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INTERVAL STATISTICS

Alexander I. Orlov

A survey of basic concepts of statistical analysis of data that are in-
tervals is given. The difference between interval and classical statistical
inference is highlighted. The concept of rational sample size is discussed.
The development of interval statistics in Russia in the period 1980-1990 is

outlined.

NHTEPBAJIbBHASI CTATUCTUKA

A.A. Opnos

B crarbe npuBoanTCcsa 0630p OCHOBHBIX KOHIENNMI CTaTUCTUUECKO-
ro aHaJIM3a AaHHBIX, ABJAOIIMXCA UHTepBaJsiamu. IlokazaHo pasznmn-
uve MeXAY CTATMCTUUECKNMH BBIBOJIAMY U KJIACCUUECKMMM BHIBOJA-
mu. O6cy:kaeHa KOHIENINA palMoHaibHOro o6’ bema BrIGopkU. Iloka-

3aHO pa3BUTUE UHTepBaJIbHOM craTncTuku B Poccun 3a 80—-90e ronasl.

Mathematics and statistics are related sciences. One may debate their
correlation. Along these lines, we have claimed that applied statistics
is branch of cybernetics [1]. But it is more important to find common
ground for interaction.

In the period 1970-1990 in our country, interval mathematics and
interval statistics developed independently. At the conference entitled
“Problems of Applied Mathematics” held in Saratov, May, 1991, repre-
sentatives of the two scientific fields met and initiated interesting scien-
tific discussions. This paper is a survey of basic concepts and results of
interval statistics.

© A.L Orlov, 1992



INTERVAL STATISTICS 45

One of the statistical research subjects in 1970 was the stability of
statistical inference with respect to admissible deviations of initial data
and with respect to premises of a model [2]. In this context, it is natural to
consider fuzzy numbers instead of real numbers for initial data [3]. In that
epoch, there was enthusiasm for Zadeh’s theory of fuzzinéss [4]. Although
it was immediately shown that the theory of fuzziness reduced [2] to the
theory of random sets, that is, to one of the branches of probability
theory, it was nonetheless tempting, for practical purposes, to replace
real numbers by fuzzy numbers in our applications.

In practical realizations of this concept, the question of a membership
function specification of fuzzy numbers arose. It is clear that the simplest
possible specification is a step function taking the value 1 inside some in-
terval and a value 0 outside this interval. In other words, an observation
result is not a number, but an interval. In almost the same way, a num-
ber of scientists were attracted to interval statistics, a branch of applied
mathematical statistics in which initial data are given as intervals but
not as numbers. '

Interval mathematics is not a fancy of a mathematician in search of
new statements, but an answer to practical needs. There is good reason
for its development not by academic and university scholars, but by those
who work with real world problems. For example, when elaborating the
state standard “Applied statistics. Determination rules for estimates and
confidence limits for gamma distribution parameters” [5], data on the
lifetime of cutting tools, up to limiting conditions, was analyzed.- The
data were given up to 0.5 hours, with a lifetime in the interval from 9 to
130 hours. The question of how this uncertainty in the data influences
statistical inference arose. An appropriate theory came into being at
the beginning of 1982. On this basis, the choice rules for an estimating
technique, that is, the method of moments or the maximum likelihood
method, are formulated. The aforementioned theory was published later
in [6].

Further development of these concepts resulted in construction of a
new statistical theory called “realistic statistics” [7,8]. Its results and
recommendations differ in a principal way from those of classical mathe-
matical statistics. In particular, they differ in the following points: there
are no consistent estimates; it is not advisable to increase the number of
observations beyond a certain limit, called a “rational sample size”; the
method of moments may be better than the maximum likelihood methodl.
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and so on. Consider the basic concepts of a “realistic statistics” in a very
simple example of estimating expectation.

As in the classical case, let the independent equally distributed random
variables z1, 22, ..., z, describe real phenomena. But a statistician
knows different random variables

Yi =i + & (1)
distorted by measurement errors ¢;, i = 1,2,...,n.
Suppose that the absolute value of the errors is bounded by a known

constant
lesl < A, i=1,2,...,n. (2)

In other words, an observation result is not a number y; but an interval
[y: — A, yi + A]. And, on the basis of observations of the set of intervals,
one must draw a conclusion about the expectation E(x;) of the actual
random variables zy, zo, ..., z,.

