
Fast Verified Solutions of Sparse

Linear Systems with H-matrices∗

A. Minamihata

Graduate School of Fundamental Science
and Engineering, Waseda University,

Tokyo, Japan
aminamihata@moegi.waseda.jp

K. Sekine

Graduate School of Fundamental Science
and Engineering, Waseda University,

Tokyo, Japan

T. Ogita

Division of Mathematical Sciences,
School of Arts and Sciences, Tokyo Woman’s

Christian University, Tokyo, Japan
ogita@lab.twcu.ac.jp

S. Oishi

Department of Applied Mathematics,
Faculty of Science and Engineering,
Waseda University, Tokyo, Japan

Abstract

This paper is concerned with the problem of verifying the accuracy of
an approximate solution of a sparse linear system whose coefficient matrix
is an H-matrix. Fast and efficient methods of calculating componentwise
error bounds of the computed solution are proposed. The methods are
based on the verified criterion for an M-matrix. The main point of this
article is that the proposed methods can be applied with any iterative
solution methods such as the Gauss-Seidel method and Krylov subspace
methods. Therefore, the sparsity of the coefficient matrix is preserved in

∗Submitted: February 25, 2013; Revised: September 23, 2013; Accepted: December 5,
2013.

127

aminamihata@moegi.waseda.jp
ogita@lab.twcu.ac.jp

128 A. Minamihata et al., Fast Verified Solutions of Sparse Linear Systems

the verification process. Numerical results are presented, illustrating the
performance of the proposed methods.

Keywords: verified numerical computations, sparse linear systems, H-matrix

AMS subject classifications: 65G20, 65F30, 65F50

1 Introduction

Let R be the set of real numbers. For a linear system

Ax = b, A ∈ Rn×n, b ∈ Rn, (1)

we can obtain an approximate solution efficiently by some numerical algorithm. In
general, however, we do not know how accurate the computed solution is.

In this paper, we deal with the case where A is an H-matrix, which is also known as
a generalized diagonally dominant matrix. H-matrices arise in numerical computations
for various applications including fluid dynamics, electromagnetics, and so forth [1, 2].
The purpose of this article is to show how to verify the accuracy of a computed solution
x̃ of a sparse linear system Ax = b in the case of A being an H-matrix. In particular,
we compute a rigorous error bound of the computed solution while preserving the
sparsity of the coefficient matrix A. Thus, we never calculate the inverse of A nor a
complete LU factorization explicitly.

To our knowledge, few verification methods for general sparse linear systems are
known except methods by Rump [13]. In fact, the verification for sparse systems of
linear (interval) equations is known as one of the important open problems posed
by Neumaier in Grand Challenges and Scientific Standards in Interval Analysis [10].
Moreover, Rump [15] states the problems more concretely. See [15] for details.

On the other hand, some verification methods suited for general dense linear sys-
tems using the property of H-matrices have been proposed (cf. e.g., [9, 16]), which
rely on the fact that a preconditioned matrix RA, where R is normally taken as an
approximate (full) inverse of A, is expected to be an H-matrix. Such methods also
can be used for sparse linear systems if A is an H-matrix, since the preconditioner R
is not necessary.

In this paper, we propose fast and efficient verification methods for sparse linear
systems with H-matrices, i.e., we aim to calculate componentwise error bounds of a
computed solution x̃ of Ax = b to the exact solution x∗ := A−1b such that

|x∗i − x̃i| ≤ εi for 1 ≤ i ≤ n

by the use of verified numerical computations.

The rest of the paper is organized as follows. In Section 2, we explain the notation
and state definitions used in this paper. In Section 3, we introduce some methods
of determining whether a given matrix is an M-matrix. In Section 4, we review the
existing theorems which can be used for verified solutions of sparse linear systems with
H-matrices. In Section 5, we propose several verification methods for sparse linear
systems with H-matrices by componentwise error estimation. Finally, in Section 6, we
present some numerical results showing the performance of the proposed methods.

Reliable Computing 19, 2013 129

2 Notation and Definitions

Let I and O denote the n × n identity matrix and the n × n matrix of all zeros,
respectively. Moreover, let e and 0 denote the n-vector of all ones and that of all
zeros, respectively. Inequalities for matrices are understood componentwise, e.g., for
real n×n matrices A = (aij) and B = (bij), the notation A ≤ B means aij ≤ bij for all
(i, j). In particular, the notation A ≥ O (or A > O) means that all the elements of A
are nonnegative (or positive). Moreover, the notation |A| means |A| = (|aij |) ∈ Rn×n,
the nonnegative matrix consisting of componentwise absolute values of A. Similar
notations are applied to real vectors.

Let A = (aij) ∈ Rn×n. The spectral radius of A is denoted by ρ(A), which is the
largest absolute value of the eigenvalues of A. The comparison matrix 〈A〉 = (âij) of
A is defined by

âij =

{
|aij |, if i = j,

−|aij |, if i 6= j.

This can also be written by 〈A〉 = |D| − |E|, where D and E correspond to diagonal
and off-diagonal parts of A, respectively.

Definition 2.1 (strict diagonal dominance) A real n × n matrix A = (aij) is
called strictly diagonally dominant if |aii| >

∑
j 6=i |aij | for i = 1, 2, . . . , n.

