
Interval Computations
No 2, 1993

An Experimental Interval Arithmetic
Package in Maple

Amanda E. Connell and Robert M. Corless∗

We describe an experimental arbitrary-precision interval arithmetic package
written for the computer algebra system Maple. The functions implemented
are those of the proposed Basic Interval Arithmetic Subroutine (BIAS) library.
We give here an overview of the package design, some examples of the usage
and code, and a report on our experiences. The package will be made available
under the name INTPAK from the Maple share library (anonymous ftp to
daisy.uwaterloo.ca in a subdirectory of the directory maple) at a future
date.

Экспериментальный пакет
интервальной арифметики для

системы Maple
А. Е. Коннелл, Р. М. Корлесс

Описан экспериментальный пакет интервальной арифметики произволь-
ной точности, написанный для системы компьютерной алгебры Maple.
Функции реализованы согласно спецификациям библиотеки базовых под-
программ интервальной арифметики (BIAS). Статья содержит обзор
структуры пакета, несколько примеров использования и программиро-
вания, а также описывает опыт его применения авторами. В будущем
пакет будет доступен всем желающим под именем INTPAK в составе биб-
лиотеки разделенного пользования Maple по anonymous ftp, по адресу
daisy.uwaterloo.ca, в одном из подкаталогов каталога maple.

*This work was supported by NSERC. Amanda Connell’s summer work term was financed by an
NSERC Undergraduate scholarship, and her presentation of this work at the Numerical Analysis with
Automatic Result Verification conference in Lafayette, LA in 1993 was supported by NSERC, by NSF,
and by Waterloo Maple Software, Inc. We would also like to thank George Corliss, Stephen Merrill, and
Jim Phillips for many informative discussions, pointers, and bug reports.

c© A. E. Connell, R. M. Corless, 1994

An Experimental Interval Arithmetic Package in Maple 121

1 Introduction

The computer algebra system Maple [3] has high-quality arbitrary-precision
‘point’ arithmetic. If the ‘environment variable’ Digits is set to a value
high enough that the hardware or C floating-point arithmetic cannot be
used, then Maple’s software arbitrary-precision arithmetic is used. In this
case, arithmetic operations and single function evaluations are claimed to be
accurate to within 0.6 ulp (units in the last place). [The basis of this claim
is that functions are evaluated using as many guard digits as necessary: for
example, the routine evalf/W uses a complicated formula involving Digits
and the magnitude of 1+ e · x to conservatively determine how many guard
digits are required to guarantee accuracy of W (x) to 0.6 ulp. See [4] for a
discussion ofW (x).] However, this level of accuracy is claimed only for single
operations, and no facilities exist in Maple (as distributed) for studying
the effects of the propagation of errors, either of roundoff errors or of data
uncertainties.

Maple also has very efficient facilities for exact integer and rational arith-
metic, which avoids roundoff error altogether, but this comes with the inher-
ent ‘storage’ penalty of possibly rapid growth of the integers involved as the
computation proceeds. Maple allows very large integers (limited essentially
only by the amount of memory on the machine), but some problems exhibit
exponential growth in the storage requirements, which makes this approach
impractical in these cases. In other cases, though, where the growth of the
integers is not too severe, Maple’s existing arithmetic is already satisfac-
tory: one can do a long computation over the rationals and then convert to
a decimal expansion as the final step and incur no more error than 0.6 ulp.
Examples include solving linear systems of equations with rational coeffi-
cients or evaluating a determinant of a matrix of rational numbers.

However, no computation with expressions containing transcendental
functions or requiring root extraction can be done in this way, and doing
the computation symbolically instead can incur a tremendous penalty in the
form of ‘intermediate expression swell’, which can cause super-exponential
growth in the storage requirements as the computation proceeds. Further,
the numerical stability of the final expression may be in doubt (Maple makes
no claim to evaluate arbitrary expressions to 0.6 ulp accuracy).

