Interval Computations
No 4(6), 1992

PROGRAMMING LANGUAGE SUPPORT
FOR SCIENTIFIC COMPUTATION

Jiirgen Wolff von Gudenberg

The necessary prerequisites for scientific computation, e.g. operators
with directed roundings, operator and function overloading, dynamic ar-
rays and accurate scalar product computation have been implemented in
PASCAL-XSC, ACRITH-XSC, MODULA-SC, C-XSC and Ada.

This paper gives an overview on currently existing language extensions
and comments on several trends for future development.

SA3BbIKHN HPOI"PAMMPIPOBAHI/I{I IJ1A
HAYYHBIX BBIYUCJIEHUUN

10.Bonbd¢ ¢on I'ynenbepr

B santkax PASCAL-XSC, ACRITH-XSC, MODULA-SC,C-XSC u ADA
6L1IM peann3oBaHbl TakMe Heo6X0AMMBIE 1A HAYUHBIX BBIUMCIIEHW
CPeaCTBa, Lak onepauyi C HanpaBJ/IEHHBIM OKpYrJieHMeM, AMHaAMHUUe-
CKM€ MAacCHUBbI, BHCOKOTOUHOE CKaJIAPHOE NPOM3BeiIeHre, COBMeELlleHNe
VMeH [UiA onepauwit u pyukumii. Jan 0630p cyliecTBYIOMMMX B HACTO-
AU MOMEHT pacliMpeHuii A3bIKOB nporpaMmmMmupoBanns v obGcy>kaa-
FOTCA HEKOTOPbIE TeHAEHIMH UX AalbHelllero nasBUTUA,

1. Prerequisites

The datatypes occurring in numerical computation include the real
and complex numbers, vectors, or matrices. Furthermore interval spaces
are considered to provide guaranteed results.

The mathematician uses the same infix operators to denote the arith-

© J. Wolff von Gudenberg, 1992

inetic oper
identify the
algorithms

Further:
all spaces, .
the last pla
element, or

Algorith
even in the

All these
for scientifi
by a huge :
the relevamn
is that it is
own set of 1

New prol
dled the sa
language sh
gramimer to
expression
concepts ar

e user-defia
or furthe

e structure
e overloadse
e dynamic
® access to

For the a
tory.

e Floating-

e At least t
accessible

e An optimr

ators
C ar-

«d in

sions

ADA
HUA.
gye-
Hue
‘TO-
Aa-

he real
| spaces

e arith-

PROGRAMMING LANGUAGE SUPPORT . 117

metic operations in all of these spaces. Also identical function names
identify the standard functions for different data types. Matrix or vector
algorithms are usually formulated for arbitrary dimension.

Furthermore the accuracy of the basic operations shall be optimal for
all spaces, i.e. the relative error is less than or equal to 1/2 ulp (unit of
the last place) in case of rounding to the nearest computer representable
element, or less than 1 ulp iu case of other monotone roundings.

Algorithms and hardware which fulfill these accuracy requirements
even in the case of arbitrarily dimensioned matrices are available [10,11].

All these features ought to be supported in a programming language
for scientific computation. For this purpose a language may be extended
by a huge set of additional standard operators or functions for each of
the relevant data types. The main drawback of this approach, however,
is that it is not extendable. The programmer is not able to define his
own set of types and operations.

New problem specific datatypes like grids or gradients can not be han-
dled the same way as the standard types. Therefore the programming
language should be extended by powerful concepts which enable the pro-
grammer to write and implement new arithmetic operations or even new
expression evaluation in the language. For this purpose the following
concepts are recommended.

e user-defined operators at least by overloading the standard operators
or further by allowing new operator identifiers or symbols

e structured result types of operators and functions
e overloadable function identifiers

e dynamic arrays

¢ access to directed roundings for interval arithmetic

For the accuracy requirement three arithmetic properties are manda-
tory.

¢ Floating-point arithmetic is optimally defined.

e At least three roundings (towards + or — oo, and to the nearest) are
accessible.

e An optimal scalar product with 1/2 ulp accuracy is available. (The

118 J. WOLFF VON GUDENBERG

scalar product may be simulated by integer arithmetic.)
More features will further support the ease of programming.

A module concept is very helpful to facilitate the management of a lot
of different arithmetic libraries. -

Generic, type-parameterized subroutines reduce the size of source code
and thus enhance the readability of the program by combining routines
which perform identical operations for different data types. The object
code size may also be decreased.

