introduction

The generalized least squares problem considered in this paper is to find the n-vector
x that minimizes

(Ax− b)TB−1(Ax− b), A ∈ Rm×n, b ∈ Rm, B ∈ Rm×m, (1)

where m ≥ n, A, b and B are given, A has full column rank, and B is symmetric
positive definite. This problem arises in finding the least squares estimate of the
vector x when we are given the linear model b = Ax + w with w an unknown noise
vector of zero mean and covariance B. In several practical problems in econometrics
[5] and engineering [2], A and B will have special block structure. It is known that
the vector minimizing (1) is (ATB−1A)−1ATB−1b.

Since B is symmetric positive definite, there exists a matrix L satisfying B =
LLT , which can be obtained by Cholesky decomposition or eigen-decomposition. In
several applications, L is more basic and important than B, so that it is assumed in
several papers (e.g. [10, 11]) that L is given. Then, the solution can be written as
(L−1A)+L−1b, where (L−1A)+ denotes the Moore-Penrose inverse of L−1A. In this
paper, we treat both of the cases when B is given and L is given.

∗Submitted: May 29, 2014; Revised: January 7, 2015; Accepted: February 16, 2015.

89

90 S. Miyajima, Fast Enclosure for Solutions of Generalized LS Problems

Stable algorithms for solving (1) have been proposed in [10, 11]. These algorithms
are based on the idea that (1) is equivalent to the problem of finding x which minimizes
vT v on the equality constraint b = Ax + Lv. In these algorithms, the equivalent
problem is solved via orthogonal transformation.

In this paper, we consider numerically enclosing (ATB−1A)−1ATB−1b, specifi-
cally, computing error bounds of x̃ using floating point operations, where x̃ denotes a
numerical result for (ATB−1A)−1ATB−1b. To the author’s knowledge, an algorithm
for enclosing solutions designed specifically for (1) has not appeared in the litera-
ture. Direct approaches for enclosing (ATB−1A)−1ATB−1b and (L−1A)+L−1b use
the INTLAB [13] routine verifylss such that

Res = verifylss(A’*verifylss(B,A), A’*verifylss(B,b));

and Res = verifylss(verifylss(L,A),verifylss(L,b));, respectively. When we
use these approaches, on the other hand, the computing times are not always small
(see Sections 6 and 7 for details). The solution (ATB−1A)−1ATB−1b can be obtained
by solving the augmented linear system(

A −B
On AT

)(
x
y

)
=

(
b
0

)
,

where On denotes the n×n zero matrix, since this system implies x = (ATB−1A)−1AT

B−1b and y = B−1(A(ATB−1A)−1ATB−1b− b). Therefore, inclusion of
(ATB−1A)−1 ATB−1b can be obtained by enclosing the solution of this system. When
A or B are not well-conditioned, on the other hand, this approach does not always give
a tight enclosure (see Sections 6 and 7). When B is the identity matrix, (1) reduces to
the “standard” least squares problem. For standard least squares problems, effective
and efficient algorithms for enclosing the solutions have been proposed in the literature
[7, 12, 13, 14, 15]. On the other hand, these references do not mention how to extend
these algorithms to generalized least squares problems.

The purpose of this paper is to propose fast algorithms for enclosing the solution
of (1) in both of the cases when B is given and L is given. These algorithms allow the
presence of underflow in floating point arithmetic. To develop these algorithms, we
establish theories for computing error bounds on x̃. The error bounds obtained by the
proposed algorithms are “verified” in the sense that all the possible rounding errors
have been taken into account. In the case when B is given, the proposed algorithms do
not assume but prove A and B to have full rank and to be positive definite, respectively.
In the case when L is given, the algorithms do not assume but prove A and L to have
full rank and to be nonsingular, respectively. We refer to and introduce techniques for
accelerating the enclosure and obtaining smaller error bounds, respectively.

This paper is organized as follows: In Section 2, notations and theories utilized
in this paper are introduced. In Section 3, the theories for enclosing the solution of
(1) are established. In Sections 4 and 5, the techniques for accelerating the enclosure
and obtaining smaller error bounds are referenced and introduced, respectively. In
Sections 6 and 7, numerical results are reported. Section 8 finally summarizes the
results in this paper and highlights possible extensions and future work.

2 Preliminaries

In this section, we define some notation and introduce theories utilized hereafter. For
M = (Mij) ∈ Rm×n, M+ denotes the Moore-Penrose inverse of M , MT := (Mji) and

Reliable Computing, 2015 91

|M | := (|Mij |). For a nonsingular real matrix S, S−T := (ST)−1. Let Im and e(i) be
the m×m identity matrix and i-th column of Im, respectively, and s(n) := (1, . . . , 1)T ∈
Rn. For v, w ∈ Rn, vi denotes the i-th component of v and v ≤ w means that vi ≤ wi

follows for all i = 1, . . . , n. Let u and u be unit roundoff and underflow unit (especially
u = 2−53 and u = 2−1074 in IEEE 754 double precision), respectively, and γm :=
mu/(1−mu). The notation fl(·) denotes a result of floating point operations, where
all inside parenthesis are executed by ordinary floating point arithmetic in rounding-
to-nearest mode. For Xc, Xr ∈ Rm×n with mini,j(Xr)ij ≥ 0, 〈Xc, Xr〉 denotes the
interval matrix whose center and radius are Xc and Xr, respectively. For C ∈ Rm×n,
define the condition number κ(C) := ‖C‖2‖C+‖2. When m = n, let %(C) be the
spectral radius of C.

We cite Lemmas 1, 3 and 4, and present Lemma 2, which are used in Section 3.

Lemma 1 (e.g. Golub and Van Loan [3]) Let S ∈ Rn×n and 1 ≤ p ≤ ∞. If
‖S‖p < 1, In − S is nonsingular.

Lemma 2 is a modification of [16, Theorem 3].

Lemma 2 Let F ∈ Rm×n, S ∈ Rn×n and f ∈ Rn. If ‖S‖∞ < 1, it holds that

|FS(In − S)−1f | ≤ ‖f‖∞
1− ‖S‖∞

|F ||S|s(n).

Proof. The inequality ‖S‖∞ < 1 and the Neumann series give

|FS(In − S)−1f | = |FS(In + S + S2 + · · ·)f | = |F (S + S2 + S3 + · · ·)f |
≤ |F |(|S|+ |S|2 + |S|3 + · · ·)|f |
= |F |(|S||f |+ |S||S||f |+ |S||S|2|f |+ · · ·)
≤ |F |(‖f‖∞|S|s(n) + ‖|S||f |‖∞|S|s(n) + ‖|S|2|f |‖∞|S|s(n) + · · ·)
≤ (‖f‖∞ + ‖S‖∞‖f‖∞ + ‖S‖2∞‖f‖∞ + · · ·)|F ||S|s(n)

= ‖f‖∞(1 + ‖S‖∞ + ‖S‖2∞ + · · ·)|F ||S|s(n)

=
‖f‖∞

1− ‖S‖∞
|F ||S|s(n). 2

Lemma 3 (e.g. Higham [4]) If the floating point Cholesky decomposition applied to
a symmetric matrix B ∈ Rm×m runs to completion, the computed Cholesky factor L̃
satisfies

L̃L̃T = B + ∆B,

|∆B| ≤ γm+1|L̃||L̃|T +
u

1−mu
(ms(m) + vL̃)s(m)T , (2)

also in the presence of underflow, where vL̃ := (|L̃11|, . . . , |L̃mm|)T .

Remark 1 The second term in the right hand side of (2) is devised by the author. By
adding this term, Lemma 3 holds also in the presence of underflow.

Lemma 4 (Oishi and Rump [9]) Let a nonsingular triangular m×m matrix L̃ be
given and vL̃ be as in Lemma 3. Suppose the columns Me(i) of an approximate inverse
M are computed by substitution, in any order, of m linear systems L(Me(i)) = e(i).
Then, including possible underflow,

|ML̃− Im| ≤ γm|M ||L̃|+
u

1−mu
(ms(m) + vL̃)s(m)T .

92 S. Miyajima, Fast Enclosure for Solutions of Generalized LS Problems

3 Enclosure Theories

In this section, we establish theories for enclosing the solutions of (1). Let L be a matrix
satisfying B = LLT , L̃ and M be approximations of L and L̃−1, respectively, MA ≈
QR be an economy size floating point QR factorization of MA, S be an approximate
inverse of R, and X := MAS. Then X and MBMT are expected to be not too
far from orthogonality and identity, respectively. If x̃, w̃ and ỹ are approximations of
(ATB−1A)−1ATB−1b, A(ATB−1A)−1ATB−1b−b and B−1(A(ATB−1A)−1ATB−1b−
b), respectively, we can expect Ax̃− b− w̃ ≈ 0, w̃ −Bỹ ≈ 0 and AT ỹ ≈ 0.

Consider first the case when B is given. We formulate and prove Theorems 1 and
2 for enclosing (ATB−1A)−1ATB−1b. The outline of the derivation of Theorem 1 is
to transform x̃ − (ATB−1A)−1ATB−1b such that the residuals Ax̃ − b − w̃, w̃ − Bỹ
and AT ỹ appear, and to apply Lemma 2.