Definition 2.2 (monotonicity) A real n×n matrix A is called monotone if Ax ≥ 0
implies x ≥ 0 for x ∈ Rn.

Definition 2.3 (Z-matrix) Let A = (aij) be a real n × n matrix with aij ≤ 0 for
i 6= j. Then A is called a Z-matrix.

Definition 2.4 (L-matrix) If all the diagonal entries of a Z-matrix A are positive,
then A is called an L-matrix.

Definition 2.5 (M-matrix) If a Z-matrix A is monotone, then A is called an M-
matrix.

Throughout the paper, we say a matrix A has the “M-property” if A is an M-matrix.

Definition 2.6 (H-matrix) If 〈A〉 is an M-matrix, then A is called an H-matrix.

Lemma 2.1 (e.g., [8, p.113]) If A is an H-matrix, then |A−1| ≤ 〈A〉−1.

By Definition 2.6, we find that verifying the M-property is essential for confirming
whether a given matrix is an H-matrix. Therefore, we focus on the verification of the
M-property in the next section.

3 Verification of M-property

In this section, we consider how to verify whether a given matrix has the M-property.
We first introduce a theorem, which plays an important role for this purpose.

Theorem 3.1 (e.g. Fiedler-Pták [4]) Let an L-matrix A ∈ Rn×n be given. Then
the following conditions are equivalent:

130 A. Minamihata et al., Fast Verified Solutions of Sparse Linear Systems

1. A is nonsingular, and A−1 ≥ O (i.e., A is an M-matrix).

2. There exists v ∈ Rn with v > 0 satisfying Av > 0.

3. A can be expressed as A = µI −B using some µ ∈ R and a nonnegative matrix
B ∈ Rn×n satisfying ρ(B) < µ.

The point is that it is sufficient to find some v > 0 satisfying Av > 0 to verify that
A is an M-matrix from condition 2. For condition 3, it is known that ρ(B) < µ holds
for any µ satisfying max1≤i≤n aii ≤ µ if A is an M-matrix.

Lemma 3.1 Let A ∈ Rn×n and v ∈ Rn with v > 0 be given. If 〈A〉v > 0, then
|A−1| ≤ 〈A〉−1.

Proof: Theorem 3.1 and Lemma 2.1 prove the lemma. �

In the following, we introduce the existing verification methods for the M-property.
We then present an alternative method using the eigenvector associated with the
smallest eigenvalue.

3.1 Existing Verification Methods for the M-property

We first introduce a simple verification method for the M-property suggested by Neu-
maier [9]. Let A be an n×n L-matrix. Let b ∈ Rn with b > 0. If A has the M-property,
then A−1b > 0. Let ỹ be a computed solution of a linear system Ay = b. If A is not
ill-conditioned, then we can expect that ỹ > 0 and Aỹ > 0 are satisfied. The choice
of b is arbitrary, and a natural one is b = e.

Next, we introduce a verification method for the M-property by Rump [16], based
on the Perron-Frobenius theorem. We split an L-matrix A as follows:

A = D − E with D > O, E ≥ O,

where D and E correspond to diagonal and off-diagonal parts of A, respectively. The
matrix A = D−E has the M-property if and only if β := ρ(D−1E) < 1. Since D−1E ≥
O, β corresponds to the Perron root of D−1E. Usually, D−1E is at least nonnegative
irreducible if not positive, so that the corresponding eigenvector is positive. Then a
power iteration

v(k+1) = D−1Ev(k) for v(0) := D−1e

implies that maxi v
(k+1)
i /v

(k)
i decreases monotonically to the Perron root of D−1E.

Assume D−1Ev(k) ≈ βv(k) for β < 1, then

Av(k) = D(I −D−1E)v(k) ≈ (1− β)Dv(k).

Therefore, starting with v := D−1e, we perform power iterations to find a positive
vector v satisfying Av > 0.

Apart from the above mentioned methods, several criteria for H-matrix have been
proposed. See [5, 6, 7] and the literature cited there for details.

Reliable Computing 19, 2013 131

3.2 Alternative Method

Suppose A is an irreducible M-matrix. From the Perron-Frobenius theorem, there
exists the positive eigenvector of A−1 associated with the largest eigenvalue of A−1,
which corresponds to the smallest eigenvalue λmin > 0 of A. If we compute an approx-
imation v of the Perron vector of A−1, then we can expect v to satisfy Av ≈ λminv
and Av > 0. Below, we show how to compute v. We assume max1≤i≤n aii ≤ µ. Then
the Perron vector of A−1 corresponds to that of B := µI − A ≥ O. From Theorem
3.1, it holds that γ := ρ(B) < µ. An eigenvalue problem

Ax = λx

can be rewritten as a new eigenvalue problem

Bx = (µ− λ)x.

Then γ = µ−λmin, where λmin is equal to the reciprocal of the Perron root of A−1, so
that the Perron vector of B corresponds to that of A−1. Therefore, a power iteration

v(k+1) = Bv(k) for v(0) := e

implies that maxi v
(k+1)
i /v

(k)
i decreases monotonically to the Perron root of B. Assume

Bv(k) ≈ γv(k) for γ < µ, then

Av(k) = (µI −B)v(k) ≈ (µ− γ)v(k).