For example, though Maple can quite easily exactly invert rational ma-
trices of moderately large size, such as Hilbert matrices, asking Maple to

122 A. E. Connell, R. M. Corless

compute the (well-conditioned) eigenvalues of the Hilbert matrix of, say,
order 25 by

1) computing the characteristic polynomial exactly and then
2) attempting to find the roots of this polynomial by using a numerical

method such as is implemented in the Maple command fsolve
is a bad idea and leads to unnecessary expense and large errors. The roots
of this polynomial are ill-conditioned, as many are, and this leads to trou-
ble. Maple can successfully use this approach to find the eigenvalues of the
Hilbert matrix of order 15, using the very precise routine realroot, writ-
ten by Bruce Char, to isolate all fifteen positive roots of the characteristic
polynomial (which, incidentally, needs 125-digit arithmetic to represent the
coefficients accurately). The routine realroot, which comes packaged with
Maple, provides exact dyadic rational intervals of arbitrary tightness con-
taining each real root of the input univariate polynomial. For this family
of examples, however, the extremely large size of the polynomial coefficients
for higher-order Hilbert matrices soon defeats Maple — by exhausting our
patience. Arithmetic with large rational numbers not only takes storage
space, it takes time. It is better not to introduce the ill-conditioning in the
first place and instead work directly with the eigenvalue problem.

Another example is the evaluation of functions defined by expressions
automatically produced by Maple. For example, consider the expressions
for the roots of a quadratic generated by the quadratic formula:

>solve(x^2 + 2*b*x + c, x);

2 1/2 2 1/2
- b + (b - c) , - b - (b - c)

>r := unapply("[1],b,c);
2 1/2

r := (b,c) -> - b + (b - c)

In this example, the evaluation of r(b, c) is well-known (to numerical ana-
lysts) to be numerically unstable for b/c � 1: but Maple does not know
that, and indeed neither would an inexperienced user. More realistically,
the algebraic solutions to cubics and quartics are also known to be unstable
for certain values of the coefficients, but this is even less widely understood.
Indeed, the expressions Maple can generate as the solution to more compli-
cated problems can be much too large for human analysis and can also be of
very dubious numerical stability. Some numerical analysts of our acquain-
tance refer to such output as “wallpaper expressions — because wallpaper

An Experimental Interval Arithmetic Package in Maple 123

is about all they’re good for”1. It would be useful if Maple could warn the
user when the result of evaluating the expression is unreliable.

Fixed-precision interval arithmetic does not do this — instead, it provides
the complementary tool of telling the user that when the interval bounds are
tight, the computation was reliable. Of course, sometimes the bounds are
not tight, which may be due to an unstable calculation or perhaps due to
pessimism on the part of interval arithmetic, which is caused by insufficient
use of the correlation of different parts of the expression. This problem might
be curable in two ways: add more intelligence to the interval expression
evaluation, as is done in [5], or we could instead apply more brute force in
the form of increasing the number of digits carried in the calculation from the
beginning. Both approaches seem very feasible in a high-level computational
environment such as Maple. Thus the construction of an arbitrary-precision
interval arithmetic package in Maple seems of interest.

Other reasons for the construction of this package include possible appli-
cations to ‘honest plotting’ [7], to code development (to provide numerical
analyses of proposed code for e.g. sequence acceleration or for evaluation of
the Jacobian elliptic functions), and to education — we will see an exam-
ple later, of numerical integration, that can profitably be used in either a
first-year calculus class or in a numerical analysis class.

2 Summary of the proposed BIAS standard

George Corliss has a draft proposal [6] for a standard common core interval
arithmetic subroutine library, which will help enable users to write portable
and efficient programs using interval arithmetic. We implemented our pack-
age using this proposed standard for two reasons: one, we were novices in
the field of interval arithmetic and were grateful for such a simple way to
take advantage of the many years’ experience of others, and, two, by ad-
hering to a standard we could expect that others would be able to quickly
use the package. At this writing the only users of this package are a small
seminar group run by George Corliss at Marquette University. From the
comments of that group, who implemented such routines as the solution of

1This expression was originally used by Morven Gentleman, to our knowledge. It graphically and
memorably describes the very real problem of ‘expression swell’, which is to symbolic computation what
exponential amplification of roundoff error is to floating-point computation.

124 A. E. Connell, R. M. Corless

linear systems by Gaussian elimination and by the preconditioned interval
Gauss-Seidel algorithm of [8] using the package described here, it is clear
that the extent of our adhering to the proposed standard made their work
easier.

The BIAS specifications are presented in [6] in a language independent
form along with Fortran, Ada, and C bindings. The language-independent
specifications address these areas:

• Declare a variable to be of interval type

• Arithmetic Operations

• Elementary functions

• Utility functions

• Membership functions

• Commonly used constants

• Error handling

• Rudimentary I/O

We have implemented the type declarations, the arithmetic operations,
the elementary functions, some of the utility functions and membership func-
tions, and some of the rudimentary I/O. We have not strictly adhered to the
standard, using our own names for some of the functions (strict adherence
would be better, and in the next version of the package we will attempt to
ensure true compliance).