Theorem 1 Let m ≥ n, A ∈ Rm×n, M,B ∈ Rm×m, S ∈ Rn×n, x̃ ∈ Rn and b, w̃, ỹ ∈
Rm be given, and B be symmetric. Define

ρx̃ := Ax̃− b− w̃, ρw̃ := w̃ −Bỹ, ρỹ = AT ỹ, X := MAS,

F := Im −MBMT , vE := |In −XTX|s(n) +
‖X‖∞

1− ‖F‖∞
|X|T |F |s(m).

If ‖F‖∞ < 1, M and B are nonsingular and positive definite, respectively. If ‖vE‖∞ <
1, additionally, S is nonsingular, A has full column rank, and
|x̃− (ATB−1A)−1ATB−1b| ≤ d(1)B follows, where

d
(1)
B := |S(XTM(ρx̃ + ρw̃) + ST ρỹ)|+ ‖X

TM(ρx̃ + ρw̃) + ST ρỹ‖∞
1− ‖vE‖∞

|S|vE

+
‖M(ρx̃ + ρw̃)‖∞

1− ‖F‖∞
|S||X|T |F |s(m)

+
‖M(ρx̃ + ρw̃)‖∞‖|X|T |F |s(m)‖∞

(1− ‖vE‖∞)(1− ‖F‖∞)
|S|vE .

Proof. The inequality ‖F‖∞ < 1 and Lemma 1 implies Im −F is nonsingular, which
implies the nonsingularity of M . Similarly to [8, Proof of Theorem 4], moreover,
‖F‖∞ < 1 shows that B is positive definite. Let E := In−XT (MBMT)−1X. It holds
from ‖F‖∞ < 1 and Lemma 2 that

|E|s(n) = |In −XT (Im − F)−1X|s(n) = |In −XT (Im + F (Im − F)−1)X|s(n)

= |In −XTX −XTF (Im − F)−1X|s(n)

≤ |In −XTX|s(n) + |XTF (Im − F)−1X|s(n) ≤ vE .

This and ‖vE‖∞ < 1 yield ‖E‖∞ < 1, so In − E is nonsingular. Hence X has full
column rank, showing that A has also full column rank and S is nonsingular. We

Reliable Computing, 2015 93

obtain

x̃− (ATB−1A)−1ATB−1b
= (ATB−1A)−1ATB−1(Ax̃− b)
= (ATB−1A)−1ATB−1(ρx̃ + w̃)
= (ATB−1A)−1AT (B−1(ρx̃ + ρw̃) + ỹ)
= (ATB−1A)−1(ATB−1(ρx̃ + ρw̃) + ρỹ)
= (S−TXTM−TB−1M−1XS−1)−1(ATMTM−TB−1M−1M(ρx̃ + ρw̃) + ρỹ)
= S(XT (MBMT)−1X)−1ST (ATMT (MBMT)−1M(ρx̃ + ρw̃) + ρỹ)
= S(In − E)−1(XT (Im − F)−1M(ρx̃ + ρw̃) + ST ρỹ)
= S(In + E(In − E)−1)(XT (Im + F (Im − F)−1)M(ρx̃ + ρw̃) + ST ρỹ)
= S(XTM(ρx̃ + ρw̃) + ST ρỹ) + SE(In − E)−1(XTM(ρx̃ + ρw̃) + ST ρỹ)

+SXTF (Im − F)−1M(ρx̃ + ρw̃) + SE(In − E)−1XTF (Im − F)−1M(ρx̃ + ρw̃).

It finally follows from this, ‖E‖∞ ≤ ‖vE‖∞ < 1, ‖F‖∞ < 1 and Lemma 2 that

|x̃− (ATB−1A)−1ATB−1b|
≤ |S(XTM(ρx̃ + ρw̃) + ST ρỹ)|+ |SE(In − E)−1(XTM(ρx̃ + ρw̃) + ST ρỹ)|

+|SXTF (Im − F)−1M(ρx̃ + ρw̃)|
+|SE(In − E)−1||XTF (Im − F)−1M(ρx̃ + ρw̃)|

≤ |S(XTM(ρx̃ + ρw̃) + ST ρỹ)|+ ‖X
TM(ρx̃ + ρw̃) + ST ρỹ‖∞

1− ‖E‖∞
|S||E|s(n)

+
‖M(ρx̃ + ρw̃)‖∞

1− ‖F‖∞
|S||X|T |F |s(m)

+|SE(In − E)−1|
(
‖M(ρx̃ + ρw̃)‖∞

1− ‖F‖∞
|X|T |F |s(m)

)
≤ |S(XTM(ρx̃ + ρw̃) + ST ρỹ)|+ ‖X

TM(ρx̃ + ρw̃) + ST ρỹ‖∞
1− ‖vE‖∞

|S|vE

+
‖M(ρx̃ + ρw̃)‖∞

1− ‖F‖∞
|S||X|T |F |s(m)

+
‖M(ρx̃ + ρw̃)‖∞‖|X|T |F |s(m)‖∞

(1− ‖E‖∞)(1− ‖F‖∞)
|S||E|s(n)

≤ d(1)B . 2

By adding some assumptions, we can avoid executing the matrix multiplicationMBMT

in Theorem 1. We establish Theorem 2 to achieve this. The main point of the proof of
Theorem 2 is to transform x̃− (ATB−1A)−1ATB−1b such that the residuals L̃L̃T −B
and Im −ML̃ appear, and to estimate these residuals via Lemmas 3 and 4.

Theorem 2 Let L̃ and vL̃ be as in Lemma 3, M be as in Lemma 4, A, B, S, x̃, b,

94 S. Miyajima, Fast Enclosure for Solutions of Generalized LS Problems

w̃, ỹ, ρx̃, ρw̃, ρỹ and X be as in Theorem 1, and

vG := γm|M ||L̃|s(m) +
mu

1−mu
(ms(m) + vL̃),

vGT := γm|L̃|T |M |T s(m) +
u(m2 + vT

L̃
s(m))

1−mu
s(m),

vM := γm+1|M ||L̃||L̃|T |M |T s(m) +
u(s(m)T |M |T s(m))

1−mu
|M |(ms(m) + vL̃),

vMGT := γm+1|M ||L̃||L̃|T |M |T vGT +
u(s(m)T |M |T vGT)

1−mu
|M |(ms(m) + vL̃),

vH := vM +
‖vM‖∞

1− ‖vG‖∞
vG +

1

1− ‖vGT ‖∞
vMGT

+
‖vMGT ‖∞

(1− ‖vG‖∞)(1− ‖vGT ‖∞)
vG,

vGH := γm|M ||L̃|vH +
u(s(m)T vH)

1−mu
(ms(m) + vL̃),

vHGT := vMGT +
‖vMGT ‖∞
1− ‖vG‖∞

vG +
‖vGT ‖∞

1− ‖vGT ‖∞
vMGT

+
‖vMGT ‖∞‖vGT ‖∞

(1− ‖vG‖∞)(1− ‖vGT ‖∞)
vG,

vGGT := γm|M ||L̃|vGT +
u(s(m)T vGT)

1−mu
(ms(m) + vL̃),

vGHGT := γm|M ||L̃|vHGT +
u(s(m)T vHGT)

1−mu
(ms(m) + vL̃),

vP := vG + vH + vGT + vGH + vHGT + vGGT + vGHGT ,

vQ := |In −XTX|s(n) +
‖X‖∞

1− ‖vP ‖∞
|X|T vP .

Suppose ‖vG‖∞ < 1, ‖vGT ‖∞ < 1, ‖vP ‖∞ < 1 and ‖vQ‖∞ < 1. Then S, L̃
and M are nonsingular, A has full column rank, B is positive definite, and |x̃ −
(ATB−1A)−1ATB−1b| ≤ d(2)B holds, where

d
(2)
B := |S(XTM(ρx̃ + ρw̃) + ST ρỹ)|+ ‖X

TM(ρx̃ + ρw̃) + ST ρỹ‖∞
1− ‖vQ‖∞

|S|vQ

+
‖M(ρx̃ + ρw̃)‖∞

1− ‖vP ‖∞
|S||X|T vP +

‖M(ρx̃ + ρw̃)‖∞‖|X|T vP ‖∞
(1− ‖vQ‖∞)(1− ‖vP ‖∞)

|S|vQ.

Proof. Let G := Im −ML̃. From Lemma 4, we have |G|s(m) ≤ vG and |G|T s(m) ≤
vGT . The first inequality, ‖vG‖∞ < 1 and Lemma 1 give that Im −G is nonsingular,
showing the nonsingularities of L̃ and M . Let H := Im − L̃−1BL̃−T and P := G +

Reliable Computing, 2015 95

H +GT −GH −HGT −GGT +GHGT . We have

H = L̃−1(L̃L̃T −B)L̃−T = L̃−1M−1M(L̃L̃T −B)MTM−T L̃−T

= (Im −G)−1M(L̃L̃T −B)MT (Im −GT)−1

= (Im +G(Im −G)−1)M(L̃L̃T −B)MT (Im +GT (Im −GT)−1)

= M(L̃L̃T −B)MT +G(Im −G)−1M(L̃L̃T −B)MT

+M(L̃L̃T −B)MTGT (Im −GT)−1

+G(Im −G)−1M(L̃L̃T −B)MTGT (Im −GT)−1.

