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Study on sampling techniques with CMMs

Traomas J. McLean and Davio H. Xu

Coordinate Measuring Machines (CMMs) coupled with compurters have provided new, powerful capabilities
in the tield ot manufacturing quality control Most CMMs in use today rely on point sampling to evaluate
the specified dimensions and tolerances: we measure the coordinates in several selected points, and make
conclusions about the entire surface Several different sampling patterns have been propused In this
paper, we describe theoretical and experimental 1esults on choosing the best sample pattern ftor practical
CMM applications

VlccaeaOBaHILT METOAVK BBIOOPKM
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KoopanHaTHBE H3MepHTeAbHKe MaHHE (KHM) B cOYeTaHHM ¢ KOMALIOTEPAMH NMPEAOCTABIAIOT HOBHE
IIMPOKHE BOIMOXKHOCTH B OGaCTH KOHTPO/IA Ka4weCTBAd MPOM3BOACTEA. BOJBIIMHCTBO MCMO/LIYEMBIX B
ractosee BpeMsa KHUM npuMeHsIOT TodeuHyio BHAOPKY W1A OUEHKH 3aJaHHBIX Pa3MEPOB U LOMYCKOB,
f € KOODAHHATHI M3MEPAITCA B HECKOJBKHX BHOPAHHBIX TOMKAX, H HA OCHOBAHMM JTUX H3MEPEHHH
[1€1R0TCA BHBOABL () BCEA MOBEPXHOCTH. LiIA 3TMX Ue/ed MPETOKEHO HECKOABKO Pa3TMYHBIX MOlEIeH
BBIGOPKH. B HacTosed pafoTe M3NAraldrcs TEOPHTHHYECKHE H IKCIEPHMEHTANBHBIE BHIBOUH O BhIGope
HAHNYYIIEH MOREAM IA HPAKTHYECKMX npunoxeran KHM.

L. Introduction: formulation of a real-life problem

The exsting Coordinate Measuring Machines (CMMs) measure the precise values of 3—D
coordinates z, Y, and z of chosen points on a workpiece with an accuracy of 1 to 3 microns
(see, e.g., [1). The results of these measurements are used to evaluate the characteristics of
the entre surface {1, 3—3]. For example, suppose that we have manufactured a surface that is
supposed to be planar, and want to evaluate how planar the surface actually is. If we orient
the surface in such a way that the desired plane coincides with Ozy, then the ideal surface
would be described by the equation z = 0. Since manufacturing is never perfect, the values
of z for the points on the actual surface will be different from 0. The largest value M of
Iz{ for all the points (z.y,z) from this surface characterizes its planarity. To measure this
characteristic, we select several points (zi,y;) on the plane, measure the corresponding values
of z;, and take the largest value max|z;| as the estimate of M (see, e.g., [6]).

Similarly, if we want to check whether an edge of the workpiece is linear, we place it so
that this edge is as close to the Oz axis as possible. Then, ideally, or all points (z,y,z) from
this edge, we would get y = z = 0. For a reallife manufactured edge, we have y # 0 and
z #0 The distance r between the actual point (z, y, 2z} and the ideal edge y = z = 0 is equal
tor =+ gi T 22 So, as a characteristic L of linearity of the edge, we can take the largest value
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L = maxr of this distance 7 for all points from the edge. To measure this characteristic, we
choose several points z; on the line, measure the corresponding values of y; and z;, compute
r; = /y? + 22, and take L = maxr; as an estimate of L. The larger the number of points,
the smaller is the error L — L of this estimate.

The main problem with using CMM is that the larger the number of points for which we
measure coordinates, the longer it takes to measure them. CMM is a million-dollar machine,
and it is very expensive to use. In view of this, it is desirable to minimize the number of points
for which we measure coordinates. Usually, the number of points which we can measure is
limited by economic considerations, so, we have the following problem: the total number n of
points is given; we must select the points in such a way that the resulting error will be the
smallest possible. In this paper, we consider the problem of choosing the points for testing
linearity.

For linearity, there are currently three main methods of selecting the points z; on a given
interval [0, X]:

o Completely random sampling, in which n values z; are chosen randomly; all n choices are
independent, and each variables z; is uniformly distributed on the interval [0, X]. This
method is currently the most recommended and the most thoroughly analyzed in the
academic community.

o Randomized block sampling, in which we divide the interval [0, X] into b blocks [0, X/b],
[X/b,2X/b], ..., [(b—1)X/b, X]. Then, we select 1, ..., Z(n/5-1 to be independent ran-
dom variables uniformly distributed in the first block; Z¢ns), - - ., To(n/p)—1 are independent
random variables uniformly distributed in the second block, etc.

o Equal distance sequential sampling, in which the values z; are equally spaced: z; = z1+(i—1)s
for some step s. This method is the easiest to implement, and because of that, it is most
widely used in practice.