Arithmetic operations (required)

The binary operations implemented are &+, &-, &*, &/, and &inv which all
take interval or numeric inputs and return intervals on output. The interval
[−∞,∞] may be returned by &inv or &/ if a division by zero occurs.

Elementary functions (optional)

The unary elementary functions implemented are &sqr, &sqrt, &ln, &exp,
&** = &^, &intpower, &sin, &cos, &tan, &arcsin, &arccos, &arctan,
&sinh, &cosh, and &tanh. These functions all compute inclusions of the

An Experimental Interval Arithmetic Package in Maple 125

range of these functions for interval arguments, including degenerate inter-
val arguments.

Utility functions (required)

The functions construct, ru, and rd, to construct an interval (with optional
outward rounding), round up by one ulp, and round down by one ulp, are ba-
sic to the package. (The real name of, for example, ru is Interval_round_up
but the short ‘alias’ is used throughout the package for convenience).

Utility functions (optional)

The functions &midpoint, &width, &intersect, &union, and &is_in are
also present. George Corliss contributed another utility in this class, the
routine is_disjoint. All of these routines perform the natural functions
indicated by their names.

Remark

The names of the arithmetic operations had to be different from that of
the proposed standard since Maple’s built-in operations +, −, etc., can-
not be overloaded and indeed suffer from some very undesirable automatic
simplifications that cannot be turned off (for example, [0, 1] − [0, 1] is au-
tomatically simplified to 0 before any user routine would have a chance to
even look at it). So we were forced to use Maple’s so-called ‘inert’ operators
&+, &-, &*, etc. These have two drawbacks: one is that they are slightly
ugly (and take more than twice as long to type because & is not often used!)
and, more seriously, Maple has the precedence rules for these operators
hard-wired in, incorrectly . This bug is a historical one — the Maple group
implemented inert operators, then realized that &* could be used for matrix
(non-commutative) multiplication (the ordinary * operator has hardwired
commutativity built-in), and so the precedence for the inert operator &*
was lowered from that of all the other inert operators to that of ordinary
multiplication. This leaves us with a situation where the precedence of these
operators is exactly the opposite of what you would expect: a &+ b &* c is
parsed as (a+ b) ∗ c. The only cure for this is to explicitly use parentheses
to force correct evaluation. For convenience, we implemented a routine to

126 A. E. Connell, R. M. Corless

convert from the use of ordinary Maple operators to the use of the interval
operators here, but it would be more convenient still not to have to use it.
A request that this precedence bug be fixed has been forwarded to Maple.

3 Sample code and usage

We exhibit the Maple code for the exponential function as an example.
PROCEDURE &EXP
expinfinity is only called from &exp.
It deals with FAIL and +/- infinity.
Like most of the other subroutines &exp
takes floating point intervals
or numerics (which are converted into intervals).
expinfinity:=proc(x);
if x=FAIL then FAIL
elif x=infinity then infinity
elif x=-infinity then 0
else evalf(exp(x))
fi;

end:
Interval_exp:=proc(x);
if type(x,interval) then

if x=[] then []
elif x[1]=FAIL or x[2]=FAIL then [FAIL,FAIL]
else [Interval_Round_Down(expinfinity(x[1])),

Interval_Round_Up(expinfinity(x[2]))]
fi;

elif type(x,num_or_FAIL) then
Interval_exp(construct(x))

else
Want to return unevaluated here.
’Interval_exp(x)’

fi;
end:
alias(‘&exp‘=Interval_exp):

This routine uses the built-in Maple exponential function to provide the
basic results and uses monotonicity of the exponential function to allow
exponentials of intervals. We also allow arithmetic with the symbols FAIL
and infinity which are the Maple equivalents of NaN (Not a Number);
though of course they indicate also that the result is not a symbolic answer
either. If &exp is called with a symbolic argument, it is simply returned
‘unevaluated’, that is as a sequence of symbols which can be processed and
perhaps evaluated later. For example, if x has no interval or numerical value,
then the following sequence results:

>&exp(x);
&exp(x)

An Experimental Interval Arithmetic Package in Maple 127

We have written a utility routine called ‘convert/interval‘ and an-
other called inapply which together convert symbolic expressions to a form
using the interval operators. The first utility recursively walks an expression,
replacing the ordinary Maple operators with the appropriate interval ones.
The second utility converts an expression into an operator (i.e. procedure)
which evaluates its arguments using the interval operators. We give some
examples of the usage of the interval arithmetic package in the following
sample Maple session.