A subtype concept may allow the automatic conversion of pérameters
‘to match the interface of a function or operator. ’

‘Alternative expression concepts, e.g. for accurate evaluation or sym-

bolic computation may be supplied.

Simultaneous polymorphism increases the information obtained. A
complex interval may be regarded as a circle or rectangle or an expression
may be kept in its symbolic form and evaluated as floating-point number
and interval. - ' :

2. Comparison of existing languages

In the following table we compare the standard languages FORTRAN
90 (F90), C++, Ada and several extensions with respect to the facili-
ties they support for scientific computation. PASCAL-XSC (PXSC) [3,
8], ACRITH -XSC (FXSC) [1] and C-XSC [12] are extensions of Pas-
cal, Fortran or C developed at the Institute for Applied Mathematics in
Karlsruhe, FXSC on behalf of IBM Deutschland. C-XSC actually is no
new compiler but a set of C++ classes which appear as a simple exten-
sion of C. Modula-SC [4] is a Modula-2 extension developed of Institute
for Computer Science'in Basel. Ada packages were implemented in the
ESPRIT project DIAMOND by NAG Oxford, CWI Amsterdain, Siemens
Miinchen and Karlsruhe University. [9] i

[F90
[FXSC
- PXSC
| MSC

CXSC

C++
Ada

F90
T FXSC
~PXSC
MSC _
CXSC
CH+

Ada

PROGRAMMING LANGUAGE SUPPORT ... 119
‘nt Of a lot [operator result overload
, concept type _ functions
yurce code Fa0 . overload “structure generic
g Toutines _ new idents interface
‘he object FXSC overload structure generic
new idents interface
' PXSC overload structure yes
arameters .
new idents
.3 MSC overload structure no
1 or sym- new idents
CXSC predefined class y€es
ined. A C++ overload ~ class yes
Xpression Ada overload structure yes
t number
© array module genericity subtype
concept concept relation
F90 dynamic yes no no
| expl.alloc. :
FXSC . dynamic yes no ‘.| - no
RTRAN autom.alloc.
10 facili- PXSC blockdyn. yes no, int,real _
XSC) [3, MSC static yes no no
of Pas- CXSC dynamic class no yes
1atics in predefined predef.
ly is no C++ " free class yes - predef.
e exien- ' inherit . inherit
nstitute Ada dynamic yes yes ~ no
1in the

Slernens
4F

120 J. WOLFF VON GUDENBERG
directed altern. float
rounding express. arith.
Fa90 no no not spec,
FXSC yes dot KA
PXSC yes : dot KA
MSC yes no KA
CXSC yes dot KA
C++ no no not spec.
Ada no no Brown
DIAMOND
Comments:

All SC languages fulfill the accuracy requirements (KA) for all nu-
merical datatypes. From the standard languages only Ada specifies its
floating-point accuracy by Brown‘s model numbers. This complies to our
requirement for the floating-point data type only. The same holds for
the IEEE Standard 754 which is more and more used as floating-point
hardware.

C-XSC on its own is only a collection of data types and operations,
which may be sufficient for a modest user. A sophisticated programmer
will use C-XSC together with C++ and thus may join the features of
both languages.

Block structured languages like PASCAL-XSC and Ada provide dy-
namic arrays as local variables, parameters, and results of functions where
the scope extends the defining block. In FORTRAN 90 and ACRITH-
XSC explicit allocate and deallocate statements control the scope. The
left hand side of an assignment has to be allocated in F90, but is automat-
ically created in FXSC. In C++ dynamic arrays may be implemented as
contiguous space accessed via pointers and therefore specific constructors
and destructors are necessary.

Overloading of functions in FORTRAN 90 works via the definition of
a generic interface, which means that specific names must be provided.

Althot
mum acct
expressio:
eXpressios
rithm int
is straigh
rection it
enclosure

This m
ferent wa;
such accu
be evalua

FH# to inc

the neares

Since t
of results
the gener:
factored 1
supported
be obtaine
results of :
type is cal

Dotprec
CXSC, P>

Their i
sible, sinc
operand ty
twice for t

If we di
operator i
to dotprec

A dotm

where +
need rounc

or all ny-
ecifies its
lies to our
holds for
ing-point

‘erations,
graminer
atures of

vide dy-
1s where
CRITH-
pe. The
utomat-
nted as
;ructors

ition of

vided.