This, |G|s(m) ≤ vG, |G|T s(m) ≤ vGT , ‖vG‖∞ < 1, ‖vGT ‖∞ < 1, and Lemmas 2, 3 and
4 yield

|H|s(m) ≤ |M ||L̃L̃T −B||M |T s(m)

+|G(Im −G)−1||M ||L̃L̃T −B||M |T s(m)

+|M ||L̃L̃T −B||M |T |GT (Im −GT)−1|s(m)

+|G(Im −G)−1||M ||L̃L̃T −B||M |T |GT (Im −GT)−1|s(m)

≤ vM +
‖vM‖∞

1− ‖G‖∞
|G|s(m)

+
1

1− ‖GT ‖∞
|M ||L̃L̃T −B||M |T |G|T s(m)

+|G(Im −G)−1|
(

1

1− ‖GT ‖∞
|M ||L̃L̃T −B||M |T |G|T s(m)

)
≤ vM +

‖vM‖∞
1− ‖vG‖∞

vG +
1

1− ‖vGT ‖∞
|M ||L̃L̃T −B||M |T vGT

+
‖|M ||L̃L̃T −B||M |T vGT ‖∞
(1− ‖G‖∞)(1− ‖vGT ‖∞)

|G|s(m)

≤ vH ,

|G||H|s(m) ≤ |G|vH ≤ vGH ,

|H||G|T s(m) ≤ |H|vGT

≤ |M ||L̃L̃T −B||M |T vGT + |G(Im −G)−1||M ||L̃L̃T −B||M |T vGT

+|M ||L̃L̃T −B||M |T |GT (Im −GT)−1|vGT

+|G(Im −G)−1||M ||L̃L̃T −B||M |T |GT (Im −GT)−1|vGT

≤ vHGT ,

|G||G|T s(m) ≤ |G|vGT ≤ vGGT ,

|G||H||G|T s(m) ≤ |G|vHGT ≤ vGHGT ,

|P |s(m) ≤ |G|s(m) + |H|s(m) + |G|T s(m) + |G||H|s(m) + |H||G|T s(m)

+|G||G|T s(m) + |G||H||G|T s(m)

≤ vP .

This and ‖vP ‖∞ < 1 yield ‖P‖∞ < 1, so that Im −P is nonsingular. The inequalities
|H|s(m) ≤ vH and ‖vP ‖∞ < 1 moreover imply ‖H‖∞ < 1, so that B is positive
definite. Let Q := In − XT (Im − P)−1X. The inequality ‖vP ‖∞ < 1 and Lemma 2

96 S. Miyajima, Fast Enclosure for Solutions of Generalized LS Problems

give

|Q|s(m) ≤ |In −XT (Im + P (Im − P)−1)X|s(m)

≤ |In −XTX|s(n) + |XTP (Im − P)−1X|s(n)

≤ |In −XTX|s(n) +
‖X‖∞

1− ‖P‖∞
|X|T |P |s(m) ≤ vQ.

This and ‖vQ‖∞ < 1 yield ‖Q‖∞ < 1, so that In − Q is nonsingular, which shows
that X has full column rank, implying that A has also full column rank and S is
nonsingular. From the proof of Theorem 1, we obtain

x̃− (ATB−1A)−1ATB−1b

= (S−TXTM−TB−1M−1XS−1)−1(ATMTM−TB−1M−1M(ρx̃ + ρw̃) + ρỹ)

= S(XTM−T L̃−T L̃TB−1L̃L̃−1M−1X)−1ST

×(ATMTM−T L̃−T L̃TB−1L̃L̃−1M−1M(ρx̃ + ρw̃) + ρỹ)

= S(XT (Im −GT)−1(Im −H)−1(Im −G)−1X)−1ST

×(ATMT (Im −GT)−1(Im −H)−1(Im −G)−1M(ρx̃ + ρw̃) + ρỹ)

= S(XT ((Im −G)(Im −H)(Im −GT))−1X)−1ST

×(ATMT ((Im −G)(Im −H)(Im −GT))−1M(ρx̃ + ρw̃) + ρỹ)

= S(XT (Im − P)−1X)−1ST (ATMT (Im − P)−1M(ρx̃ + ρw̃) + ρỹ)

= S(Im −Q)−1(XT (Im − P)−1M(ρx̃ + ρw̃) + ST ρỹ)

= S(XTM(ρx̃ + ρw̃) + ST ρỹ) + SQ(In −Q)−1(XTM(ρx̃ + ρw̃) + ST ρỹ)

+SXTP (Im − P)−1M(ρx̃ + ρw̃) + SQ(In −Q)−1XTP (Im − P)−1M(ρx̃ + ρw̃).

It finally holds from ‖P‖∞ ≤ ‖vP ‖∞ < 1, ‖Q‖∞ ≤ ‖vQ‖∞ < 1 and Lemma 2 that

|x̃− (ATB−1A)−1ATB−1b|
≤ |S(XTM(ρx̃ + ρw̃) + ST ρỹ)|+ |SQ(In −Q)−1(XTM(ρx̃ + ρw̃) + ST ρỹ)|

+|SXTP (Im − P)−1M(ρx̃ + ρw̃)|
+|SQ(In −Q)−1||XTP (Im − P)−1M(ρx̃ + ρw̃)|

≤ |S(XTM(ρx̃ + ρw̃) + ST ρỹ)|+ ‖X
TM(ρx̃ + ρw̃) + ST ρỹ‖∞

1− ‖Q‖∞
|S||Q|s(n)

+
‖M(ρx̃ + ρw̃)‖∞

1− ‖P‖∞
|S||X|T |P |s(m)

+|SQ(In −Q)−1|
(
‖M(ρx̃ + ρw̃)‖∞

1− ‖P‖∞
|X|T |P |s(m)

)
≤ |S(XTM(ρx̃ + ρw̃) + ST ρỹ)|+ ‖X

TM(ρx̃ + ρw̃) + ST ρỹ‖∞
1− ‖vQ‖∞

|S|vQ

+
‖M(ρx̃ + ρw̃)‖∞

1− ‖vP ‖∞
|S||X|T vP +

‖M(ρx̃ + ρw̃)‖∞‖|X|T vP ‖∞
(1− ‖Q‖∞)(1− ‖vP ‖∞)

|S||Q|s(n)

≤ d(2)B . 2

Consider next the case when L is given. We present Corollaries 1 and 2 for enclosing
(L−1A)+L−1b, which can be obtained analogously to Theorems 1 and 2.

Reliable Computing, 2015 97

Corollary 1 Let A, M , S, x̃, b, w̃, ỹ, ρx̃, ρỹ and X be as in Theorem 1, L ∈ Rm×m

be given, ρw̃ := w̃ − LLT ỹ, Y := ML, V := Im − Y Y T and

vU := |In −XTX|s(n) +
‖X‖∞

1− ‖V ‖∞
|X|T |V |s(m).

If ‖V ‖∞ < 1, M and L are nonsingular. If ‖vU‖∞ < 1, additionally, S is nonsingular,

A has full column rank, and |x̃− (L−1A)+L−1b| ≤ d(1)L , where

d
(1)
L := |S(XTM(ρx̃ + ρw̃) + ST ρỹ)|+ ‖X

TM(ρx̃ + ρw̃) + ST ρỹ‖∞
1− ‖vU‖∞

|S|vU

+
‖M(ρx̃ + ρw̃)‖∞

1− ‖V ‖∞
|S||X|T |V |s(m) +

‖M(ρx̃ + ρw̃)‖∞‖|X|T |V |s(m)‖∞
(1− ‖vU‖∞)(1− ‖V ‖∞)

|S|vU .

Proof. The result holds by setting B = LLT in the proof of Theorem 1. 2

Corollary 2 Let L ∈ Rm×m be given and triangular, M be an approximate inverse of
L computed similarly to Lemma 4, A, S, x̃, b, w̃, ỹ, ρx̃, ρỹ and X be as in Theorem 1,
vG, vGT and vGGT be as in Theorem 2, ρw̃ be as in Corollary 1, vK := vG+vGT +vGGT

and

vN := |In −XTX|s(n) +
‖X‖∞

1− ‖vK‖∞
|X|T vK .

Assume ‖vG‖∞ < 1, ‖vGT ‖∞ < 1, ‖vK‖∞ < 1 and ‖vN‖∞ < 1. Then S, L and M

are nonsingular, A has full rank, and |x̃− (L−1A)+L−1b| ≤ d(2)L , where

d
(2)
L := |S(XTM(ρx̃ + ρw̃) + ST ρỹ)|+ ‖X

TM(ρx̃ + ρw̃) + ST ρỹ‖∞
1− ‖vN‖∞

|S|vN

+
‖M(ρx̃ + ρw̃)‖∞

1− ‖vK‖∞
|S||X|T vK +

‖M(ρx̃ + ρw̃)‖∞‖|X|T vK‖∞
(1− ‖vN‖∞)(1− ‖vK‖∞)

|S|vN .