> load(‘intpak.mpl‘);
> f := sin(x)/(1+ cos(x))^2;

sin(x)
f := -------------

2
(1 + cos(x))

> f_interval := inapply(f,x);
f_interval := x -> (&sin x) &*

inv((1 &+ (&cos x)) &intpower 2)

> Digits := 20;
Digits := 20

> f_interval([0,0.5]);
[0, .13599504298972341743]

> # plotting shows the function is monotonic
> # and that above bound is tight.
> asympt(Ei(x),x); # The exponential integral function.

/ 1 2 6 24 1 \
|1/x + ---- + ---- + ---- + ---- + O(----)| exp(x)
| 2 3 4 5 6 |
\ x x x x x /

The following trick for removing the Landau O-symbol
from a Maple expression is
regrettably still occasionally necessary.

> subs(O=0,"):

> convert(",polynom);
/ 1 2 6 24 \
|1/x + ---- + ---- + ---- + ----| exp(x)
| 2 3 4 5 |
\ x x x x /

> p := inapply(",x);
p := x -> (inv(x &intpower 1) &+ (inv(x &intpower 2)

&+ ((2 &* inv(x &intpower 3))
&+ ((6 &* inv(x &intpower 4))
&+ (24 &* inv(x &intpower 5)))))) &* (&exp x)

128 A. E. Connell, R. M. Corless

> p([100.,200.]);
42 85

[.13508470948959602106*10 , .72997237906369450077*10]

>

4 Numerical integration: a didactic exercise

In the beautifully written article [9], professor Kahan exhibits several inter-
esting integrals. He uses them to make several points, among which are that
numerical integration is provably impossible, numerical integration is better
than symbolic integration, and that the integration algorithm incorporated
into the HP34C calculator (now inherited by the HP48 family) is a good
one. Following a tradition exemplified by much of Kahan’s own work, we
will use one of his own examples to support exactly the opposite points.

We first examine his proof that numerical integration is impossible. Of
course, he is correct, if point algorithms are used. His proof strongly uses
the fact that point algorithms may not look at the program that evaluates
the integrand: in a certain sense this disallows interval arithmetic, which
in effect analyzes the integrand by replacing point arithmetic with interval
arithmetic. But if we are permitted to ‘cut the ground from under this
proof’ by modifying the interpreter or compiler so the program for the in-
tegrand uses interval arithmetic instead, then the conclusion becomes more
doubtful. Certainly the rest of Kahan’s proof no longer goes through, since
it essentially consists of ‘spying’ on the numerical integrator by feeding a
zero integrand to it and reporting back to the malicious user as to where the
integrand was probed; then, one constructs a second function, zero precisely
at those points but positive everywhere else, with a nonzero integral. This
second, maliciously designed, function cannot be accurately evaluated with
that quadrature method.

Of course, this does not apply to interval techniques: one cannot design a
malicious function in that way as no intermediate information is overlooked.
However, it may be that numerical integration is still impossible, due to
some reason that we ourselves have not noticed. In particular, one might be
able to defeat any interval techniques by using integrands with integrable
singularities.

Second, Kahan uses the example

An Experimental Interval Arithmetic Package in Maple 129

I(n, x) =

x∫
0

dt

1 + tn

with n = 64 to show that numerical integration is superior to symbolic inte-
gration. We agree with Kahan that this example is “atypically modest out of
consideration for the typesetter”, because the symbolic answer has only 32
terms, and so the point we make below on the utility of symbolic techniques
is not really general. However, we believe that point to be interesting and
useful.

Kahan’s numerical algorithm, implemented on the HP34C, makes short
work of this problem for n = 64 and x = 1 and gives a much more satisfac-
tory answer than the 32-term symbolic answer in terms of arctans and logs.

But what about larger n? The first such n we tried on the HP48SX was
n = 1024. The calculator returns the answer I(1024, 1) = 1 in under a
second, and claims this answer is correct to twelve decimal places.