Completely random sampling can be viewed as a degenerate case of the randomized block
sampling, for which there is only one block (b = 1).

In this paper, we show that both from the experimental and the theoretical viewpoint,
equal distance sequential sampling is the best. The main experimental results of this paper
have appeared in the thesis [7] of one of the authors (this thesis also contains statistical estimates,
that we did not include into this paper). A brief description of our results was given in [2].

2. Theoretical analysis of the problem

21. The main idea

The main idea of of theoretical analysis is as follows: we are analyzing the shape of the
manufactured objects. Manufacturing smoothes the discontinuities, and thus, the resulting
function () is smooth. From the manufacturing considerations, we can estimate how smooth
the function r(z) is: namely, we can get an upper bound A for the derivative '(z): |r'(z)| < A.
Therefore, the function 7(z) must satisfy the following inequality: |r(z) — r(y)] < A - |z —y|
for all z and y.
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Comment. The estimate A that we can get is reasonably crude. However, this crudeness does
not bother us very much, because, as we will see later, the choice of the sampling does not
depend on the value of A.

Due to this estimate, if we know the values r{z;) for n values 7, < T3 < -+ < z,,
then, for every other x, we can find the interval r(zx) of possible values of z. For example,
if £ < 21, then, from |r(z) — 7(z1)] < |z — 21|, we can conclude that r(z) € r(z) =
r(xy) —A-(zy —z),r(z1) + A - (21 — x)]. If 2; < 2 < zi41, then we have two inequalities
[r(z) —r(zi)] < A-(z —2z;) and |r(z) — 7(2i41)] < A (Zie1 — z), from which we conclude
‘hat r{z) € r(z) = [r~(z), r*(z)], where

ﬁ
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max (r(z;) — A- (2 ~ ), 7(Tiv1) — A+ (Tiy1 — z)) and
min (r(z;) + A- (2 — 2:),7(Zig1) + A - (Tip1 — 7)),

The narrower the intervals, the better the sample. Let us describe this idea in mathematical
terms. In this description, we will take into consideration that the measurement is never
absolutely accurate, and therefore, the measured values 7; may be slightly different from the
actual values r(z;).

22. Definitions and the main result

Definition.

e Let X >0 and A > 0 be positive real numbers. By R, we will denote the set of all
A—Lipschitz functions r : [0, X] — [0,00), i.e, the set of all non-negative functions for
which |r(z) —r(y)| < A-|z —y| for all z,y € [0, X].

e Let a positive integer n be given. This integer is called a number of measurements. By a
pattern T, we mean an increasing sequence of n numbers from the interval [0, X] (ie, a
sequence x; for which 0 <y <z < --- <1, £ X).

o Let § > 0 be a positive real number; this number will be called a measurement accuracy. By

measurement resulls, we mean a sequence T of n non-negative real numbers Ty, ..., Tn. We
say that a function r € F is consistent with the measurement results 7 if |r(z;) — 7] < 6
for all t =1,2,...,n. We say that the measurement results are consistent if there exists a

function r that is consistent with them. If a function r is consistent with measurement
results 7, then we define measurement error as the value |L — L|, where L = maxr(z) and
L = max(7;).

o By a guaranteed error E(Z) of a pattern I, we mean the largest possible measurement
error for this pattern.

Proposition. The pattern z; = (i — 1/2) - (X/n) has the smallest possible guaranteed error.
Comment. So, in the sense of minimizing guaranteed error, the equal distance sequential sampling
is the best choice.

Proof. This proof is reasonably simple. Namely, we will compute the guaranteed error of the
pattern described in Proposition, and show that every other pattern has a larger guaranteed
error.
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For this pattern, the step s is equal to X/n, and r; = s/2. For every number £ € |0, X],
we can find z; that is closest to this x by taking i = [z/s]. One can easily see that |[z—z;] < s/2.
Let 7 be any measurement results, and let 7 € R be a function that is consistent with these
results. Since r € R, we have r(z) < r(z;) + A - (s/2). By definition of consistency, we have
(z:) < 7 + 6. Therefore, r(z) <r(z:) + A (s/2) < T+ A- (s/2) + 6. Since 7; < L, we have
r(z) £ L+ A-(s/2)+ 6. This is true for all z, and therefore, for L = maxr(x), we have
L<L+A-(s/2)+6.