PROGRAMMING LANGUAGE SUPPORT ... 121
3. Alternative expression concepts

Although all basic operators for all numerical data types have maxi-
mum accuracy, this is not sufficient to guarantee the result of an arbitrary
expression or algorithm. But there are methods which evaluate complete
expressions with maximum accuracy or enclose the result of a full algo-
rithm into sharp bounds [2, 5]. The procedure for expression evaluation
is straightforward. All intermediate results are kept, and a defect cor-
rection iteration using the optimal scalar product is performed until the
enclosure of the exact result is sharp enough (1 or 2 ulp).

This procedure may be integrated into a compiler. But then two dif-
ferent ways to evaluate an expression exist. Therefore we need to mark
such accurate expressions. We propose to put an expression which is to
be evaluated accurately into parentheses, preceded by #<, #>, #*, or
to indicate the rounding downwardly directed, upwardly directed, to
the nearest, or to the smallest enclosing interval, respectively.

Since the accurate evaluation of expressions and the sharp enclosure
of results of algorithms usually use one very specific kind of expression,
the generalized dot product, i.e. a sum of variables (constants) or two-
factored products of variables (constants), only this feature has been
supported by several language extensions. This implementation can easily
be obtained by using a type which is large enough to store intermediate
results of scalar product computations without loss of information. Such
type 1s called dotprecision.

Dotprecision expressions for all numerical datatypes are available in

CXSC, PXSC and FXSC.

Their implementation via the universal operator concept is not pos-
sible, since operators are identified by their name or symbol, and their
operand type(s) and because it is not possible to overload an operator
twice for the same parameter profile.

If we define a second overloading of the * operator, by using a new
operator identifier, e.g. dotmul and a conversion function dot from real
to dotprecision, a dotprecision expression looks like

A dotmul B + dot(D) - C dotmul E

where 4+ and - are overloadings for the type dotprecision. We further
necd rounding functions from dotprecision to real or interval.

S, T

122 J. WOLFF VON GUDENBERG

The overhead for the addition of two dotprecision values in contrast
to the addition of a floating-point number may be neglected in the scalar
case. In the matrix case, however, simple operator overloading requires
the allocation of a full matrix of dotprecisions whereas one single value
is sufficient to compute the whole expression componentwise. Therefore
the operators dotmul and + in this case shall collect the structure of the
expression in a linked list or tree whose evaluation is initiated by the call
of the rounding function or operator. A static or class variable may serve
to store the structure of the expression in an object oriented language
like C++-. If this list is kept visible for the sophisticated user symbolic
manipulation and optimization of the expression is possible, before it is
evaluated using some basic runtime system routines. Hiding the list for
the normal user, however, is strongly recommended.

. Expressions with named operators and lot of conversion functions do
not look very familiar, therefore we suggest a small extension to the
operator concept which allows multiple overloading. For PASCAL-XSC
the syntax may look like follows

prefix <prefix symbol> operator <op symbol>
<parameter list> <result name>: <result type>

Valid prefix symbols are combinations of characters starting with #,
%, ! or another symbol which does not occur in standard operators.
The prefix symbol itself is introduced as a monadic operator with highest
priority. _

Applying these extensions the dotprecision expression from above looks
like

#<(A*B + D - CxE)

~ where the prefix operator #< denotes the downwardly directed round-
ing from dotprecision to real, e.g. This is exactly the syntax of dotpreci-
sion expressions in PASCAL-XSC and ACRITH-XSC, but in these lan-
guages the prefix operator overloading is not accessible by the user and
therefore not extendable.

4. Expression data types

Using the principles'of data encapsulation or information hiding, we

can exter
the symb
the repre:

Since ¢

not deper
shall be p
data type

The o]
specified
Two d
sion data
two appr
Expre
A new

alist of ¢

Symbc
expressio.
chosen fo

To ide
left hand
a functio:
accessing

A star
vided.

Multi

o A stan
is prov

e Assign
resente

e More t

e If only
or ord

e If mor

contrast
he scalay
' Tequires
gle value
“herefore
re of the
r the cal]
1ay serve
anguage
symbolic
fore it is
2 list for

tions do
. to the
\L-XSC

vith #,
rrators.
highest

e looks
round-
tpreci-

se lan-
er and

\g, we

PROGRAMMING LANGUAGE SUPPORT ... 123

can extend the manipulation of expressions and give the user access to
the symbolic structure without letting him know the internal details of
the representation.