Alas, that can’t be right. We may show that I(1024, 1) < 0.99952 by
computing the first three nonzero terms in the Taylor series for 1/(1+ tn) =
1− tn + t2n− · · · and integrating term by term (we will get tighter bounds
later). So we may suspect that the algorithm of the HP34C (and hence
the HP48SX) has fallen afoul of the impossibility proof mentioned earlier,
and indeed this is the case. When we ‘spy’ on the integrator, we find that
it never evaluates the function at any place near enough to the right-hand
endpoint to see that the function is not identically 1. At least it returns the
wrong answer quickly.

As an aside, the above series can be summed in Maple to find a very
short symbolic answer, to get the answers below.

I(n, 1) =
1

2n

(
ψ
(1
2
+

1

2n

)
− ψ

(1

2n

))
I(n, x) = xF (1, 1/n; 1 + 1/n;−xn)

Maple can quickly and accurately evaluate these functions; for example,
a simple call to evalf gives I(1024, 1) = 0.99932388198340371 accurate
to 0.6ulp (and this evaluation takes a fraction of a second). Thus, if we
extend our symbolic alphabet , here including the hypergeometric function
F (a, b; c;x) and ψ, the logarithmic derivative of the Gamma function, we
can get a very effective answer to this problem. After making this discovery,
one anticlimactically finds this integral in Abramowitz & Stegun [1] in the

130 A. E. Connell, R. M. Corless

section on hypergeometric functions. So although of course we agree with
Professor Kahan’s point that numerical integration is more often useful than
symbolic methods, it is also often useful to try hard to get a symbolic answer,
as it may provide effective numerics in addition to insight.

Using interval arithmetic to evaluate right- and left-hand Riemann sums,
to give lower and upper bounds on the integral of this monotonically decreas-
ing function, we can get an answer of guaranteed accuracy. Using 10 panels,
equally spaced in y, we find that

0.9494 < I(1024, 1) < 0.99945

and using 100 panels, that

0.99434122 < I(1024, 1) < 0.99934128

The code for evaluation of these Riemann sums is a straightforward ap-
plication of the interval operators of the current package. Note, however,
that we use panels equally-spaced in y and not x, for efficiency. We have
thus taken advantage of knowledge of the graph of the integrand. Even so,
the interval code to do this sum is very slow, taking over an hour on a 486-
based IBM clone. One reason for the slowness is that the interval package is
implemented in Maple code, which is interpreted and not compiled; Maple
is an interpreted language because the usual tasks it is asked to do are ‘one-
off’ calculations, rarely repeated, and in that context interpretation makes
sense. Further, our package does a lot of type-checking, and was not written
with efficiency in mind, since we knew that the end product would be slow
in any case for the previous reason. This interval package was intended to be
exploratory and not for ‘production use’. The arbitrary-precision arithmetic
used in this package is in fact the least expensive part of the computation, at
least until the number of decimals asked for gets extremely large (perhaps,
say, a few thousand digits).

One is tempted to use the midpoint rule and trapezoidal rule to get
better answers for this particular problem. Unfortunately, there is a change
in convexity of the integrand near x = 1 (detectable with interval arithmetic)
and so the problem of getting bounds, rather than estimates, is complicated.
In addition, note that higher-order techniques don’t help on this integral as
the derivatives are large, vitiating the expected efficiency gain from the
higher order methods.

An Experimental Interval Arithmetic Package in Maple 131

Finally, we emphasize that the points made by Professor Kahan are
in fact valid: numerical integration is impossible (by point methods), the
algorithm used by the HP34C (and now the HP48SX) is a good one (subject
to the limitations of point methods), and the class of problems for which
analytic techniques of integration are useful is really smaller than most first-
year calculus teachers would have us believe. Indeed, his other examples
in the paper really do support his conclusions, and we urge the reader of
this present paper to examine [9]. However, the above example, used by
Professor Kahan to support these points, actually supports the opposite
conclusions — and makes a good case for interval techniques, which we are
sure he would agree with.

5 Computation of π: a historic exercise

The oldest use of rounded interval arithmetic known to the authors is Arch-
imedes’ calculation of π. He calculated the lengths of the semiperime-
ters of inscribed and circumscribed polygons (from an idea of Antiphon)
and used a formula for using known semiperimeters to calculate that of
the semiperimeters of polygons with twice as many sides. Starting from
six-sided polygons, he successively doubled up to polygons with 96 sides
and achieved the first true bounds on the value of π. When using the
formula, he rounded down (in rational arithmetic, finding rationals with
smaller denominators which gave lower bounds) when dealing with the in-
scribed polygons and rounded up when dealing with the circumscribed poly-
gons.