On the other hand, 7; < r(z;) + § < maxr(z)+ 6 = L+ §. This inequality is true for all
i and therefore, L = max7 < L+ 6. Hence, L< L+6+A- {s/2).

Combining these two inequalities, we conclude that |L — L] < § + A - (5/2). So, for this
pattern, E(Z) <6+ A - (s/2).

Let us now show that for every other pattern ¥, E(7) > 6+A-(s/2). Let us first prove that
if y; is different from z;, then either y; is largest than $/2, or the difference between Y1 — y; is
greater than s for some i, or X —y, is greater than s/2 (here s = X/n is the step of our chosen
pattern Z, that we are currently proving to be the best). Indeed, if none of these inequalities
would be true, then we would have y; < 5/2, yix1 — % < 8, and X — y, < 5/2. Therefore, we
would have X =y1+ (Y2 —v1)+ + (Un—Yn-1) +{(X ~yn) < 5/2+5+--+5+5/2 =X, and
the only possibility of equality is when all these inequalities are equalities, ie., when y; = s/2
and ¥i.1 —¥; = s for all i. But in this case, we would have y; = z; for all 1, and we assumed
that 7 # T.

So, we have proven that if the pattern ¥ is different from Z, then either y; > 5/2, or
Yiz1—Yi > s for some i, or X —y, > s/2. Let us show that in all three cases, E(%) > §+A-(s/2).

o First, let us consider the case when y; > $/2. Let the measurement results consist of
identical numbers 7; = —6; then, L = —§. Let r(z) be equal to 0 when x > y,
and to A - (y1 — ) for z < y;. Then, as one can ecasily check, r is consistent with 7,
L =maxr(z) = A-y;, so L—L = §+A-y,. Since y; > 5/2, we have L—L > §+A-(s/2).
By definition, E(7) > L — L, and therefore, E(J) > § + A - (5/2).

e Second, let us consider the case when y;,7 — y; > s for some i Let the measurement
results consist of identical numbers 7, = —§; then. L = —§ Let r(z) be equal to 0
when T € [y, Yiw1], to A-(z —y) for y; <z < (yi + Yi+1)/2, and o A - (Yir1 — T)
for (4 + %i+1)/2 < £ € 9;41- Then, as one can easily check, r is consistent with 7,
L=maxr(z) = A (gis1—v)/2,50 L—L =86+A-(yic1—1)/2. Since yip1 —y: > s, we

have L—L > §+A-(s/2). By definition, E(§) > L—L, and therefore, E(§) > §+A-(s/2).

e The third case is proven similarly to the first two; we have r{x) = 0 for z < y,, and
r(zy =A-(z —yn) for x > yn.

In all three cases, we have E(J) > 6 + A- (s/2) = E(Z). So. the proposition is proven. O

3. Experimental results

We tested different sampling techniques on the experimental data from the National Institute
of Standards and Technology (NIST) project [1]. These data include 12 measured lines on the
following specimens:

¢ specimens A—H used by General Electric Co. as their standard planar specimens;
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» specimen NAS: a NAS 979 standard artifact,

e a glass “optical flat” specimen REP. This specimen was measured using a “light box” to

certifv its surface flatness.

All the lines were measured using a Sheffield Cordax CMM available in the Automated
Manufacturing Research Facility (AMRF) of NIST. For each line, a set of 400 readings over an
approximately 2-inch distance was recorded. The largest deviation from linearity among these
'00) measurements was taken as the actual value of L. Then, several (n) points were chosen
acording to the principles of equal distance, completely random, and randomized samplings,
and the maximum of measured values over these chosen points was taken as L. We tested
each method with n = 3,4.5....,40. The plots that describe the dependency of the ratio E/ L
{measured “straightness” L to true straightness L) are given. For the majority of them, equal
-pacing does lead to a smaller error than the alternative two patterns.

This is especially clear when n is small. Indeed, in this case, s = X/n is reasonably large
so. A+ (s/2) > &, and hence, the error component A - (s/2) that is influences by the choice
of the pattern is the major component of the total error L — L. When n increases, & {the
measurement error of the CMM) becomes the major component of the error L — L. In this
case, the choice of the pattern becomes rather irrelevant. The CMM measurement error is
random, so on several graphs, we see random fluctuations of the total error for large 7.
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4, Conclusions

We have shown that when we check linearity of an edge of a workpiece by measuring
coordinates of several sample points with a Coordinate Measuring Machine, the guaranteed
error is the smallest when we use equal distance sampling.
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