Since on the one hand symbolic expression manipulation usually does
not depend on the operand types, on the other hand static type checking
shall be performed, we suggest a kind of restricted polymorphic expression
data type.

The operand types of a symbolic expression may be chosen from a
specified set of types.

Two different syntax extensions have been proposed in [17,18] (expres--
sion datatype), and [19] (multiaspectness). We shortly report on these
two approaches. :

Expression data type:

A new type is introduced by the keywords ’expression of’ followed by
a list of possible operand types.

Symbolic operators for this type just build up the structure of the
expression. They represent a set of possible operators one of which is
chosen for evaluation.

To identify those operators not only the operand types but also the
left hand side of an assignment, the possible actual argument type of
a function (or operator), if the expression occurs in a function call and
accessing array or record components are considered.

A standard set of symbolic expression manipulation routines is pro-
vided.

Multiaspectness:

¢ A standard type formula which is not related to specific operand types
is provided.

e Assignment compatibility is declared by allowing a variable to be rep-
resented in several types.

e More than one simultaneous value for a variable is possible.

e If only one representation shall be valid at each time, precedence rules
or order relations between types have to be specified.

If more representations are valid, we have a kind of simultaneous poly-

124 J. WOLFF VON GUDENBERG

morphism which may be used to obtain more information about the
true value. The typical example here is the representation of a complex
interval as a rectangle and a circle.

Standard operator overloading is sufficient.

5. Genericity

Genericity means the declaration of a function or module (class, type)
templates which are parameterized by a type and its instantiation with an
actual type. The FORTRAN term generic function only means a simple
way of overloading and is therefore not treated here.

There are various ways of implementing genericity. The simplest is
to copy the source text and include the proper actual type name where
appropriate. This can be done by a preprocessor, as is shown in C and
early C++ versions. But this does not save any code and disables the
debugging of such routines, it further is error prone and may by no means
considered as a proper language extension.

Genericity may be restricted in the sense that the generic type param-
eter needs to import some operations. In Ada these operations have to
be specified as generic parameters, since types correspond to structures
and carry no operations with them. The compiler checks the availability
of the actual operations at instantiation time. In C+-+ classes, which
include operations, are used as generic parameters and the correctness of
an instantiation is checked at linking time. Due to the simple concept of
separate compilation existing compilers need to have the source code of
a template definition at hand when creating an instantiation.

Is it possible to simulate genericity with other concepts introduced
above 7

Generic operators or functions may be declared for the expression data
type [17,18]. But this only means that a fixed number of operators are
implicitly declared. All possible instantiations can be created after the
declaration of the generic routine. Therefore this concept can only be
considered as an abbreviation rather then a language extension.

In object-oriented languages genericity may to a certain degree he
simulated by inheritance. But if the result type is generic, we need the
assignment from supertype to subtype which is forbidden for reasons of

type consi
associatior

We sug
only speci;
parameter
ically inste
if a routin

We defi

classes as {

The key
in derivatic
tiated by a
type itself

Structw

A class
appropriat
default, or
or earlier d
the corresp

A progre
rectly defin
ticated use
tions, arith
and self-val
some of the

1. Bleher, J
W. FOR1

computah

2. Béhm, H.
[7], pp. 59

3. Bohlendex

about ¢},
2 Cornpley

1 With an

a& Slmple

iplest s
e Where
1 C and
bles the
) means

param-
l1ave to
1ctures
lability-.
which
ness of
rept of
ode of

duced

. data
'S are
T the
ly be

e be
| the
15 of

PROGRAMMING LANGUAGE SUPPORT ... 125

type consistency. Additional syntax and semantics like declaration by
association have to be introduced [14].

We suggest to use a newly defined abstract generic base type which
only specifies the signatures of the operations allowed on this type as a
parameter type for generic routines. A derivation from this type automat-
ically instantiates the proper routines. Partial instantiation is possible,
if a routine or type depends on more than one generic parameter. [13]

We define the syntax and semantics in a C4++ like style of generic
classes as follows.

The keyword generic preceding an abstract class definition means that
in derivations from this class all virtual functions or operators are instan-
tiated by accordingly replacing parameters or results of the generic class
type itself by the derived class type.