Therefore, if A is an irreducible M-matrix, we perform power iterations starting with
v := e to find a positive vector v satisfying Av > 0.

Although this method is similar to that of Rump [16] from the previous subsection,
its behavior is a little different. We can see that in the results of numerical experiments
in Section 6.

4 Verification Theory for Linear Systems

We first cite a theorem for bounding ‖A−1‖∞ and obtaining a normwise error bound
of a linear system Ax = b in the case of A being monotone.

Theorem 4.1 (Ogita-Oishi-Ushiro [11]) Let A ∈ Rn×n be monotone, and ỹ ∈ Rn

be given. If ‖e−Aỹ‖∞ < 1, then

‖A−1‖∞ ≤
‖ỹ‖∞

1− ‖e−Aỹ‖∞
.

Using this theorem, if ‖e−Aỹ‖∞ < 1, then it holds for b and x̃ ∈ Rn that

‖A−1b− x̃‖∞ ≤ ‖A−1‖∞‖b−Ax̃‖∞

≤ ‖ỹ‖∞‖b−Ax̃‖∞
1− ‖e−Aỹ‖∞

. (2)

In practice, x̃ and ỹ are taken as computed solutions of the linear systems Ax = b and
Ay = e, respectively. Note that it is difficult in general to confirm whether a given
matrix is monotone.

In addition, Ogita, Oishi and Ushiro [11] also introduced a different type of com-
ponentwise error bound as below.

132 A. Minamihata et al., Fast Verified Solutions of Sparse Linear Systems

Theorem 4.2 (Ogita-Oishi-Ushiro [11]) Let A ∈ Rn×n and b, x̃, z̃ ∈ Rn be given.
Suppose A is nonsingular and ‖A−1‖p ≤ τ for any p ∈ {1, 2,∞}. Then

|A−1b− x̃| ≤ |z̃|+ τ‖b−A(x̃+ z̃)‖pe. (3)

Here z̃ is also known as the staggered correction whose concept has already appeared
in [12]. If the correction z̃ is of high quality and |z̃| � τ‖b − A(x̃ + z̃)‖pe, then (3)
gives a tight error bound of x̃.

In [10], Neumaier presented a simple method of obtaining an upper bound on the
inverse of an H-matrix as follows. Let A and B ∈ Rn×n be given. Assume v ∈ Rn

with v > 0 satisfies u := 〈A〉v > 0. Then A is an H-matrix. Define w ∈ Rn by

wk := max
1≤i≤n

Gik

ui
for 1 ≤ k ≤ n,

where G := I − 〈A〉B. Then

|A−1| ≤ 〈A〉−1 ≤ B + vwT . (4)

In practice, B is taken as an approximate inverse of 〈A〉.
In [16], Rump applied Neumaier’s method to calculating an error bound of a com-

puted solution of a linear system by replacing A by RA, where R is an approximate
inverse of A and putting B = D−1, where D is the diagonal part of A.

Theorem 4.3 (Rump [16]) Let A, R ∈ Rn×n and b and x̃ ∈ Rn be given. Assume
v ∈ Rn with v > 0 satisfies u := 〈RA〉v > 0. Denote by 〈RA〉 := D − E the splitting
of 〈RA〉 into diagonal and off-diagonal parts, and define w ∈ Rn by

wk := max
1≤i≤n

Gik

ui
for 1 ≤ k ≤ n,

where G := I − 〈RA〉D−1 = ED−1 ≥ O. Then A and R are nonsingular, and

|A−1b− x̃| ≤ (D−1 + vwT)|R(b−Ax̃)|. (5)

Moreover, |A−1b− x̃| ≤ ε implies

|A−1b− x̃| ≤ D−1(|R(b−Ax̃)|+ Eε).

If A is an H-matrix, then we can use Theorem 4.3 by putting R = I. However, the
error bounds obtained by the theorem may become very pessimistic, since it implicitly
assumes that an approximate inverse R of A is used as a preconditioner and RA ≈ I.
We will improve this point in the next section.

5 Componentwise Error Estimation

Based on the results of the above sections, we present theorems for calculating a
componentwise error bound for a computed solution of a linear system Ax = b in the
case of A being an H-matrix. All the methods in this section are based on the simple
estimates

|A−1b− x̃| ≤ |A−1| |b−Ax̃| (6)

and
|A−1b− x̃| ≤ |z̃|+ |A−1| |b−A(x̃+ z̃)|. (7)

Although (7) can easily be deduced from (6), an error bound obtained by (7) often
becomes much better than that by (6) provided that z̃ is sufficiently accurate. Note
that this technique has already been used in Theorem 4.2.

Reliable Computing 19, 2013 133

Remark 1 Let D be the diagonal part of an H-matrix A. Then ρ(|I −D−1A|) < 1.
Thus, we can easily compute a correction vector z̃ by solving a linear system Az = r,
where r := b−Ax̃ using some Jacobi or Gauss-Seidel iterations.

Remark 2 If either A or b is an interval quantity, then there is a limit to the cor-
rection for x̃ by z̃. For example, if b is an interval vector, then neither |b − Ax̃| nor
|b − A(x̃ + z̃)| can become less than the radius of b. In this case, there is almost no
difference between the estimates (6) and (7) for the best possible x̃.