Archimedes’ method was not improved upon in principle for 1800 years,
and the culmination of the use of this method was by Ludolph van Ceulen
who used it to calculate 34 digits of π using polygons with 262 sides. See [2]
for details and further references. Below we use Archimedes’ method to
calculate bounds for π just slightly better than Ludolph van Ceulen’s. Of
course we use numerically stable versions of Archimedes’ doubling formu-
las, to prevent unnecessary ultimate growth in the width of the bounding
intervals.

132 A. E. Connell, R. M. Corless

#
Let p[n] be the semiperimeter of an n-gon INSCRIBED
in a unit circle.
Let P[n] be the semiperimeter of an n-gon CIRCUMSCRIBED
about a unit circle.
Then
p[2*n] = 2*p[n]/sqrt(2*(1+sqrt(1-(p[n]/n)^2))) and
P[2*n] = 2*p[n]/(1 + sqrt(1-(p[n]/n)^2))
#
> Digits := 40: ktimes := 61: start := time():
> p := table(): P := table():
> p[6] := construct(3);

p[6] := [3., 3.]

> P[6] := construct(evalf(2*sqrt(3)),rounded):
> for k to ktimes do
> n := 3*2^k;
> den := [1.,1.] &+ &sqrt([1.,1.]

&- &sqr(p[n] &/ construct(n)));
> P[2*n] := ([2.,2.] &* p[n]) &/ den;
> p[2*n] := ([2.,2.] &* p[n]) &/ &sqrt(([2.,2.] &* den));
> od:
> for n in [seq(3*2^k,k=1..ktimes)] do
> print(p[n][1],‘ < Pi < ‘,P[n][2]);
> od;

3., < Pi < , 3.464101615137754587054892683011744733887

< ... several lines of output omitted ... >

3.141592653589793238462643383279502883794, < Pi < ,
^^^^

3.141592653589793238462643383279502884704
^^^^

<added for emphasis>

Number of sides on the polygon:
> 3*2^ktimes;

6917529027641081856
Error:
> P["][2] - p["][1];

-36
.910*10

> total_time := time() - start;
total_time := 85.950 <seconds>

6 Conclusions

While there are two main irritants in this package, namely, the necessity
of using the clumsy inert operators and the very slow speed resulting from
running interpreted code, the package has been informative and useful. We
have recommended to the Maple group that they fix the precedence bug with

An Experimental Interval Arithmetic Package in Maple 133

the inert operators, and work on a compiler so that arbitrary numerical tasks
might be more readily attempted in Maple.

References

[1] Abramowitz, M. and Stegun, I. A. Handbook of mathematical functions.
Dover, 1965.

[2] Borwein, J. M. and Borwein, P. B. Ramanujan and Pi. Scientific Amer-
ican 256 (2) (February 1988).

[3] Char, B. W., Geddes, K. O., Gonnet, G. H., Leong, B. L., Mona-
gan, M. B., and Watt, S. M. The Maple V language reference manual.
Springer-Verlag, New York, 1991.

[4] Corless, R. M., Gonnet, G. H., Hare, D. E. G., and Jeffrey, D. J. On
Lambert’s W function. Technical Report CS-93-03, University of Wa-
terloo, 1993.

[5] Corliss, G. F. and Rall, L. B. Computing the range of derivatives. In:
Kaucher, E., Markov, S. M., and Mayer, G. (eds.) “Computer Arith-
metic, Scientific Computation and Mathematical Modelling”, IMACS
Annals on Computing and Applied Mathematics, Baltzer, Basel, 1991,
pp. 195–215.

[6] Corliss, G. F. Proposal for a basic interval arithmetic subroutines li-
brary (BIAS). Preprint.

[7] Fateman, R. Honest plotting, global extrema, and interval arithmetic.
Proceedings Int’l Symp. on Symbolic and Algebraic Computing, Berke-
ley, 1992, pp. 216–223.

[8] Hansen, E. Global optimization using interval analysis. Marcel Dekker,
New York, 1992.

[9] Kahan, W. M. Handheld calculator evaluates integrals. Hewlett-Packard
Journal (August 1980), pp. 23–32.

[10] Moore, R. E. Methods and applications of interval analysis. SIAM,
Philadelphia, 1979.

134 A. E. Connell, R. M. Corless

Department of Applied Mathematics
University of Western Ontario
London, Ontario,
Canada N6A 5B7