Proof. The result follows by putting B = LLT and L̃ = L in the proof of Theorem 2.
Note that H in the proof becomes zero matrix in this case. 2

4 A Technique for Accelerating the Enclosure

In this section, we review a technique for accelerating the enclosure that appears in
[6, Section 3]. Let L, L̃ and R be as in Section 3, x̃, w̃, ỹ, M , S, X, F and d

(1)
B be as

in Theorem 1, Y and V be as in Corollary 1.
The proposed algorithm based on Theorem 1 computes d

(1)
B taking rounding errors

into account. In order to compute d
(1)
B considering rounding errors, rigorous upper

bounds for |In −XTX|s(n) and |F |s(m) are necessary. The computation of the upper
bound on |In − XTX|s(n) can be accelerated by the following technique: Let Xc,
Xr ∈ Rm×n with mini,j(Xr)ij ≥ 0 satisfy X ∈ 〈Xc, Xr〉. The matrices Xc and Xr

can be obtained by rounding mode-controlled floating point computation. From the
center-radius interval arithmetic evaluation (e.g. [1]), we have

In −XTX ∈ 〈In −XT
c Xc, |XT

c |Xr +XT
r |Xc|+XT

r Xr〉. (3)

Utilizing an a priori error estimation (e.g. [4]), it holds that

|In −XT
c Xc − fl(In −XT

c Xc)| ≤ γm+1(In + |XT
c ||Xc|) +mus(n)s(n)T . (4)

98 S. Miyajima, Fast Enclosure for Solutions of Generalized LS Problems

Note that (4) holds also in the presence of underflow. The relations (3) and (4) yield
In −XTX ∈ 〈fl(In −XT

c Xc), XR〉, where

XR := γm+1(In + |XT
c ||Xc|) +mus(n)s(n)T + |XT

c |Xr +XT
r |Xc|+XT

r Xr.

This shows

|In −XTX|s(n) ≤ |fl(In −XT
c Xc)|s(n) + γm+1(s(n) + |XT

c ||Xc|s(n))

+mnus(n) + |XT
c |Xrs

(n) +XT
r |Xc|s(n) +XT

r Xrs
(n).

From this, we need to execute the matrix multiplication XT
c Xc only once in rounding-

to-nearest mode for calculating the rigorous upper bound of |In−XTX|s(n), if Xc and
Xr are given. The computations of the upper bounds for |F |s(m) and |V |s(m) can be
accelerated similarly (see Appendix with respect to |F |s(m)).

We finally estimate the computational costs of the algorithms based on the theories
in Section 3. Note that the costs for obtaining x̃, w̃ and ỹ are excluded in those of the
algorithms shown below. By adopting the technique above, the cost of the algorithm
based on Theorem 1 is 20m3/3 + 4m2n+ 10mn2 − n3/3 +O(m2 + n2), divided into

m3/3 the floating point Cholesky decomposition of B to obtain L̃,

m3/3 the floating point inversion of L̃ to obtain M ,

4m2n the inclusion of MA,

2n2(m − n/3) the economy size floating point QR factorization of the mid point of
the inclusion of MA to obtain R,

n3/3 the floating point inversion of R to obtain S,

6mn2 the inclusion of X reusing the inclusion of MA,

2mn2 the computation of the upper bound of |In −XTX|s(n),

4m3 the inclusion of MB,

2m3 the computation of the upper bound of |F |s(m).

The cost of the algorithm based on Theorem 2 is 2m3/3 + 4m2n + 10mn2 − n3/3 +
O(m2 + n2). The cost of the algorithm based on Corollary 1 is 19m3/3 + 4m2n +
10mn2 − n3/3 +O(m2 + n2), divided into

m3/3 the inversion of L,

4m2n the inclusion of MA,

2n2(m− n/3) the QR factorization,

n3/3 the inversion of R,

6mn2 the inclusion of X,

2mn2 the computation of the upper bound of |In −XTX|s(n),

4m3 the inclusion of Y ,

2m3 the computation of the upper bound of |V |s(m).

The cost of the algorithm based on Corollary 2 is m3/3 + 4m2n + 10mn2 − n3/3 +
O(m2 + n2).

Reliable Computing, 2015 99

5 A Technique for Obtaining Smaller Error
Bounds

For reducing each component of d
(1)
B , d

(2)
B , d

(1)
L and d

(2)
L in Section 3, we need to reduce

the absolute values of each component of the residuals ρx̃, ρw̃ and ρỹ. For obtaining
the residuals whose components are small in the sense of absolute value, accurate ap-
proximations x̃, w̃ and ỹ to (ATB−1A)−1ATB−1b, A(ATB−1A)−1ATB−1b − b and
B−1(A(ATB−1A)−1ATB−1b − b), respectively, are necessary. Such accurate approx-
imations can be obtained via iterative refinement. In this section, we introduce the
iterative refinement in the case when B is given. In the case when L is given, the
iterative refinement can be achieved analogously by considering LLT instead of B.

Let M ∈ Rm×m and S ∈ Rn×n be given and X := MAS. Assume M and S
are nonsingular, ‖Im − MBMT ‖∞ < 1 and ‖In − XT (MBMT)−1X‖∞ < 1. The
approximations x̃, w̃ and ỹ can be improved into x̃ − δx̃, w̃ − δw̃ and ỹ − δỹ by the
following residual iteration step:

ρx̃ := Ax̃− b− w̃, ρw̃ := w̃ −Bỹ, ρỹ := AT ỹ,

δx̃ := (ATB−1A)−1(ATB−1(ρx̃ + ρw̃) + ρỹ), δw̃ := Aδx̃ − ρx̃,
δỹ := −B−1(ρw̃ − δw̃). (5)

We then have x̃ − δx̃ = (ATB−1A)−1ATB−1b, w̃ − δw̃ = A(ATB−1A)−1ATB−1b − b
and ỹ − δỹ = B−1(A(ATB−1A)−1ATB−1b − b), so that the residuals ρx̃, ρw̃ and
ρỹ vanish after one iteration. In theory, (ATB−1A)−1 = S(XT (MBMT)−1X)−1ST

holds. Since X and MBMT are expected to be not too far from orthogonality and
identity, respectively, we change (5) by replacing (ATB−1A)−1 by SST and introducing
approximations of B−1(ρx̃ + ρw̃) and B−1(ρw̃ − δw̃). Then the numerical iteration is
defined as follows:

ρ
(i)
x̃ := Ax̃(i) − b− w̃(i), ρ

(i)
w̃ := w̃(i) −Bỹ(i), ρ

(i)
ỹ := AT ỹ(i),

δ
(i)
x̃ := SST (AT ũ(i,ku) + ρ

(i)
ỹ), x̃(i+1) := x̃(i) − δ(i)x̃ , δ

(i)
w̃ := Aδ

(i)
x̃ − ρ

(i)
x̃ ,

w̃(i+1) := w̃(i) − δ(i)w̃ , δ
(i)
ỹ := −t̃(i,kt), ỹ(i+1) := ỹ(i) − δ(i)ỹ , i = 1, 2, . . . ,

where ũ(i,ku) and t̃(i,kt) are the approximations of B−1(ρx̃ + ρw̃) and B−1(ρw̃ − δw̃),
and results for the inner iterations

ρ
(i,ku)
ũ := Bũ(i,ku) − (ρ

(i)
x̃ + ρ

(i)
w̃), δ

(i,ku)
ũ := MTMρ

(i,ku)
ũ ,

ũ(i,ku+1) := ũ(i,ku) − δ(i,ku)
ũ , ku = 1, 2, . . . ,

and

ρ
(i,kt)

t̃
:= Bt̃(i,kt) − (ρ

(i)
w̃ − δ

(i)
w̃), δ

(i,kt)

t̃
:= MTMρ

(i,kt)

t̃
,

t̃(i,kt+1) := t̃(i,kt) − δ(i,kt)

t̃
, kt = 1, 2, . . . ,

respectively. The initial values x̃(1), w̃(1), ỹ(1), ũ(i,1) and t̃(i,1) are defined such that
x̃(1) := x̃, w̃(1) := w̃, ỹ(1) := ỹ, ũ(i,1) := MTM(ρ

(i)
x̃ + ρ

(i)
w̃) and t̃(i,1) := MTM(ρ

(i)
w̃ −

δ
(i)
w̃), respectively.

We present Theorem 3, which shows the convergence of the approximations.

100 S. Miyajima, Fast Enclosure for Solutions of Generalized LS Problems

Theorem 3 Let M , S, X, x̃(i), w̃(i), ỹ(i), ρ
(i)
x̃ , ρ

(i)
w̃ , δ

(i)
w̃ , ũ(i,ku) and t̃(i,kt) be as

the above. Assume M and S are nonsingular, ‖Im − MBMT ‖∞ < 1 and ‖In −
XT (MBMT)−1X‖∞ < 1. It then holds that

lim
ku→∞

ũ(i,ku) = B−1(ρ
(i)
x̃ + ρ

(i)
w̃), lim

kt→∞
t̃(i,kt) = B−1(ρ

(i)
w̃ − δ

(i)
w̃),

lim
i→∞

(
lim

ku→∞
x̃(i)
)

= (ATB−1A)−1ATB−1b,

lim
i→∞

(
lim

ku→∞
w̃(i)

)
= A(ATB−1A)−1ATB−1b− b,

lim
i→∞

(
lim

ku→∞

(
lim

kt→∞
ỹ(i)
))

= B−1(A(ATB−1A)−1ATB−1b− b).