We first present a lemma to derive a theorem for componentwise error bounds.

Lemma 5.1 For A ∈ Rn×n and x ∈ Rn, it holds that

|A| |x| ≤ ‖x‖∞|A|e.

Proof: It holds that |x| ≤ ‖x‖∞e, and the result follows. �

The following theorem is a modification of Theorem 4.1.

Theorem 5.1 Let A ∈ Rn×n be monotone, and b, x̃, ỹ, z̃ ∈ Rn be given.
If ‖e−Aỹ‖∞ < 1, then

|A−1b− x̃| ≤ ‖b−Ax̃‖∞
1− ‖e−Aỹ‖∞

|ỹ| (8)

and

|A−1b− x̃| ≤ |z̃|+ ‖b−A(x̃+ z̃)‖∞
1− ‖e−Aỹ‖∞

|ỹ|. (9)

Proof: Since A is monotone, |A−1| = A−1. By Lemma 5.1, it follows that

|A−1e− ỹ| = |A−1(e−Aỹ)| ≤ |A−1| |e−Aỹ|
≤ ‖e−Aỹ‖∞|A−1|e = ‖e−Aỹ‖∞A−1e

and
(1− ‖e−Aỹ‖∞)A−1e ≤ |ỹ|.

If ‖e−Aỹ‖∞ < 1, then

|A−1|e = A−1e ≤ 1

1− ‖e−Aỹ‖∞
|ỹ|. (10)

By Lemma 5.1 and (6), we have

|A−1b− x̃| ≤ ‖b−Ax̃‖∞|A−1|e. (11)

Inserting (10) into (11) yields (8). Moreover, by Lemma 5.1 and (7), we have

|A−1b− x̃| ≤ |z̃|+ ‖b−A(x̃+ z̃)‖∞|A−1|e. (12)

Inserting (10) into (12) yields (9). �

In addition, we can derive componentwise error bounds for H-matrices in a similar
way to the derivation of Theorem 5.1 as follows:

134 A. Minamihata et al., Fast Verified Solutions of Sparse Linear Systems

Corollary 5.1 Let A ∈ Rn×n and b, x̃, ỹ, z̃ ∈ Rn be given with ỹ > 0. If

‖e− 〈A〉ỹ‖∞ < 1, (13)

then

|A−1b− x̃| ≤ ‖b−Ax̃‖∞
1− ‖e− 〈A〉ỹ‖∞

|ỹ| (14)

and

|A−1b− x̃| ≤ |z̃|+ ‖b−A(x̃+ z̃)‖∞
1− ‖e− 〈A〉ỹ‖∞

|ỹ|. (15)

Proof: Since (13) implies 〈A〉ỹ > 0, |A−1| ≤ 〈A〉−1 holds from Lemma 3.1. The rest
can easily be deduced from the proof of Theorem 5.1. �

The following is a simple modification of Theorem 4.3 suited for the case where A
is an H-matrix, which is based on an approach similar to Theorem 4.2.

Corollary 5.2 Let A ∈ Rn×n and b, x̃, z̃ ∈ Rn be given. Assume v ∈ Rn with v > 0
satisfies u := 〈A〉v > 0. Denote by 〈A〉 := D − E the splitting of 〈A〉 into diagonal
and off-diagonal parts, and define w ∈ Rn by

wk := max
1≤i≤n

Gik

ui
for 1 ≤ k ≤ n,

where G := I − 〈A〉D−1 = ED−1 ≥ O. Then

|A−1b− x̃| ≤
(
D−1 + vwT

)
|b−Ax̃| (16)

and
|A−1b− x̃| ≤ |z̃|+

(
D−1 + vwT

)
|b−A(x̃+ z̃)| . (17)

Proof: In (4), putting B = D−1 yields

|A−1| ≤ 〈A〉−1 ≤ D−1 + vwT ,

and the results follow. �

Next, we present the following theorem as an alternative verification method, whose
derivation is similar to that of (4).

Theorem 5.2 Let A ∈ Rn×n and b, x̃, z̃ ∈ Rn be given. Assume v ∈ Rn with v > 0
satisfies 〈A〉v > 0. If

0 < |b−Ax̃| ≤ α〈A〉v (18)

is satisfied for some positive α ∈ R, then

|A−1b− x̃| ≤ αv. (19)

Moreover, if
0 < |b−A(x̃+ z̃)| ≤ β〈A〉v (20)

is satisfied for some positive β ∈ R, then

|A−1b− x̃| ≤ |z̃|+ βv. (21)

Reliable Computing 19, 2013 135

Proof: By the assumption, |A−1| ≤ 〈A〉−1 stems from Lemma 3.1. From (18), we have

〈A〉−1 |b−Ax̃| ≤ αv. (22)

Here (6) implies

|A−1b− x̃| ≤ 〈A〉−1 |b−Ax̃|. (23)

Combining (22) and (23) proves (19). In a similar way, (21) can also be proved. �

The following corollary can be applied to the case where A is an M-matrix, which
gives better error bounds than Theorem 5.2.