Structures and arrays of generic classes remain generic.

A class or type which is derived from a generic class must provide
appropriate definitions of all virtual functions or operators, either by
default, or by generic instantiation or by explicit code. Standard types
or earlier defined classes may be made descendants of a generic class, if
the corresponding functions and operators match.

6. Summary

A programming language for scientific computation is based on a cor-
rectly defined arithmetic and provides features which enable the sophis-
ticated user to write the runtime system which includes standard func-
tions, arithmetic for various data types, accurate expression evaluation.
and self—vahdatmg algorithms completely in the language. We discussed
some of these features in this article.

References

1. Bleher, J.H., Kulisch, U., Metzger, M., Rump, S.M., Ullrich, Ch. and Walter,
W. FORTRAN-SC: u study of a FORTRAN extension for engineering/scientific
computation with access to ACRITH. Computing 39 (1987), pp. 93-110.

2. Bohm, H., Rump, S. and Schumacher, G. E-methods for nonlinear problems. In
{71, pp. 59-80.

3. Bohleuder, G., Rall, L.B., Ullrich, Ch. and Woiff von Gudenberg, J. PASCAL-SC:

126

10.

11.

13.

14.
15.

16.

17.

18.
19,

J. WOLFF VON GUDENBERG

a computer language for scientific computation. In: ”Perspectives in Computing,
vol. 17”. Academic Press, Orlando, 1987.

. Falco-Korn, C., Gutzwiller, S., Kiinig, S. and Ullrich, Ch. Modula-SC, motivation,

language definition and implementation. In [6], pp.161-180.

. Fischer, H.C., Schumacher, G. and Haggenm$ller, R. Evaluation of arithmetic

ezpresstons with guaranteed high accuracy. Computing Supp. 6, pp. 149-158.

. Kaucher, E., Markov, S. and Mayer, G. Computer arithmetic — scientific com-

putation and mathematical modelling. IMACS annals on computing and applied
mathematics 12 (1992).

. Kaucher, E., Kulisch, U. and Ullrich, Ch. (eds) Computer arithmetic - scientific

computation and programming languages. Teubner Verlag, Stuttgart, 1987.

. Klatte, R., Kulisch, U., Neaga, M., Ratz, D. and Ullrich, Ch. PASCAL-XSC,

sprachbeschreibung mit Beispielen. Springer, Berlin,1991.

. Kok, J. The embedding of accurate arithmetic in Ada. In [16], pp. 99-120.

Kulisch, U. and Miranker, W.L. Computer arithmetic in theory and practice.
Academic Press, New York, 1981.

Kulisch, U. and Miranker, W.L. The arithmetic of the dzgzta,l computer: a new
approach. SIAM Review 28 (1) (1986).

. Lawo, C. C-XS8C a programming environment for eXtended Scientific Cormputation

In: "Proceedings of the 13th World congress on computation and applied mathe-
matics, IMACS, Dublin, 1991".

Marggraff, H. Objektorientierte Erweiterung von PASCAL-SC und Verfahren zur
Implementierung. Diplomarbeit, Universitit Karlsruhe, 1988.

Meyer, B. Object-oriented software construction. Prentice Hall, 1088.

Ullrich, Ch. (ed.) Contributions to computer arithmetic and self-validating nume-
rical methods. IMACS annals on computing and applied mathematics 7 (1990).

Wallis, P.J.L. Improving floating-point programming. J. Wiley, Chichester, 1990.

Wolff von Gudenberg, J. Arithmetische und programmiersprachliche Werkzeuge
Sfiir die Numerik. Computer Theoretikum und Praktikum fiir Physiker 5 (1990)
pp. 15-42.

Wolff von Gudenberg, J. 4 symbolic generic expression concept. In [15), pp.459-464

Yakovlev, A.G. Multiaspectness in programming of localizational (inierval) com-
putations. In: "Proceedings of Seminar on interval mathematics, Saratov, May
29-31, 1990”, pp. 113-120 (in Russian).

Interval Com

No 4(6), 1992

In tl
segment
segment
segment

BU

O6bol
6payxeH
X Ha
LLIMPUHC
HaTesbl

The inte
upper and |
the estimat.
left or from
will be calle
simply as ir

In this p.

© V.S.Zy