Proof We obtain

ũ(i,ku+1) = MT (Im −MBMT)M−T ũ(i,ku) +MTM(ρ
(i)
x̃ + ρ

(i)
w̃) =: Cũ(i,ku) + z

(i)
ũ ,

t̃(i,kt+1) = MT (Im −MBMT)M−T t̃(i,kt) +MTM(ρ
(i)
w̃ − δ

(i)
w̃) =: Ct̃(i,kt) + z

(i)

t̃
.

By the assumption, %(C) = %(Im −MBMT) ≤ ‖Im −MBMT ‖∞ < 1, so that

lim
ku→∞

ũ(i,ku) = (Im − C)−1z
(i)
ũ = (MTMB)−1MTM(ρ

(i)
x̃ + ρ

(i)
w̃) = B−1(ρ

(i)
x̃ + ρ

(i)
w̃),

lim
kt→∞

t̃(i,kt) = (Im − C)−1z
(i)

t̃
= (MTMB)−1MTM(ρ

(i)
w̃ − δ

(i)
w̃) = B−1(ρ

(i)
w̃ − δ

(i)
w̃).

Let Cx̃ := S(In −XT (MBMT)−1X)S−1 and zx̃ := SSTATB−1b. From the assump-
tion, we have

%(Cx̃) = %(In −XT (MBMT)−1X) ≤ ‖In −XT (MBMT)−1X‖∞ < 1.

It holds from this and the convergence of ũ(i,ku) that

lim
i→∞

(
lim

ku→∞
x̃(i)
)

= lim
i→∞

(
lim

ku→∞
x̃(i+1)

)
= lim

i→∞

(
lim

ku→∞
(x̃(i) − SST (AT ũ(i,ku) + ρ

(i)
ỹ))

)
= lim

i→∞
(x̃(i) − SST (ATB−1(ρ

(i)
x̃ + ρ

(i)
w̃) + ρ

(i)
ỹ))

= lim
i→∞

(Cx̃x̃
(i) + zx̃) = (In − Cx̃)−1zx̃

= (SSTATB−1A)−1SSTATB−1b = (ATB−1A)−1ATB−1b.

Reliable Computing, 2015 101

It follows from the convergence of ũ(i,ku) and x̃(i) that

lim
i→∞

(
lim

ku→∞
w̃(i)

)
= lim

i→∞

(
lim

ku→∞
w̃(i+1)

)
= lim

i→∞

(
lim

ku→∞
(w̃(i) −ASST (AT ũ(i,ku) + ρ

(i)
ỹ) + ρ

(i)
x̃)

)
= lim

i→∞

(
lim

ku→∞
(w̃(i) −ASST (ATB−1(ρ

(i)
x̃ + ρ

(i)
w̃) + ρ

(i)
ỹ) + ρ

(i)
x̃)

)
= lim

i→∞

(
lim

ku→∞
(−ASST (ATB−1(Ax̃(i) − b)) +Ax̃(i) − b)

)
= −ASST (ATB−1(A(ATB−1A)−1ATB−1b− b))

+A(ATB−1A)−1ATB−1b− b
= A(ATB−1A)−1ATB−1b− b.

The convergences of ũ(i,ku), t̃(i,kt) and x̃(i) finally yield

lim
i→∞

(
lim

ku→∞

(
lim

kt→∞
ỹ(i)
))

= lim
i→∞

(
lim

ku→∞

(
lim

kt→∞
ỹ(i+1)

))
= lim

i→∞

(
lim

ku→∞

(
lim

kt→∞
(ỹ(i) + t̃(i,kt))

))
= lim

i→∞

(
lim

ku→∞
(ỹ(i) +B−1(ρ

(i)
w̃ − δ

(i)
w̃))

)
= lim

i→∞

(
lim

ku→∞
B−1(w̃(i) −ASST (AT ũ(i,ku) + ρ

(i)
ỹ) + ρ

(i)
x̃)

)
= lim

i→∞

(
lim

ku→∞
B−1(w̃(i) −ASST (ATB−1(ρ

(i)
x̃ + ρ

(i)
w̃) + ρ

(i)
ỹ) + ρ

(i)
x̃)

)
= lim

i→∞

(
lim

ku→∞
B−1(−ASSTATB−1(Ax̃(i) − b) +Ax̃(i) − b)

)
= B−1(−ASSTATB−1(A(ATB−1A)−1ATB−1b− b)

+A(ATB−1A)−1ATB−1b− b)
= B−1(A(ATB−1A)−1ATB−1b− b). 2

The iteration benefits substantially by using extra-precise evaluations of the resid-
uals. For this purpose, a so-called error-free transformation is available (see [14]). In

our application, in particular the amplification of the correction δ
(i)
x̃ by SST is of the

order (ATB−1A)−1, thus it is beneficial to store x̃ in two terms, which can be achieved
similarly to [14, Section 5] (see the appendix for details).

6 Numerical Results when B is Given

In this section, we consider the case when B is given and report numerical results to
illustrate the properties of the proposed algorithms and performance of our implemen-
tation. We used a computer with Intel Xeon 2.66GHz Dual CPU, 4.00GB RAM and
MATLAB 7.5 with Intel Math Kernel Library and IEEE 754 double precision.

102 S. Miyajima, Fast Enclosure for Solutions of Generalized LS Problems

We denote the compared algorithms as follows 1:

Ci: The algorithm based on Theorem 1 with the acceleration and iterative refinement
in Sections 4 and 5, respectively (see Appendix),

Fi: The algorithm based on Theorem 2 with the acceleration and iterative refinement
(see Appendix),

I1: The code Res = verifylss([A,-B;zeros(n),A’],[b;zeros(n,1)]); using the
INTLAB routine verifylss,

I2: The code Res = verifylss(A’*verifylss(B,A),A’*verifylss(B,b));.

The computations of the upper bounds for |In − XTX|s(n) and |F |s(m), and |In −
XTX|s(n) only were accelerated in Ci and Fi, respectively. In Ci and Fi, we stored x̃
in two terms and set ku and kt in Section 5 such that ku = kt = 1. See the appendix
for how to obtain M , S, x̃, w̃ and ỹ in Theorem 1, where the INTLAB codes of Ci
and Fi are displayed.

Let xc, xr ∈ Rn with mini x
r
i ≥ 0 satisfy (ATB−1A)−1ATB−1b ∈ 〈xc, xr〉. In order

to assess the quality of the enclosure, we define the relative radii ξi := xri /(|xci |+ xri),
i = 1, . . . , n. We can regard − log10 ξi as the number of correct significant decimal
digits, since it roughly corresponds to the number of digits to which the upper and
the lower bounds coincide, i.e., the number of significant digits we know to be correct
for each entry. Maximum relative radius MRR and average relative radius ARR are

defined as MRR := maxi ξi and ARR :=
(∏n

i=1 ξi
) 1

n , respectively. Hence − log10MRR
and − log10ARR represent the minimum and arithmetic mean of the correct digits,
respectively. In Ci and Fi, we repeated the iterative refinement until either MRR ≤
10−11 or the number of iterations was 10.

The algorithms Ci and Fi verified that A had full column rank and B was positive
definite for examples in which these algorithms succeeded. In Sections 6 and 7, for
each parameter, we treated 100 problems and took the median of obtained radii or
computing times, and the notation NaN means that I2 returned NaN in all the problems.
In some cases, the algorithms failed in parts of the 100 problems. In these cases, the
tables below show the median of the radii obtained within the problems that succeeded.

6.1 Example 1

In this example, we observe the magnitudes of radii and computing times of the algo-
rithms for various m and n. Consider (1) where A, b and B are generated by

A = randn(m, n); b = randn(m, 1);

B = randn(m); B = m ∗ eye(m) + (B + B
′)/2;. (6)

The function randn generates a matrix whose elements are normally distributed pseudo
random numbers. Table 1 displays the obtained radii and computing times of the
algorithms for various m and n. Note that the computing times of Ci and Fi in
Tables 1 and 4 include the times necessary for the computation of x̃, w̃ and ỹ.

1The solution (ATB−1A)−1ATB−1b may be able to be enclosed by the code.

invB = verinverse(B); Res = verinverse(A’*invB*A)*(A’*(invB*b));

using the VERSOFT [12] routine verinverse. On the other hand, this approach required
prohibitively large computing times in the examples below. Hence we excluded this algorithm
from the comparisons in Sections 6 and 7.

Reliable Computing, 2015 103

Table 1: Obtained radii and computing times (sec) in Section 6.1

Ci Fi I1 I2 Ci Fi I1 I2

m n MRR MRR MRR MRR time time time time
ARR ARR ARR ARR

1000 100 4.9e–13 4.9e–13 3.3e–12 3.4e–10 2.16 1.02 2.01 3.89
1.9e–15 1.9e–15 9.3e–15 8.9e–13

2000 100 5.7e–13 5.7e–13 1.4e–11 4.3e–10 13.2 4.78 11.5 22.9
2.5e–15 2.5e–15 3.7e–14 1.1e–12

3000 100 5.9e–13 5.9e–13 2.2e–11 3.5e–10 39.3 12.3 34.2 68.7
3.2e–15 3.2e–15 9.3e–14 1.5e–12

1000 200 5.7e–13 5.7e–13 5.9e–12 1.5e–9 2.43 1.27 2.50 4.81
1.9e–15 1.9e–15 1.0e–14 2.8e–12

1000 400 9.4e–13 9.4e–13 7.8e–12 8.6e–9 3.12 1.98 3.77 6.93
2.1e–15 2.1e–15 1.2e–14 1.3e–11

1000 600 1.5e–12 1.5e–12 1.9e–11 5.6e–8 4.12 3.00 5.49 9.39
2.3e–15 2.3e–15 1.7e–14 4.9e–11

The radii by Ci were approximately equal to those by Fi. The reason is that
d
(1)
B and d

(2)
B in Section 3 have the same first term, and this term was dominant in

the magnitude of these error bounds. The algorithm Fi was faster than Ci. This
result coincides with the fact that the computational cost of the algorithm based on
Theorem 2 is smaller than that based on Theorem 1.