Corollary 5.3 Let an L-matrix A ∈ Rn×n and b and x̃ ∈ Rn be given. Assume
v ∈ Rn with v > 0 satisfies Av > 0. If

αAv ≤ b−Ax̃ ≤ βAv (24)

is satisfied for some α and β ∈ R, then

αv ≤ A−1b− x̃ ≤ βv. (25)

Proof: In view of Theorem 3.1, the assumption implies that A is an M-matrix, so that
A−1 ≥ O. By monotonicity, multiplying A−1 by (24) yields (25). �

Note that (25) gives more tight bounds than (19) in Theorem 5.2, because the
evaluation of (24) does not require taking the absolute value of the residual, while
that of (18) does. In (24), replacing x̃ by x̃+ z̃ leads to

αAv ≤ b−A(x̃+ z̃) ≤ βAv,

and

z̃ + αv ≤ A−1b− x̃ ≤ z̃ + βv, (26)

which is similar to the modification from (19) to (21).
The basic ideas of Theorem 5.2 and Corollaries 5.1 and 5.2 look quite similar.

The differences among them are as follows: in Corollary 5.1, we first need to estimate
〈A〉−1e and then obtain an error bound of a computed solution x̃ by taking the maxi-
mum norm ‖b−Ax̃‖∞, which sometimes causes overestimations. On the other hand,
in Theorem 5.2, we estimate 〈A〉−1|b−Ax̃| directly, whose result v can also be used for
calculating α in (19) while aiming α ≈ 1. Thus, it is expected that (19) in Theorem 5.2
gives more tight error bounds than (14) in Corollary 5.1. If the correction z̃ is of good
quality, then there is almost no difference between the error bounds (15) and (21),
since both of their second terms can be ignored anyway. Corollary 5.2 should work
effectively only if A is nearly diagonal in the sense that ρ(ED−1)� 1. Otherwise, the
term vwT in (17) tends to become much larger than D−1 in magnitude. Therefore,
the use of Theorem 5.2 is expected to be more stable than that of Corollary 5.2.

There remains the problem of how to know whether the correction z̃ is good enough.
To calculate z̃, we can suitably solve a linear system Az = r, where r := b − Ax̃ by
some Jacobi or Gauss-Seidel iterations. To avoid overestimations of the error bounds,
we need appropriate stopping criteria with a tolerance 0 < εtol < 1 such as

|z̃| ≥ εtol ·
‖b−A(x̃+ z̃)‖∞
1− ‖e− 〈A〉ỹ‖∞

|ỹ| (27)

136 A. Minamihata et al., Fast Verified Solutions of Sparse Linear Systems

for (15) in Corollary 5.1,

|z̃| ≥ εtol ·
(
D−1 + vwT

)
|b−A(x̃+ z̃)| (28)

for (17) in Corollary 5.2, and
|z̃| ≥ εtol · βv (29)

for (21) in Theorem 5.2. The main difference among them is that all the quantities in
the right-hand side of (27) and (28) are fixed except the residual b − A(x̃ + z̃), while
that is not the case with (29), since β in (29) depends on z̃ and v. Namely, if we adopt
a verification method based on Theorem 5.2 with (29) as a stopping criterion of some
iterative method for solving Az = r, then additional computational effort is needed
for updating v. Of course, v can be fixed independently of z̃, e.g., by the use of v
satisfying (18) instead of (20). In this case, however, the quantity βv via (18) tends
to become relatively large compared with that via (20).

Summarizing the above discussions, we now present algorithms based on Theorem
5.2. In the algorithms, u denotes the relative rounding error unit.

Algorithm 5.1 For given A ∈ Rn×n and b and x̃ ∈ Rn, the following algorithm
calculates an upper bound d ∈ Rn of |A−1b− x̃| while verifying that A is an H-matrix,
which is based on (19) in Theorem 5.2.

1. Calculate an upper bound r ∈ Rn of |b − Ax̃| (in higher precision arithmetic if
possible). If ri = 0 for some i, then compute γ = u‖r‖∞ and set ri = γ.

2. Calculate v ∈ Rn such that v ≈ 〈A〉−1r.

3. Check whether v > 0. If not, then the algorithm ends in failure.

4. Calculate w ∈ Rn satisfying w ≤ 〈A〉v (in higher precision arithmetic if possible).

5. Check whether w > 0. If not, then the algorithm ends in failure.

6. Calculate α ∈ R satisfying r ≤ αw.

7. Calculate d ∈ Rn satisfying d ≥ αv, and the algorithm ends.

Algorithm 5.2 For given A ∈ Rn×n and b and x̃ ∈ Rn, the following algorithm
calculates an upper bound d ∈ Rn of |A−1b− x̃| while verifying that A is an H-matrix,
which is based on (21) in Theorem 5.2.

1. Calculate r ∈ Rn such that r ≈ b−Ax̃ (in higher precision arithmetic if possible).

2. Calculate z̃ ∈ Rn such that z̃ ≈ A−1r by some Jacobi or Gauss-Seidel iterations.

3. Calculate an upper bound s ∈ Rn of |b−A(x̃+ z̃)| (in higher precision arithmetic
if possible). If si = 0 for some i, then compute γ = u‖s‖∞ and set si = γ.

