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SOLVING SYSTEMS OF SPECIAL FORM
NONLINEAR EQUATIONS BY MEANS
OF SOME MODIFICATIONS OF RUNGE TYPE
INTERVAL ITERATIVE METHOD

Pyotr S.Senio and Pyotr S.Vengersky

An interval iterative method without estimating of inverse matrices is
developed and investigated. Effective interval methods which take into
account the specifics of considered particular system are proposed. The
convergence theorems for developed interval methods are proved.

PENIEHUE CUCTEM HEJVHEWHLIX YPABHEHU
CHEIMAJIBHOI'O BUIA HEKOTOPBIMU
MOANEUKAITUAMU UHTEPBAJIBHOTO

NTEPAIIMOHHOI'O METOIA TUIIA PYHFE

I1.C.Cenwno, I1.C.Berrepckuit

PaszBuT U vccieqoBaH MHTepBa.J'leblﬁ MTepaTHBHblﬁ meToa 6e3 one-

HuBanusa oGpatHoit marpmilel. [IpeanorkeHbl adpeKTUBHBIE MHTEP-
BaJlbHbl€ METO/bl, KOTOPble YUUTHLIBAIOT CleludPMKY paccMaTpuBae-

MoOM 4acTHoi cucTembl. JloKa3bIBaloTcs TEeopeMbl CXOAMMOCTH AJiA

npeajioxkKeHHblX MHTEPBAJIbHLIX MeTOoLOB.

Solving the systems-of nonlinear equations
f(z) =0, (1)

where f : R®™ — R", is usually reduced to solving a sequence of systems
of equations obtained by means of the construction of interval extensions
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for Taylor-series expansions of the left-hand side of system (1). However,

" if more than two terms in the Taylor-series expansion of f(a) are used,
one sees the problem complicated by the necessity of solving high-degiee
matrix equations with interval coeflicients. Hence, system (1), as a rule,
is resolved by the Newton interval method or by its modifications differing
one from other by the technique of solving corresponding system of linear
equations with interval coeflicients and by the way of the approximation
of an interval expansion of the matrix f'(z).

"To resolve the system of equations (1), we have constructed and studied
in [1] the interval iterative Runge type method

K(X®y = 20— £y 4 (1 PR (XK k),
(2)
X (k+1) K(X(h)) nx—(k)’ k=01,2,.... (3)

where X(® is an initial interval; C®) is an approximated inversion of a
center of the matrix F'(X®)); I is an identity matrix; %) = (X *))
(that is, the midpoint of the interval X (¥));

FI(XW) = 3 f'(2®) 4+ § /(a8 + F(XB) — 5(0)),

The construction of this method was based on Runge’s idea of the
solution of the Cauchy problem for ordinarv differential equations. We
also used the behavior of "midpoints” of residual terms in Lagrange’s
form of generalized Taylor series [3] for the mapping f(x) and relations
between these points of Taylor-series cxpansions for the wmapping f(a)
and its derivative.

Under some sufficiently simple natural conditions, the method (2), (3)
has no less than 3 order of convergence (see, for example, [1]).

However, to resolve some kind of nonlinear s_steins of equations of the
special form the following method occurs to be more effective:

gt =y — PR fyth): |
LD = B pR p ) k= 01,20
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ated inversion of a
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of sequences obtained from (4) to a solution of system (1) of equations is

no less than 3.

Clearly, the method (4) can be considered as a perturbed method (2),
(3). Hence Theorem 1 contains stability conditions of the method (2), (3)
and perturbation bounds that do not disturb the order of convergence of

this method.

It is easy to see that the statement of Theorem 1 holds, in particular,
if B is a M-matrix and as P(®), one chooses one of the following matrices:

@) PO = (D),
b) PO = (D(O) — L)1,
c) PO = (D(O) _ U(O))—l,

where B = D—L—U; D is a diagonal matrix, L and U are strictly lower
and strictly upper triangular matrices respectively.

We obtain system satisfying conditions in the statement of Theorem 1,
in particular, when resolving boundary-value problems for ordinary dif-

ferential equations

p(a)y” +q(z)y +r(z)y = f(=,y); (5)
y(a) = ¢; y(b) = d, (6)

by the discretization method.

In fact, in the special case of boundary conditions (6) y(0) = «; y(1)
3 we obtain the system of equations

3
=

CiYio1 + aiyi + biyiys = —h3d; (i =1,...,n),

where h is a discretization step, a; = 2p; — rih?; bi = —p; — qih[2; ¢; &

—pi + q;h/2;
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—pi t q:h/2; d; = f;, that is,

ai bl 751
Co Q9 b2 0 Y2
Cp—1 Qn-1 bn—l Yn—1
0 Cn an Yn
d] + ¢ a/h2
dp
= —h?
dn—l
dn + baB/R?
Let h — 0. Then for p(x) > 0 there is h such that a; > 0, b; <0, ¢; < 0
(i=1..., n), that is the matrix B is a M-matrix; therefore, under above

choice of the matrix P(®), the statement of Theorem 1 is satisfied.

The numerical solution by discretization method [2] of a boundary-
value problem for the elliptic equation

_F(xayauaumuyauxmuyy) =0 (7)
in D C R?, D being a simple, connected, bounded domain, ard
wz,y)|op = 9(2,9) (8)

(8D is the boundary of the domain D; Fu,, > mq > 0; Fuy, > my > 0)
requires resolving system of nonlinear equations with dominating main
diagonal.

Let F be of the form

_F(x’ Y, Uy Uz, Uy, uxmuyy) . —(A(a:,y)u:,,),, - (C(:L‘, y)uy)y + f(.’L‘, Y, u)?

where A > my > 0; C > my >0, f, >0, and D is a rectangular domain.
Using the approximation of partial derivatives up to h? accuracy and
denoting

Ait172 = A £ h/2,y), C;j11/2 = Clz,y £ h/2),
Kij=Aiy1p25+ Aicr2,5 + Cijrry2 + Ci o2,
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we reduce solving this problem to solving
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the svstein of nonlinear equa-

. 9
Hon H-4+®(:)=0 (9)
where

/ —R] 0
—R2 So
—Rp—l
—Ry-1 Sp
0
CI,J+2
Caj+4
. |
C171,_]+—
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I\]d ‘—f}%‘)
_A%d I\Q,]‘ —44.55.)' .
Sj = : - _Am___ g J (R —44,—”_'_%4-
0 _A711+-,1;,j I\'“sJ‘

T
®(z) = W (f(hhyz1)y oo f(mh,mh,z,))" —

. (UOI + U0, U205 -« - s Um+1l,m s um.m+l)
] T
= (ulla U2yyerre umm)
; s following
olved by means of the fol
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modification of the method (2), (3):

Y(k) — .1 D(k)(U(\f(k))(\U\ _.,.tk))_-
0
—L(‘\"“”'))(Y(k — 2By 4 f(a?) a ’)
1
k) y® AXR =012 (1
where - o
Fl(X®y=DXW) - L X0y —U(X™). DXy =D7(X™).
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f nonlinear equgy. rheorem 2. Let a* € X(® C D and-let all F'(X®) be M-matrices.
Then 2t € XM (k =0,1,...) and limp_ o, X¥) = z*, where z* is a
(9) solution of system (1).

Gince A > m; > 0; C >m; >0, f, >0, the derivative of system (9)
58 M-matrix; therefore, system (9) satisfies the statement of Theorem 2,
that is, the method (10), (11) can be applied to it.

The theoretical conclusions obtained above are verified by numerical
e,(periments.
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