6.2 Example 2

In this example, we observe the radii for various κ(A). Consider (1) where m = 60,
n = 30, A is generated by A = gallery(’randsvd’, [60,30],cndA);, and b and
B are obtained by (6). We used the Higham’s test matrix randsvd [4]. Then it
holds approximately that κ(A) ≈ cndA. Table 2 shows the obtained radii for various
cndA. When cndA = 1014 and 1015, the proposed algorithms failed in 9 and all the
problems, respectively. The reasons for the failure of Ci and Fi are that ‖vE‖∞ < 1
and ‖vQ‖∞ < 1 could not be verified, respectively. When cndA = 1015, I1 returned
NaN in 92 problems.

The radii by the proposed algorithms when cndA = 109 and 1014 were smaller and
approximately equal to those when cndA = 104, respectively. The reason is that the
numbers of the iterations when cndA = 109 and 1014 were larger than those when cndA

= 104.

6.3 Example 3

In this example, we observe the radii for various κ(B). Consider (1) where m = 60, n =
30, A and b are obtained by (6), and B is generated by B = gallery(’randsvd’,60,

-cndB);. Then B is expected to be symmetric positive definite with κ(B) ≈ cndB.
Table 3 displays the similar quantities to Table 2 for various cndB. When cndB = 1013,
Fi failed in all the problems. The reason of the failure is similar to that in Section 6.2.

104 S. Miyajima, Fast Enclosure for Solutions of Generalized LS Problems

Table 2: Obtained radii in Section 6.2

Ci Fi I1 I2

cndA MRR MRR MRR MRR
ARR ARR ARR ARR

1e+4 2.2e–12 2.2e–12 6.1e–14 3.1e–5
1.8e–13 1.8e–13 5.5e–16 2.9e–7

1e+9 8.6e–14 8.6e–14 7.9e–9 NaN

1.7e–15 1.7e–15 9.9e–11 NaN

1e+14 2.0e–12 2.0e–12 4.5e–4 NaN

1.9e–13 1.9e–13 1.2e–5 NaN

1e+15 failed failed 6.2e–4 NaN

failed failed 3.4e–5 NaN

When cndB = 1012, I2 returned NaN in 30 problems. The result in this section shows
that Ci and I1 are robust for ill-conditioned B.

Table 3: Obtained radii in Section 6.3

Ci Fi I1 I2

cndB MRR MRR MRR MRR
ARR ARR ARR ARR

1e+4 8.5e–13 8.5e–13 2.2e–14 8.0e–10
1.7e–14 1.7e–14 4.3e–16 1.4e–11

1e+8 6.2e–13 6.2e–13 4.4e–9 2.5e–4
5.2e–14 5.2e–14 9.6e–13 1.6e–6

1e+12 1.1e–13 6.2e–13 5.0e–8 8.6e–1
1.2e–15 1.5e–14 3.1e–10 3.6e–1

1e+13 1.6e–12 failed 4.2e–8 NaN

8.6e–14 failed 9.1e–10 NaN

As far as we see Tables 1, 2 and 3, it is recommended to execute Ci and Fi when
B is and is not ill-conditioned, respectively.

7 Numerical Results when L is Given

In this section, we report numerical results when L is given. Let MRR and ARR be
as in Section 6. We used the same computer as that in Section 6. The compared
algorithms are as follows:

Ci: The algorithm based on Corollary 1 with the acceleration and iterative refine-
ment,

Fi: The algorithm based on Corollary 2 with the acceleration and iterative refine-
ment,

Reliable Computing, 2015 105

I1: The code Res=verifylss([A,-intval(L)*L’;zeros(n),A’],[b;zeros(n,1)]);,

I2: The code Res=verifylss(verifylss(L,A),verifylss(L,b));.

The computations of the upper bounds for |In − XTX|s(n) and |V |s(m), and |In −
XTX|s(n) only were accelerated in Ci and Fi, respectively. In Ci and Fi, we computed
M , S, x̃, w̃, ỹ, ρx̃ and ρỹ, and stored x̃ similarly to Section 6. Using the INTLAB
routine Dot_, the enclosure of ρw̃ was calculated such that

Ly = Dot_(L’,y,-2); setround(1); radLLy = abs(L)*rad(Ly);

rho_w = Dot_(1,w,-L,mid(Ly),-2); rho_w = rho_w + midrad(0,radLLy);.

The iterative refinement was repeated until MRR ≤ 10−8 held or the number of the
iteration became 10. The algorithms Ci and Fi verified that A had full column rank
and L was nonsingular for examples where these algorithms succeeded.

7.1 Example 1

In this example, we observe the radii and computing times of the algorithms for various
m and n. Consider (1) where A, b and L are generated by

A = randn(m, n); b = randn(m, 1);

B = randn(m); B = m ∗ eye(m) + (B + B
′)/2; L = chol(B)′;. (7)

Table 4 displays the similar quantities to Table 1.

Table 4: Obtained radii and computing times (sec) in Section 7.1

Ci Fi I1 I2 Ci Fi I1 I2

m n MRR MRR MRR MRR time time time time
ARR ARR ARR ARR

1000 100 4.2e–12 4.2e–12 3.9e–10 5.2e–11 2.31 1.25 3.28 6.12
2.3e–14 2.3e–14 2.3e–12 3.0e–13

2000 100 4.9e–12 4.9e–12 1.0e–9 7.4e–11 13.0 5.39 20.2 36.8
2.8e–14 2.8e–14 5.7e–12 4.1e–13

3000 100 1.5e–11 1.5e–11 4.5e–9 2.2e–10 37.2 13.2 62.1 111
3.3e–14 3.3e–14 9.9e–12 5.1e–13

1000 200 1.2e–11 1.2e–11 9.6e–10 2.2e–10 2.61 1.48 3.95 7.50
3.2e–14 3.2e–14 2.7e–12 6.2e–13

1000 400 2.9e–11 2.9e–11 1.9e–9 7.4e–10 3.23 2.17 5.62 10.8
4.6e–14 4.6e–14 3.7e–12 1.5e–12

1000 600 2.1e–10 2.1e–10 1.3e–8 7.1e–9 4.39 3.33 7.83 14.6
5.5e–14 5.5e–14 5.2e–12 2.8e–12

Comparing with I1 in Section 6, I1 in this section gave larger radii and was slower.
The reason is guessed that I1 in this section includes the interval arithmetic evaluation
of −LLT .

106 S. Miyajima, Fast Enclosure for Solutions of Generalized LS Problems

7.2 Example 2

In this example, we observe the radii for various κ(A). Consider (1) where m = 60,
n = 30, A is generated similarly to Section 6.2, and b and L are obtained by (7).
Table 5 shows the similar quantities to Table 2 for various cndA. When cndA = 1014

and 1015, the proposed algorithms failed in 8 and all the problems, respectively. The
reasons for the failure of Ci and Fi are that ‖vU‖∞ < 1 and ‖vN‖∞ < 1 could not
be verified, respectively. When cndA = 1015, I1 returned NaN in 96 problems. The

Table 5: Obtained radii in Section 7.2

Ci Fi I1 I2

cndA MRR MRR MRR MRR
ARR ARR ARR ARR

1e+4 9.6e–11 9.6e–11 3.2e–9 4.8e–9
5.9e–13 5.9e–13 2.3e–11 3.5e–11

1e+9 1.3e–12 1.3e–12 4.4e–4 6.4e–4
6.3e–15 6.3e–15 1.9e–6 2.9e–6

1e+14 1.9e–9 1.9e–9 6.2e–1 6.9e–1
2.3e–10 2.3e–10 1.4e–1 1.9e–1

1e+15 failed failed 9.6e–1 NaN

failed failed 5.5e–1 NaN

algorithms Ci and Fi gave smaller radii than those by I1 and I2. When cndA = 1014,
on the other hand, the proposed algorithms failed in some problems, although I1 and
I2 succeeded in all the problems.

7.3 Example 3

In this example, we observe the radii for various κ(L). Consider (1) where m = 60,
n = 30, A and b are obtained by (7), and L is generated by

P = qr(gallery(’randsvd’,m,cndL)); L = triu(P)’;

L = L*sparse(diag(sign(diag(L))));.