4. Calculate v ∈ Rn such that v ≈ 〈A〉−1s.

5. Check whether v > 0. If not, then the algorithm ends in failure.

6. Calculate w ∈ Rn satisfying w ≤ 〈A〉v (in higher precision arithmetic if possible).

7. Check whether w > 0. If not, then the algorithm ends in failure.

8. Calculate β ∈ R satisfying s ≤ βw.

9. Calculate d ∈ Rn satisfying d ≥ |z̃|+ βv, and the algorithm ends.

Reliable Computing 19, 2013 137

Table 1: Test matrices.

Problem n nnz cond Class
Bourchtein/atmosmodd 1,270,432 8,814,880 9.02 · 103 SDD/H
Bourchtein/atmosmodl 1,489,752 10,319,760 1.47 · 103 SDD/H
Hamm/memplus 17,758 99,147 1.29 · 105 H
HB/1138 bus 1,138 4,054 8.57 · 106 M
HB/sherman3 5,005 20,033 5.01 · 1017 SDD/M
Sandia/ASIC 100ks 99,190 578,890 9.30 · 109 SDD/H
Simon/raefsky5 6,316 167,178 3.87 · 1014 H
Simon/raefsky6 3,402 130,371 1.41 · 1016 H
Wang/wang3 26,064 177,168 6.18 · 103 M
Wang/wang4 26,068 177,196 4.02 · 105 M
Random10K 10 10,000 109,948 2.05 · 104 H
Random10K 20 10,000 209,767 7.58 · 104 H
Random100K 10 100,000 1,099,926 n/a H
Random100K 20 100,000 2,099,772 n/a H
Random1M 10 1,000,000 10,999,949 n/a H
Random1M 20 1,000,000 20,999,785 n/a H

nnz: the number of nonzero elements, cond: condition number
n/a: not available due to memory limitations

SDD: strictly diagonally dominant, M: M-matrix, H: H-matrix

Remark 3 For the step 1 in Algorithm 5.1 and the steps 1 and 3 in Algorithm 5.2,
higher precision arithmetic is effective for calculating the residual vectors, since such
computations often cause heavy cancellations in floating-point arithmetic. Moreover,
for the step 4 in Algorithm 5.1 and the step 6 in Algorithm 5.2, higher precision
arithmetic is useful for calculating a tight lower bound w of 〈A〉v to reduce the effect
of rounding errors if 〈A〉 is ill-conditioned.

6 Numerical Results

The numerical experiments were carried out using MATLAB R2012b and INTLAB
Version 6 [14] on a PC with 2.8 GHz Intel Core i7 CPU and 16 GB of main mem-
ory. We took test problems from University of Florida Sparse Matrix Collection [3].
Moreover, we generated sparse random H-matrices based on the MATLAB function
sprandn. Table 1 displays the list of test matrices with their properties. Note that the
condition numbers (cond in the table) are taken from the web site of [3] if available.
Otherwise, the MATLAB function condest is used. For large test matrices, condest
is not available due to memory limitations.

We first discuss the numerical behavior of the algorithms for verifying the M-
property that are introduced in Section 3. The methods tested are summarized in
Table 2. Table 3 displays the computing time for verifying whether the comparison
matrix of a test matrix is an M-matrix. Note that the cases of test matrices being
strictly diagonally dominant (labeled as “SDD”) are omitted because it is obvious

138 A. Minamihata et al., Fast Verified Solutions of Sparse Linear Systems

Table 2: Methods for the verification of the M-property.

(i) Solve 〈A〉y = e using PCG method if a test matrix 〈A〉 is symmetric,
otherwise BiCG method (stopping criterion: ‖e− 〈A〉ỹ‖∞ ≤ 10−3).

(ii) Compute an approx. Perron vector v of D−1E using power method
where D and E correspond to diagonal and off-diagonal parts of
〈A〉, respectively (stopping criterion: D−1Ev < v).

(iii) Compute an approx. Perron vector of B := µI − 〈A〉 using
power method where µ := maxi |aii| (stopping criterion: Bv < µv).

(iv) Use Algorithm 1 in [7] by L. Li (ε = 0.001).

Table 3: Computing time (sec.) and the number of iterations
(inside the parentheses) for the verification of the M-property.

Problem (i) (ii) (iii) (iv)
Hamm/memplus 0.56 6.52 (11482) 0.12 (194) 0.12 (59)
HB/1138 bus 0.03 Failed Failed Failed
Simon/raefsky5 0.03 Failed Failed 0.04 (10)
Simon/raefsky6 0.03 Failed Failed 0.03 (8)
Wang/wang3 0.30 0.26 (333) 0.70 (944) 0.59 (237)
Wang/wang4 0.27 0.31 (400) 5.84 (7644) 0.96 (394)
Random10K 10 0.07 0.03 (12) Failed 0.04 (12)
Random10K 20 0.09 0.05 (9) Failed 0.05 (9)
Random100K 10 0.80 0.31 (14) Failed 0.40 (14)
Random100K 20 1.33 0.51 (12) Failed 0.59 (12)
Random1M 10 18.39 5.43 (15) Failed 7.70 (24)
Random1M 20 32.57 9.49 (14) Failed 8.73 (14)

that their comparison matrices are M-matrices. The results of Methods (ii), (iii), and
(iv) are labeled as “Failed” in the table when the number of iterations exceeds the
dimension of a test matrix.