How is a constant A found? It may often be found from the technical
certificate of a measurement tool, or from the form of the data, as in the
case of the lifetime of the cutting tools described above.

In classical applied mathematical statistics, the sampling arithmetic

mean

§:$1+.’B2+"'+$n (3)

n
is used as an estimate of the expectation.

If the z; have a variance, the sampling arithmetic mean z is asymp-
totically normally distributed:

E(.’?) = E(:Bi), D(i) = —, o? = D(’rg) (4)

Thus, Z is a consistent estimate of E(z;), a confidence interval for
E(x;) with a fiducial probability v of the form

[:z- = u('r)%; T+ U(w)%] , (9)

for large n. Here, (? is a sample variance,
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and u(7y)is a quantile of a normal distribution of order (1 ++)/2, that is,
a root of the equation

u(y) 1+ 0%
\/_exp{——}dz = =

If a distribution of x; is known, the asymptotic confidence interval
(5) may be replaced by the exact one. For example, if z; has a normal
distribution, then in (5), a quantile of a normal distribution must be
replaced by a quantile of a Student distribution.

Let us move on to estimation of an expectation within the framework
of realistic statistics. Suppose for this purpose that one uses a sampling
mean of available arithmetic data

yi+y2+-+Yn
: .

g= (M
If the ; have a variance, then by (2) the random variables y; also have -

- a variance. Thus, § has an asymptotically normal distribution as n — oo,
and

E(y1))+ E(y2) +--- + E(yn)

n

E(y) =

(8)
Relation (1) implies that
E(zi) - A < E(y) < E(zi) + 4, (9)

where the left and the right boundaries are attained by the values A or
—A in the case of systematic error. Regarding the variance of a random
variable y;, one can show that for small A, this variable differs little from
the variance of . The proof proceeds by arguments similar to those of
[6] in the technically more complicatéd case of estimating parameters of
a gamma distribution. Therefore, - /

0.2

D(§) = L +0(5). o)

Formulas (9) and (10) imply

); (11)
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where the supremum is taken over all &; satisfying condition (2).

Relation (11) allows us to draw several non classical conclusions. First,
the left-hand side is always greater than A2, and therefore does not tend
to 0 as the size of the sample increases. This means that there is an objec-
tive threshold for the accuracy of the estimating parameters (estimating
expectation here). In other words, a sampling mean is not a consistent
estimate of an expectation. )

This conclusion is well known by itself. Yet, Gnedenko and Hinchin
discussed this topic in “An Elementary Introduction to Probability The-
ory” [9, p-p- 120-121]. Unfortunately, their reasoning was not based on
mathematical statistical theory. That reasoning is not new to the theory
of metrology, nor is it new to metrologists [10]. :

Eliasberg, a specialist in the field of cosmic research, wrote: “With
good reason, consistency of statistical estimates can be considered as one
of the “myths of the twentieth century” [11]. However, courses in mathe-
matical statistics presently treat consistency, unbiasedness and efliciency,
while the theory of realistic statistics, taking into account €rrors in ob-
servations, is just being created.

A second conclusion from relation (11) is connected to the concept of
«rational sample size.” To what extend should we increase n? A principle
of “equating errors” was suggested in [2]. According to this principle, it 1s
advisable to equate errors due to measurement uncertainty according to.
(1), and due to statistical uncertainty according to (10). In other words,
it is proposed to equate the two principal members of the sum in relation
(11), and to find a rational sample size 1pqi Dy the formula

Mrat = (%)2 ~ (S—(Ayl)z, s*(y) = nl_ ] ST -9t (12)
1<i<n

Therefore, everything depends on the ratio of the mean square de-
viation o of a random variable to the maximum measurement, error A
in the values of this random variable. For example, if A = 0.1, then
Npat = 100.

We have considered a very simple example. This comparison of re-
sults of classical and realistic statistics has beert done for a number of
algorithms in [6-8], and will later be carried out for all principal algo-
rithms of applied statistics. Software for realistic statistics, an interactive
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system REST, is being developed by author jointly with Dr.Los’. There
is a “parallelism” in statistics: a classical algorithm is developed jointly
with a rea.hstée one. In particular, a confidence 1nterval (5) is displayed
together with the realistic confidence interval

s(y)

5 -0 - Az +u(y) (y)+A1 (13)

Vi

The research program of developing realistic statistics [7] is far from
completion. A current task is to enlist new specialists for this research.