Then L is the Cholesky factor of LLT with κ(L) ≈ cndL. Table 6 displays the similar
quantities to Table 2 for various cndL. When cndL = 1e+14, Ci and Fi failed in 4
and all the problems, respectively. The reason of the former failure is similar to that
in Section 7.2. The reason of the latter failure is that ‖vG‖∞ < 1, ‖vGT ‖∞ < 1 or
‖vK‖∞ < 1 could not be verified. When cndL = 1013 and 1014, I1 returned NaN in 5
and 95 problems, respectively. The result in this section shows that I2 is robust for
ill-conditioned L.

From Tables 4, 5 and 6, it is recommended to apply Fi when L is not ill-conditioned.
When L is ill-conditioned, the recommendation depends on either faster algorithm or
smaller radii are required. In the former and latter cases, we recommend executing Ci

and I2, respectively.

Reliable Computing, 2015 107

Table 6: Obtained radii in Section 7.3

Ci Fi I1 I2

cndL MRR MRR MRR MRR
ARR ARR ARR ARR

1e+4 5.2e–10 5.2e–10 1.1e–7 5.2e–11
3.4e–12 3.4e–12 4.0e–10 2.0e–13

1e+8 6.5e–10 6.5e–10 2.2e–4 2.9e–11
1.7e–11 1.7e–11 3.9e–6 4.8e–13

1e+13 3.0e–9 8.4e–9 7.7e–1 8.1e–11
4.8e–11 1.4e–10 2.7e–1 9.5e–13

1e+14 6.2e–8 failed 1.0e+0 1.4e–10
2.4e–10 failed 9.3e–1 1.3e–12

8 Conclusion

In this paper, we proposed algorithms for enclosing the solutions of (1), established
Theorems 1 and 2, and Corollaries 1 and 2 for developing these algorithms, reviewed
and introduced the techniques for accelerating the enclosure and obtaining smaller
error bounds, respectively, and reported numerical results. By modifying these al-
gorithms slightly, enclosing the solutions where A, b, and/or B are complex and/or
interval is also possible. As was suggested by one of the referees, the techniques pre-
sented here can also be applied to the enclosure of the covariance matrix Σ ∈ Rn×n

of x = (ATB−1A)−1ATB−1b, where Σij = E[(xi − µi)(xj − µj)] and µi = E[xi] is
the expected value of xi, if we can evaluate E[xi] via interval arithmetic. In several
cases, B has special structure, such as diagonal. When B is diagonal, the floating
point Cholesky decomposition, inversions of L̃ or L, and their error estimations are
not required, so the enclosure can be obtained more efficiently and effectively. Our
future work will be to develop a robust algorithm when L is given and ill-conditioned.

Acknowledgments

The author wishes to thank Prof. Siegfried M. Rump in Hamburg University of Tech-
nology for fruitful discussions, and acknowledges the referees for the comments which
improved the first version of this paper. This research was partially supported by
Grant-in-Aid for Scientific Research (C) (23560066, 2011–2015) from the Ministry of
Education, Culture, Sports, Science, and Technology of Japan.

Appendix

In what follows we display the INTLAB codes of Ci and Fi in Section 6 in order to
clarify the implementation. The codes of Ci and Fi in Section 7 are analogous.

function [x1,x2,dB1] = Ci(A,b,B)

% Ci encloses the solutions of the generalized least squares problems

% based on Theorem 1 with the iterative refinement.

108 S. Miyajima, Fast Enclosure for Solutions of Generalized LS Problems

% A: m * n real matrix (m >= n),

% b: real m-vector,

% B: m * m real symmetric matrix (expected to be positive definite),

% x1 + x2: approximate solution,

% dB1: error bound of x1 + x2.

setround(0); [m,n] = size(A); s_n = ones(n,1); s_m = ones(m,1);

ur = 2^(-53); uu = 2^(-1074); % unit roundoff and underflow unit

% computation of approximate solutions

L = chol(B)’; M = L\speye(m); MA = M*intval(A); P = qr(mid(MA),0);

R = triu(P(1:n,:)); clear P; S = R\speye(n);

x1 = R\(R’\A’*(L’\(L\b))); clear R; x2 = zeros(n,1); w = A*x1 - b;

y = L’\(L\w);

% enclosure of X and B*M [MA is an interval]

X = MA*S; clear MA; Xc = mid(X); Xr = rad(X);

BM = intval(B)*M’; BMc = mid(BM); BMr = rad(BM); clear BM;

% fl(I_m - M*B*M’) and fl(I_n - X_c’*X_c)

fl_IMBMc = eye(m) - M*BMc; fl_IXX = eye(n) - Xc’*Xc;

% gamma_m+1 [denominators are computed as if rounding to -inf mode]

setround(1); gam_m1 = (m+1)*ur/(-((m+1)*ur - 1));

% rigorous upper bound of abs(F)*ones(m,1) and norm(F,inf)

Fs = abs(fl_IMBMc)*s_m + gam_m1*(s_m + abs(M)*(abs(BMc)*s_m)) ...

+ m*m*uu*s_m + abs(M)*(BMr*s_m);

clear fl_IMBMc BMc BMr; normF = max(Fs);

if normF >= 1 % norm(F,inf) < 1 could not be verified

disp(’Error: Ci (normF >= 1)’);

x1 = NaN; x2 = NaN; dB1 = NaN; return;

end

% rigorous upper bounds of abs(I_n - X’*X)*ones(n,1), abs(X),

% norm(X,inf), abs(X)’*abs(F)*ones(m,1), v_E and norm(v_E,inf)

IXXs = abs(fl_IXX)*s_n + gam_m1*(s_n + abs(Xc)’*(abs(Xc)*s_n)) ...

+ m*n*uu*s_n + abs(Xc)’*(Xr*s_n) + Xr’*(abs(Xc)*s_n) ...

+ Xr’*(Xr*s_n); clear fl_IXX Xc Xr;

absX = mag(X); normX = max(sum(absX,2)); XFs = absX’*Fs;

clear absX; vE = IXXs + (normX*XFs)/(-(normF - 1)); normvE = max(vE);

if normvE >= 1 % norm(v_E,inf) < 1 could not be verified

disp(’Error: Ci (normvE >= 1)’);

x1 = NaN; x2 = NaN; dB1 = NaN; return;

end

% rigorous upper bounds of abs(S)*v_E, norm(abs(X)’*abs(F)*ones(m,1),inf)

% and abs(S)*abs(X)’*abs(F)*ones(m,1)

Reliable Computing, 2015 109

SvE = abs(S)*vE; normXFs = max(XFs); SXFs = abs(S)*XFs;

% accurate computations of rho_x, rho_w and rho_y (enclosure)

rho_x = Dot_(A,x1,A,x2,-1,b,-1,w,-2); rho_w = Dot_(1,w,-B,y,-2);

rho_y = Dot_(A’,y,-2);

% computation of dB1 and the iterative refinement

setround(0); % u and t are required previously

u = M’*(M*(mid(rho_x) + mid(rho_w)));

delta_x = S*(S’*(A’*u + mid(rho_y)));

delta_w = A*delta_x - mid(rho_x); t = M’*(M*(mid(rho_w) - delta_w));

for loop = 1:10 % at most 10 iterations

% enclosure of M*(rho_x + rho_w), X’*M*(rho_x + rho_w) + S’*rho_y

% and S*(X’*M*(rho_x + rho_w) + S’*rho_y)

% [rho_x, rho_w and rho_y are intervals]

Mrxw = M*(rho_x + rho_w); XMrxwSry = X’*Mrxw + S’*rho_y;

SXMrxwSry = S*XMrxwSry;

% rigorous upper bounds of norm(X’*M*(rho_x + rho_w) + S’*rho_y,inf)

% and norm(M*(rho_x + rho_w),inf)

normXMrxwSry = max(mag(XMrxwSry)); normMrxw = max(mag(Mrxw));

% rigorous upper bounds of d_B^(1) and the relative radii

setround(1);

dB1 = mag(SXMrxwSry) + (normXMrxwSry*SvE)/(-(normvE - 1)) ...

+ (normMrxw*SXFs)/(-(normF - 1)) ...

+ ((normMrxw*normXFs)*SvE)/(-((-(normvE - 1))*(normF - 1)));

RR = dB1 ./ (-((-abs(x2) - dB1) - abs(x1)));

if max(RR) <= 1e-11, break; % iteration terminates since MRR <= 1e-11

else

setround(0); % iterative refinement

rho_u = Dot_(B,u,-1,mid(rho_x),-1,mid(rho_w),2);

delta_u = M’*(M*rho_u); u = u - delta_u;

delta_x = S*(S’*(A’*u + mid(rho_y)));

delta_w = A*delta_x - mid(rho_x);

rho_t = Dot_(B,t,-1,mid(rho_w),1,delta_w,2); delta_t = M’*(M*rho_t);

t = t - delta_t; delta_y = -t; w = w - delta_w; y = y - delta_y;

[tmp,e1] = TwoSum(x2,-delta_x); [x1,e2] = TwoSum(tmp,x1);

x2 = e1 + e2; % x is stored by x1 and x2

% update of rho_x, rho_w and rho_y (enclosure)

rho_x = Dot_(A,x1,A,x2,-1,b,-1,w,-2); rho_w = Dot_(1,w,-B,y,-2);

rho_y = Dot_(A’,y,-2);

end

end

setround(0)

110 S. Miyajima, Fast Enclosure for Solutions of Generalized LS Problems

function [x1,x2,dB2] = Fi(A,b,B)

% Fi encloses the solutions of the generalized least squares problems

% based on Theorem 2 with the iterative refinement.

setround(0); [m,n] = size(A); s_n = ones(n,1); s_m = ones(m,1);

ur = 2^(-53); uu = 2^(-1074);

L = chol(B)’; M = L\speye(m); MA = M*intval(A); P = qr(mid(MA),0);

R = triu(P(1:n,:)); clear P; S = R\speye(n); x1 = R\(R’\A’*(L’\(L\b)));

clear R; x2 = zeros(n,1); w = A*x1 - b; y = L’\(L\w);

X = MA*S; clear MA; Xc = mid(X); Xr = rad(X); fl_IXX = eye(n) - Xc’*Xc;

setround(1); gam_m1 = (m+1)*ur/(-((m+1)*ur - 1));

IXXs = abs(fl_IXX)*s_n + gam_m1*(s_n + abs(Xc)’*(abs(Xc)*s_n)) ...