From Table 3, it can be seen that Methods (ii) and (iii) are less robust than the
others. The weakness of Methods (ii) and (iii) comes from the fact that the power
method is sensitive to the distance between the first and the second largest magnitude
eigenvalues. In contrast, Method (i) worked in all the cases and seems to work better
than Method (iv). It turns out that Method (i) is the most stable among the methods
tested, while it is also slower than Methods (ii) and (iv) in many cases.

We now move on to the numerical behavior of the algorithms for verified solutions of
linear systems that are presented in Section 5. We compare the algorithms summarized
in Table 4. If a test matrix A is symmetric, we adopt the MATLAB function pcg as
a preconditioned conjugate gradient method for solving linear systems Ax = b and
〈A〉v = t, where t := r ≥ |b−Ax̃| in Algorithm I, t := s ≥ |b−A(x̃+ z̃)| in Algorithms
II and III, and t := e in Algorithm IV. We use the MATLAB commands:

L = ichol(A,struct(’type’,’ict’,’droptol’,1e-3));

Reliable Computing 19, 2013 139

Table 4: Algorithms for verified solutions of linear systems.

I Algorithm 5.1: εx = 10−10, εv = 10−10

II Algorithm 5.2: εx = 10−10, εv = 10−10, iter = 30
III Algorithm 5.2: εx = 10−10, εv = 10−6, iter = 30
IV Use (17) in Corollary 5.2: εx = 10−10, εv = 10−10, iter = 30

Table 5: Median of relative error bounds
of approximate solutions to linear systems.

Problem I II III IV

Bourchtein/atmosmodd 1.51 · 10−11 4.12 · 10−12 4.17 · 10−12 2.59 · 10−6

Bourchtein/atmosmodl 5.69 · 10−11 2.15 · 10−11 2.16 · 10−11 6.90 · 10−6

Hamm/memplus 2.21 · 10−11 1.74 · 10−11 1.76 · 10−11 5.61 · 10−7

HB/1138 bus 9.56 · 10−11 8.24 · 10−11 8.24 · 10−11 8.40 · 10−8

HB/sherman3 1.74 · 10−5 1.48 · 10−6 1.48 · 10−6 3.54 · 10−3

Sandia/ASIC 100ks 2.25 · 10−11 9.48 · 10−12 9.48 · 10−12 3.21 · 10−8

Simon/raefsky5 5.07 · 10−15 4.39 · 10−15 4.42 · 10−15 2.62 · 10−11

Simon/raefsky6 4.67 · 10−15 4.00 · 10−15 4.00 · 10−15 6.76 · 10−10

Wang/wang3 4.44 · 10−11 7.20 · 10−12 7.21 · 10−12 3.44 · 10−8

Wang/wang4 3.79 · 10−13 8.03 · 10−14 8.03 · 10−13 6.71 · 10−9

Random10K 10 1.96 · 10−7 6.16 · 10−11 6.16 · 10−11 5.83 · 10−9

Random10K 20 4.15 · 10−8 1.33 · 10−11 1.33 · 10−11 9.23 · 10−9

Random100K 10 1.51 · 10−8 9.69 · 10−12 9.69 · 10−12 2.38 · 10−7

Random100K 20 2.97 · 10−6 2.15 · 10−10 2.15 · 10−10 2.93 · 10−6

Random1M 10 6.36 · 10−7 4.46 · 10−11 4.46 · 10−11 4.22 · 10−6

Random1M 20 2.51 · 10−5 2.15 · 10−9 2.15 · 10−9 3.15 · 10−4

[x,flag,relres,iter] = pcg(A,b,1e-10,1000,L,L’);

Otherwise, we use the MATLAB function bicg as a preconditioned biconjugate gradi-
ent method for solving the linear systems. We use the following MATLAB commands:

[L,U] = ilu(A);

[x,flag,relres,iter] = bicg(A,b,1e-10,1000,L,U);

We set a stopping criterion of the iterations for solving Ax = b as ‖b−Ax̃‖/‖b‖ ≤ εx,
where εx := 10−10 in all the algorithms. Moreover, we also set a stopping criterion
of the iterations for solving 〈A〉v = t as ‖t − 〈A〉ṽ‖/‖t‖ ≤ εv, where εv := 10−10 in
Algorithms I, II and IV, and εv := 10−6 in Algorithm III. In Algorithms II, III and IV,
we fix the number of Jacobi iterations as iter := 30 for solving Az = r with r := b−Ax̃.
Table 5 displays the median of the relative error bound obtained by the algorithms in
Table 4. Table 6 displays the computing time for calculating x̃ by solving Ax = b and
that for verifying its error bound.

From Table 5, it can be seen that Algorithms II and III give more tight error bounds
than the others, as expected. Although the quality of the results by Algorithms II and
III is almost the same, Algorithm III is considerably faster than Algorithm II, which can

140 A. Minamihata et al., Fast Verified Solutions of Sparse Linear Systems

Table 6: Computing time (sec.) for verified solutions of linear systems.