We make the following remarks concerning the problem setting in real-
istic statistics. Besides restrictions on error, restrictions on relative error
have been considered [5-8]. Furthermore, the form of the restrictions
itself can be different. For example, in [6], the behavior of algorithms
when the ¢; are all independent random variables was analyzed. Roughly
speaking, it turned out that an expectation of an &; played the part of
A. There are some unnecessary simplified models in which is assumed
that 2; and €; are independent, or the ¢; are normally distributed. Such
models would not be applied in real problems [10].

Lapidus, Rozno [12, 13], and Leifer [14] from the Gorky branch of the
State Institute of Normalization in Technology (now, Nizhny Novgorod
Branch of VNIISOT) have shown a constant interest in the effect of un-
certainty of measurement results on statistical inference. Their work can
be directly applied like Sher’s work (Vladivostok). The latter researcher
represented the estimates, obtained from captains of a fishing fleet in the
form of relations (1) and’ ( ), then processed them for managing the fleet
[15]. -

* The most important center of interval statistics is the Department
of Automatics of the Moscow Power Engineering Institute. There, a
research group has been active since the early 1980’s under the guidance
of Professor Voshchinin. Still headed by Prof. Voshchinin, this group
now includes tens of specialists from CIS, Bulgaria, China, and other
countries. One of the fundamental problems treated by this group is
the search for a function describing the dependence due to interval data.
Another fundamental problem studied there is that of opt1m1z1ng on the
basis of the dependence found [16, 17].

The following problem is important in practice. Let y be a quantity to
be increased (for example, the yield of the target product in an industrial
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chemical process). This quantity y depends on quantities X1, L2, 3 Tn
that can be controlled. There are initial data (Z1s,Z9i,. .., Tri, i), 1 =
1,2,...,n, and the model

Y = f(a:h-,:cz,-, sxd ms o rt Gyl v .,a,;,') +e&;, 1= i, 2. G n, (14)

where ay,...,a,, are unknown parameters. After estimating the param-
eters from the statistical data, we can find-a solution for an optimization
problem and obtain z1, zs, ...,z such that y attains the maximum.

If the ¢; in (14) are independent and equally normally distributed,
then there is a regression analysis, generally nonlinear, in the ordinary
setting. ' But if ¢; the satisfy the restriction (2), we have a problem of
interval statistics, considered in [16,17].

Fragmentation in the development of interval statistics is due to the
fact that specialists and research groups have worked independently. Dif-
ferent approaches came together in the discussions on the paper of Vosh-
chinin, Bochkov and Sotirov [17] with participation of Borodyuk, Demi-
denko, Letsky, Orlov, Legostaeva and Kuznetsov. The first three of these
related an interval approach to classical regression analysis. They con-
cluded that it is advisable to continue study in interval statistics. We
have analyzed the development of applied statistics in the nineteenth
and twentieth centuries, and have shown that interval statistics deserves
to be developed. Formulas for confidence intervals and rational sample
size for estimating expectation and variance (see below) resulted from
these studies. Together with [5-8], a comment [17, p.p. 86-89] represents
an important publication on the approach studied.

The approach of Shiryaev and Blagoveshchensky et al was considered
in the comment by Legostaeva [17, p.p. 90-93]. In models represented
by (14), intervals arise due not to restrictions of the form (2) imposed on
the €;, but due to the fact that a function f specifies the true regression
only to a certain precision known by a statistician. With this approach,
one succeeds in finding minimax estimates [18], for. example, such that a
mean square error reaches the minimum (see (11)). Preferring to study
ordinary algorithms, we have not worked in such a setting. It is clear
that interval statistics may stimulate many analyses of the type of [18]
dealing with resolution of hard minimax problems. It is important that
settings have significant applications.

In the above scheme, we began with ordinary probability theory (ax-
ioms .of Kolmogorov). One also can construct probability theory on
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the basis of interval expectations. This approach has been chosen by
Kuznetsov [19].

Up to this p“%int, interval statistics has been developed practically with-

out interaction with interval mathematics or with the theory and practice
of interval computations [20]. In [7], measurement errors were contrasted
with computational ones, while in [6], they were studied jointly. There
is a hopeé that the accumulated experience in interval mathematics will
be useful in interval statistics, which will become an important applied
branch of interval mathematics. -
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