+ m*n*uu*s_n ...

+ abs(Xc)’*(Xr*s_n) + Xr’*(abs(Xc)*s_n) + Xr’*(Xr*s_n);

clear fl_IXX Xc Xr; absX = mag(X); normX = max(sum(absX,2));

absL = abs(L); absM = abs(M);

gam_m = m*ur/(-(m*ur - 1)); vL = diag(abs(L)); % gamma_m and v_L

% rigorous upper bounds of v_G, v_G^T, v_M, v_MG^T, v_H, v_GH, v_HG^T,

% v_GG^T, v_GHG^T, v_P, v_Q and their norms

vG = gam_m*(absM*(absL*s_m)) + (m*uu)*(m*s_m + vL)/(-(m*ur - 1));

normvG = max(vG);

if normvG >= 1 % norm(v_G,inf) < 1 could not be verified

disp(’Error: Fi (normvG >= 1)’);

x1 = NaN; x2 = NaN; dB2 = NaN; return;

end

vGT = gam_m*(absL’*(absM’*s_m)) + ((uu*(m*m + vL’*s_m))*s_m)/(-(m*ur - 1));

normvGT = max(vGT);

if normvGT >= 1 % norm(v_G^T,inf) < 1 could not be verified

disp(’Error: Fi (normvGT >= 1)’);

x1 = NaN; x2 = NaN; dB2 = NaN; return;

end

vM = gam_m1*(absM*(absL*(absL’*(absM’*s_m)))) ...

+ (uu*(s_m’*(absM’*s_m)))*(absM*(m*s_m + vL))/(-(m*ur- 1));

vMGT = gam_m1*(absM*(absL*(absL’*(absM’*vGT)))) ...

+ (uu*(s_m’*(absM’*vGT)))*(absM*(m*s_m + vL))/(-(m*ur- 1));

vH = vM + (max(vM)*vG)/(-(normvG - 1)) + vMGT/(-(normvGT - 1)) ...

+ (max(vMGT)*vG)/(-((-(normvG - 1))*(normvGT - 1)));

vGH = gam_m*(absM*(absL*vH)) + (uu*sum(vH))*(m*s_m + vL)/(-(m*ur - 1));

vHGT = vMGT + (max(vMGT)*vG)/(-(normvG - 1)) + (normvGT*vMGT)/(-(normvGT - 1)) ...

+ ((max(vMGT)*normvGT)*vG)/(-((-(normvG - 1))*(normvGT - 1)));

vGGT = gam_m*(absM*(absL*vGT)) + (uu*sum(vGT))*(m*s_m + vL)/(-(m*ur - 1));

vGHGT = gam_m*(absM*(absL*vHGT)) + (uu*sum(vHGT))*(m*s_m + vL)/(-(m*ur - 1));

clear absL absM;

Reliable Computing, 2015 111

vP = vG + vH + vGT + vGH + vHGT + vGGT + vGHGT; normvP = max(vP);

if normvP >= 1 % norm(v_P,inf) < 1 could not be verified

disp(’Error: Fi (normvP >= 1)’);

x1 = NaN; x2 = NaN; dB2 = NaN; return;

end

XvP = absX’*vP; vQ = IXXs + (normX*(XvP))/(-(normvP - 1)); normvQ = max(vQ);

if normvQ >= 1 % norm(v_Q,inf) < 1 could not be verified

disp(’Error: Fi (normvQ >= 1)’);

x1 = NaN; x2 = NaN; dB2 = NaN; return;

end

% rigorous upper bounds of abs(S)*v_Q, norm(abs(X)’*v_P,inf)

% and abs(S)*abs(X)’*v_P

SvQ = abs(S)*vQ; normXvP = max(XvP); SXvP = abs(S)*XvP;

rho_x = Dot_(A,x1,A,x2,-1,b,-1,w,-2); rho_w = Dot_(1,w,-B,y,-2);

rho_y = Dot_(A’,y,-2);

setround(0);

u = M’*(M*(mid(rho_x) + mid(rho_w))); delta_x = S*(S’*(A’*u + mid(rho_y)));

delta_w = A*delta_x - mid(rho_x); t = M’*(M*(mid(rho_w) - delta_w));

for loop = 1:10

Mrxw = M*(rho_x + rho_w); XMrxwSry = X’*Mrxw + S’*rho_y;

SXMrxwSry = S*XMrxwSry; normXMrxwSry = max(mag(XMrxwSry));

normMrxw = max(mag(Mrxw));

setround(1);

dB2 = mag(SXMrxwSry) + (normXMrxwSry*SvQ)/(-(normvQ - 1)) ...

+ (normMrxw*SXvP)/(-(normvP - 1)) ...

+ ((normMrxw*normXvP)*SvQ)/(-((-(normvQ - 1))*(normvP - 1)));

RR = dB2 ./ (-((-abs(x2) - dB2) - abs(x1)));

if max(RR) <= 1e-11, break;

else

setround(0); rho_u = Dot_(B,u,-1,mid(rho_x),-1,mid(rho_w),2);

delta_u = M’*(M*rho_u); u = u - delta_u;

delta_x = S*(S’*(A’*u + mid(rho_y))); delta_w = A*delta_x - mid(rho_x);

rho_t = Dot_(B,t,-1,mid(rho_w),1,delta_w,2); delta_t = M’*(M*rho_t);

t = t - delta_t; delta_y = -t; w = w - delta_w; y = y - delta_y;

[tmp,e1] = TwoSum(x2,-delta_x); [x1,e2] = TwoSum(tmp,x1);

x2 = e1 + e2;

rho_x = Dot_(A,x1,A,x2,-1,b,-1,w,-2); rho_w = Dot_(1,w,-B,y,-2);

rho_y = Dot_(A’,y,-2);

end

end

setround(0)

112 S. Miyajima, Fast Enclosure for Solutions of Generalized LS Problems

References

[1] H.R. Arndt. On the interval systems [x] = [A][x] + [b] and the powers of interval
matrices in complex interval arithmetics. Reliab. Comput., 13:245–259, 2007.

[2] D.B. Duncan and S.D. Horn. Linear dynamic recursive estimation from the view-
point of regression analysis. J. Amer. Statist. Assoc., 67:815–821, 1972.

[3] G.H. Golub and C.F. Van Loan. Matrix Computations, third ed. The Johns
Hopkins University Press, Baltimore and London, 1996.

[4] N.J. Higham. Accuracy and Stability of Numerical Algorithms, second ed. SIAM
Publications, Philadelphia, 2002.

[5] J. Johnston. Econometric Methods, second ed. McGraw-Hill, New York, 1972.

[6] S. Miyajima. Fast enclosure for the minimum norm least squares solution of the
matrix equation AXB = C, 2013. Submitted for publication.

[7] S. Miyajima. Componentwise enclosure for solutions of least squares problems
and underdetermined systems. Linear Algebra Appl., 444:28–41, 2014.

[8] S. Miyajima, T. Ogita, S.M. Rump, and S. Oishi. Fast verification for all eigen-
pairs in symmetric positive definite generalized eigenvalue problems. Reliab. Com-
put., 14:24–45, 2010.

[9] S. Oishi and S.M. Rump. Fast verification of solutions of matrix equations. Nu-
mer. Math., 90:755–773, 2002.

[10] C.C. Paige. Computer solution and perturbation analysis of generalized linear
least squares problems. Math. Comp., 33:171–183, 1979.

[11] C.C. Paige. Fast numerically stable computations for generalized linear least
squares problems. SIAM J. Numer. Anal., 16:165–171, 1979.

[12] J. Rohn. VERSOFT: Verification software in MATLAB / INTLAB. http://

www.nsc.ru/interval/index.php?j=Programing/index.

[13] S.M. Rump. INTLAB - INTerval LABoratory. In Developments in Reliable Com-
puting (T. Csendes ed.), pages 77–104. Kluwer Academic, Dordrecht, 1999.

[14] S.M. Rump. Verified bounds for least squares problems and underdetermined
linear systems. SIAM J. Matrix Anal. Appl., 33:130–148, 2012.

[15] S.M. Rump. Improved componentwise verified error bounds for least squares
problems and underdetermined linear systems. Numer. Algorithms, 66:309–322,
2014.

[16] T. Yamamoto. Error bounds for approximate solutions of systems of equations.
Japan J. Indust. Appl. Math., 1:157–171, 1984.