Problem Solve Ax = b I II III IV
Bourchtein/atmosmodd 80.48 76.40 77.70 49.54 84.47
Bourchtein/atmosmodl 54.73 57.21 60.25 38.33 61.36
Hamm/memplus 1.65 1.65 1.67 1.05 3.83
HB/1138 bus 0.03 0.01 0.02 0.01 0.02
HB/sherman3 0.13 0.15 0.15 0.13 0.13
Sandia/ASIC 100ks 0.42 0.47 0.58 0.31 0.67
Simon/raefsky5 0.03 0.03 0.05 0.05 0.07
Simon/raefsky6 0.04 0.03 0.05 0.04 0.06
Wang/wang3 0.55 0.55 0.59 0.43 0.56
Wang/wang4 0.47 0.43 0.45 0.36 0.53
Random10K 10 0.08 0.10 0.11 0.10 0.14
Random10K 20 0.12 0.14 0.16 0.13 0.18
Random100K 10 0.99 1.21 1.54 1.12 1.64
Random100K 20 1.36 1.96 2.38 1.84 2.44
Random1M 10 20.70 28.53 32.51 26.45 37.00
Random1M 20 31.69 59.08 62.39 44.75 73.31

be confirmed from Table 6. Algorithm III is faster because when solving 〈A〉v = t, the
accuracy of its approximate solution ṽ in Algorithm III is relatively worse than that
in Algorithm II due to the difference between the stopping criteria of the iterations.
However, it does not strongly affect the quality of a final error bound of an approximate
(but sufficiently accurate) solution x̃ of Ax = b, because ṽ affects the second term of
(21), which is expected to be less than the first term |z̃|. In fact, by the Jacobi iterations
in Algorithms II and III, the magnitude of the residual |b − A(x̃ + z̃)| decreases to a
certain extent. Therefore, the difference of the quality of ṽ is successfully hidden while
reducing the computational cost in Algorithm 5.2.

Acknowledgements

The authors would like to express their sincere thanks to Prof. Siegfried M. Rump
from Hamburg University of Technology for his stimulating discussions. Moreover, the
authors wish to thank the two anonymous referees for their valuable comments. This
research was partially supported by CREST, Japan Science and Technology Agency
(JST).

References

[1] A. Berman and R. J. Plemmons. Nonnegative Matrices in the Mathematical
Sciences, volume 9 of Classics Appl. Math. SIAM, Philadelphia, 1994.

Reliable Computing 19, 2013 141

[2] L. Cvetkovic and V. Kostic. Application of generalized diagonal dominance
in wireless sensor network optimization problems. Appl. Math. Comput.,
218(9):4798–4805, 2012.

[3] T. A. Davis and Y. Hu. The University of Florida Sparse Matrix Collection.
ACM Trans. Math. Software, 38(1):1:1–25, 2011. http://www.cise.ufl.edu/

research/sparse/matrices.

[4] M. Fiedler and V. Pták. On matrices with non-positive off-diagonal elements and
positive principal minors. Czech. Math. J., 12(3):382–400, 1962.

[5] A. Hadjidimos. An extended compact profile iterative method criterion for sparse
H-matrix. Linear Alg. Appl., 389:329–345, 2004.

[6] T. Kohno, H. Niki, H. Sawami, and Y. Gao. An iterative test for H-matrix. J.
Comp. Appl. Math., 115(1–2):349–355, 2000.

[7] L. Li. On the iterative criterion for generalized diagonally dominant matrices.
SIAM J. Matrix Anal. Appl., 24(1):17–24, 2002.

[8] A. Neumaier. Interval Methods for Systems of Equations. Encyclopedia of Math-
ematics and its Applications. Cambridge University Press, Cambridge, 1990.

[9] A. Neumaier. A simple derivation of the Hansen-Bliek-Rohn-Ning-Kearfott en-
closure for linear interval equations. Reliable Computing, 5(2):131–136, 1999.

[10] A. Neumaier. Grand challenges and scientific standards in interval analysis. Re-
liable Computing, 8(4):313–320, 2002.

[11] T. Ogita, S. Oishi, and Y. Ushiro. Computation of sharp rigorous componentwise
error bounds for the approximate solutions of systems of linear equations. Reliable
Computing, 9(3):229–239, 2003.

[12] S. M. Rump. Kleine Fehlerschranken bei Matrixproblemen. PhD thesis, Univer-
sität Karlsruhe, 1980.

[13] S. M. Rump. Verification Methods for Dense and Sparse Systems of Equations.
In J. Herzberger, editor, Topics in Validated Computations - Studies in Compu-
tational Mathematics, pages 63–136. Elsevier, Amsterdam, 1994.

[14] S. M. Rump. INTLAB – INTerval LABoratory. In Tibor Csendes, editor, De-
velopments in Reliable Computing, pages 77–104. Kluwer Academic Publishers,
Dordrecht, 1999. http://www.ti3.tuhh.de/rump/.

[15] S. M. Rump. Verification methods: Rigorous results using floating-point arith-
metic. Acta Numerica, 19:287–449, 2010.

[16] S. M. Rump. Accurate solution of dense linear systems, Part II: Algorithms using
directed rounding. J. Comp. Appl. Math., 242:185–212, 2013.

http://www.cise.ufl.edu/research/sparse/matrices
http://www.cise.ufl.edu/research/sparse/matrices
http://www.ti3.tuhh.de/rump/

	Introduction
	Notation and Definitions
	Verification of M-property
	Existing Verification Methods for the M-property
	Alternative Method

	Verification Theory for Linear Systems
	Componentwise Error Estimation
	Numerical Results

