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ELLIPSOIDAL ERROR ESTIMATES
FOR ADAMS METHOD

Alexey F.Filippov

An error that arises in the approximated solution of a system of differ-
ential equations due to the errors of procedure and the rounding errors is
estimated by the method of ellipsoids. The sources of errors and the results
of the method application to the system of two equations on a large time
interval are analyzed.

DJIJINIICONITAJIBHBIE OIIEHKHA
OIIIMBKUY INPUBJINYKEHHOTI'O PEINTEHWSA,
MMOJIYUYAEMOI'O METOJOM AOAMCA

A.®. . dununmos

Ownbka NMpUBAMYKEHHOT 0 pelleHnA cUucTeMbl AUddepeHlnalbHBIX
ypaBHEeHUH, BO3HMKAIOIAaA U3-3a OWMOOK MeTola M ouInbOK OKpYTF-
JeHUs, OLUEHMBAETCA MeTOJ0M 3JIJUICOMUIO0B. AHaNMM3NPYIOTCA UC-
TOUHMKM OLIUBOK M pe3yJ/bTaThl IPMMeHEHUA MeTo/la K CUCTeMe ABYX
ypaBHeHdnii Ha 60JIb1UOM MHTepBaJie BpeMeHH.

For estimating errors sirnultaneously with a solution computing, a
time-variable ellipsoid is constructed, whose center is a point represent-
ing an approximated solution found at a given moment of time. This
ellipsoid contains the exact solution of the system. At each step of the
approximated method, the variation of the ellipsoid in the motion over
the trajectories of the given system and the influence of errors are taken
into account. The ellipsoid method was applied in [1] to estimate acces-
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sible sets of a control system. It does not lead to the Moore effect that
often arises in coordinate-wise estimates.

A detailed exposition of the method is contained in [2]. Here, only the
basic formulas are presented, a particular example is considered, and the
influence of different errors on the growth rate of the total error estimate
is investigated.

Let z(t;) be approximate values of a solution of the following problem,
obtained at points t; = o + th, t = 1,2, ...

' = f(t, 1), (1)

An estimate of the difference z(¢;) — z(t;) = w(t;), where z(t) is an exact
solution of problem (1), is required. Let z;_;(¢) be an exact solution
of equation (1) with the initial condition z;_q(ti—1) = z(ti=1), let A,
z(t;) — x;—1(t;) be a local error due to error of procedure and rounding
errors. We have

w(t;) =y(t:) — A (y(t) = 2(t) — 21 (1)), (2)

y'(t) = f(t,zim1(t) +y(1) — f(tzima () = C()y(t) + ¥(t),  (3)
where C(t) is a matrix of derivatives 8f;/0zr(j,k = 1,...,n), taken for
x = x;-1(t), and 1(¢) is the residual of the Taylor formula.

Given the estimates A; € E(0, M;), ¥(t) € E(0,B(t)). The ellipsoid
E(a,Q), here, as in [1], for a € R" and symmetric matrix ) (such that
z-Qx > 0 for all z € R™), is a set of points # = a + Qy such that
y-Qu<l

Let it is known that w(ty) € E(0, Qo). We show how from the estimate

w(t;—1) € F(0,Q;-1) to pass to the estimate w(t;) € E(0,Q;), that is how
to find @; on the basis of the known Q;_;. By [1], §8, (3) implies

y(t) € B(0,Q(t)) (tim1 << ),
Q=CR+QCT +qQ+q 'B(t), Qtiz1)=Qi-r. =~ (5)

where C7 is the transpose of C, the number ¢ can be taken to be near

VATIQ@TB)|

proximated Q* be found with the error estimate [|Q* — Q(¢;)|] < p (any
norm). Then, instead of (4), for ¢t = ¢;, we have

y(ti) € E(0,Q,),  Q,=Q" +pl,

z(to) =2° (x € R™).
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] is the identity matrix. By (2) and the estimates for A; and y(¢;),
w(t;) € E(0,Q,) + E(0,M;) C E(0,Q:);

since A; is small with respect to y(t;), with accordance to [1}], §6,

Qi=(1+4+p)Q,+ (@ + )M +nul, p= \/n“lTr(QZlMi)- (7)

The term of the sum nul compensates rounding errors in the first of the
formulas of (7) if these errors do not exceed the absolute value of p in
every element of the matrix @);. We need not take into account the errors
in computing p (any p would be appropriate). Formulas (5), (6) and (7)
determine the passage from ;- to Q;.

