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USING INTERVAL METHODS
IN CLUSTER ANALYSIS
AND VERIFIED REPRESENTATION
OF CONNECTED SETS

Pavel S.Pankov and Batyigul D.Bayachorova

The well-known problem of effective (outer) representation of range S
of mutually dependent variables is considered. By modifying the known
algorithm of generalized bisection with constrained depth of subdividing
the algorithm is described that finds collection of (narrow) interval vectors
(i.e. clusters) such that their union contains S and each connected subset

of S is conpained in some cluster.
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The search of more effective representations of a rang
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atually dependent variables (if a priori range for each of them is given)
s the important problem of interval mathematics.
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We need, as usually, the following initial data: the interval vector

pox) X & R"™ whose components are a priori ranges for variables and

; (he interval indicator function I(X’) defining the set S C X. We shall
ase the following three-valued logical indexation [3]:

[ON It it is proved that all points of a box X’ belong to S (X’ C S)
then I(X'") := ~1;
If it is proved that X' NS = @ then I(X’) := 1;
Otherwise I(X') := 0.

rova :
(If such indicator function is calculated by means of common interval
operations then it is monotomic: if X’ C X" and I(X") # 0 then I(X') =

tion of range S I(X”)).

ing the known . . . . " 3
wonfgsubdividing The use of any generalized bisection algorithm, as a rule, yields a list

interval vectors of too many boxes whose union contains 5.
»nnected subset

Remark 1. Here we mean the union itself (not the "representation by the

ETOI0B outer interval”).
RO The problem is to obtain-any (sufficitently narrow) outer representa-
HKECTB tion of S as the union of some (large) boxes and we see that such formu-

lation may be considered within the cluster analysis (see for instance [4])
and the interval (veriﬁed)_ approach yields strict formulation of problems

which may be also effective.

|Or'0 BHeEILIHEro . . . .
o, T (The cluster approach for the close problem of optimization was con-

ro ajJropurMa sidered in [2]).

(pobnenna no- ; .
o Ry We shall require that any connected subset of S belongs to any only

onepHUT Sy 1 cluster (one may see that the reverse demand is not feasible).

W2 HARCTEROn: We describe the algorithm of searching such cluster representation be-

ing the modification of the algorithm with the constrained depth of bi-
section [3], which does not demand vast memory.

ange of values of Denote:

X X are sub-boxes under consideration; n; is the index of sub-
division depth (inverse of volume) of X;; Wy ... Wy are candidates for
cluster-boxes. ‘
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Algorithm. Let the box X, the indicator function I and the constraint
N of subdivision depth be given.

Step 1. Let M :=0, k:=1, X, := X, n; :=1.

Step 2. Calculate J := I(Xy). If J = 1 then go to step 8.

Step 3. If J = —1 or (J = 0 and ny, = N) then go to step 4 else
(J =0 and ny < N) bisect Xy, into two sub-boxes, denote them
as Xy and Xgqq, let gy :=np:=np+1, k:=k+1 and go to
step 2.

Step 4. If M = 0 then let W, := X}, and go to step 8.

Step 5. Find the set (list) T:={j € [1...M]| X, " W; # 0}.
Step 6. T = then let Wy41 := X else diminish M by the
number of elements of T and calculate the "representation by the
outer interval” W4y := U{W; | j € T}UX,.

Step 7. Let M := M + 1.

Step 8. Let k:=k — 1. If k > 0 then go to step 2 else STOP.

The list W, ... W)y, is the result of execultion of this algorithm.

Remark 2. As in [3], we may apply this algorithin with the increased
depth of subdivision not to the whole box X but to the obtained set
{W;lj=1...M}

Remark 3. We may choose the boxes to be united in step 6 by another
criterion, for instance, ”if the distance between X\ and W is sufficiently
small.”

We note that the outer representation of S by the most narrow single
box (i.e. "by one cluster”) was realized in [3].

The verified searching of connected subsets of a plane set (branches of
curve) S := {(z1,22) | F(z1,x2) = 0} by two-sided bounding by broken
lines was supposed in [5].

Describe another approach to searching an effective representation of
mathematical objects. To optimize the running of the algorithm [3] it is
desirable to choose arguments of the indicator function I to be indepen-
dent variables. But in such case the outer representation of all sub-boxes
with I < 0 does not take into account the actual relations between the
argum-nts and may be too wide.
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Because of it we suggested [6] to calculate simultaneously the outer
representation within the original space.

guch approach was successfully applied [7] to search the solution of
the integral equation if the estimation of its derivative is given: Suppose
¢hat there exists any function y fulfilling

b
[ Kt s = £, 10 |<
Ja

To find any (narrow) interval set of functions containing y let us choose
o natural m and denote I := (b—a)/(2m), t;:=a+hj, j=0...2m.

The "natural” variables are y; := y(¢;), j = 0...2m, the "inde-
Ppndent” ones for the algorithin of global search were y,, and z; :=

pivt — Y J=0,..2m-1(z € [—ch, ch]).

The set of cluster-boxes may be considered as a generalization of the
concept of multi-interval [6] to the multi-dimensional case.
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