We shall show a way of constructing the matrix B(t) in (5). In (3), if
for each coordinate f; of the vector-function f(¢,z) we have

1/2

> omia)

k=1

Mgy, Mj =

|02fj/8a:k8xl| <

then the vector ¥(t) = (1 (t),...,%n(t)) is estimated as follows (|y|> =

yi ... 4yl

mle|2

Z Mk |yeyt] <

kll

|4;(t)]

Then (t) € E(0, B(t)), where B(t) is a matrix with elements
(i #7) bis(t) = (n/Dy(Of'm;

By (4), |y(t)] is no greater than the greatest semiaxis of the ellipsoid
E(0,Q(t)); therefore,

[y < Anax(Q(1)) <

Thus, in (5), B(t) is of order {|Q]|?, ¢ is of order I|QI|*/2, and two last
terms in (J) causing the growth of the ellipsoid due to the accounting

¥(t) in (3) have the order ||Q||*/?. Therefore, the relative rate of error

bij(t) =0 (8)

TrQ(1).
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growth depending on Q'/||Q||, is small for small ||@||, and increases when
[|Q]| increases.

Sometimes, it is appropriate that equation (5) would be linearized by
replacing b;; (t) in (8) by constant on each interval (¢;_;,t;) or linear
functions of entries of the matrix Q(t).

The estimating of a local error A; is proceeded as in [3] or [4], but in
contrast to [4], the vectors and the matrix (8 fj/0x) should be evaluated
in norm. A rounding error is estimated as in [4], but separately for each
coordinate of the vector. The roughness of the estimate in [3] of higher
derivatives of a solution can be compensated by the choice of the step
h sufficiently small; this will cause the increase of the rounding error,
- which is not dangerous in the computations with sufficiently large number
of binary digits. Another way to estimate derivatives: to partition the
domain into parts and, in the parts where the solution goes through to
estimate successively the derivatives 2’ = f(t,z), z" = fi+ () f,.
from above and from below, by interval computations approaches.

Values of an approximated sclution at several initial points ty,to, ...
that are necessary for the Adams method, can be obtained by an one- step
method with a lesser step h; for example, by the second order Adams
interpolation method or by the fourth order Euler method:

_ hy _ h?
t) = x(1 —_— 2 (t

(D) = 2(0) + )

where T =t + hy, 2'(t) = f(t,2(t)), 2" (t) = £ + (f.)f, and the error of

procedure is equal to —(h3/720)z 55)(t;f), t < t; <1 (separately for every

coordinate z; of the vector z).

= (2"(t) = 2"(7)), (9)

Since the matrix C(t) is known at mesh points #; only, systemn (5) can
be resolved, for example, by the Taylor formula

Q(t:) = Q(ti1) + hQ'(tio1) + (R°/2)Q" (t:—1)

with the error —h%Q)"” /6. When estimating C(t;—0) via 2;_; (t:) = =(t;)—
A with the compensation of the error by the increase of the matrix B(t)
in (5), the method of (9) with hy = h can be applied to system (5).

The above method was applied to the system

'=z—y, y=20-9 z(0)=0.25 y(0)=0.
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The solution is contained in the domain [x| < 1, |y| < 1.22, |z —y| < 0.9.
The 8-th order interpolating Adams method with A = 1/256 was used,
values of a solution for ¢ < 6h were computed on each interval (¢;_1,¢;),
the linearization error was covered by the increasing of b;; in (8). This
system was solved by the method (9). The computation was performed
with 56 binary digits.

The solution tends rapidly to a limiting cycle with period about 7.29.
The ellipse that contains an exact solution extends along trajectories, its
large axis a, alternately, augments and diminishes. The following table
presents the values of a obtained, that is, the upper bound of the error
of the found approximated solution, at some intersection points of the
trajectory with the x-axis.

t 9.16 23.74 38.31 52.89 67.46 82.04 96.61
10%a 5.7 20.0 355 52.1 69.8 89.0 110.0

On the segment 0 € ¢t < 100,maxa < 1.2 - 107, it is attained for
t = 96.8.

The following factors are influencing the growth of the quantity a :
the local error A in solving system (1), the estimate of the term ¢(¢) in
(3), the error of procedure of the approximated method for system (5),
the deviation of trajectories of system (1). The method is admissible on
large time intervals ¢, provided the quantity a remains small.
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