
INTERVAL ARITHMETIC: A Fortran 90 Module for
an Interval Data Type

R. BAKER KEARFOTT
Department of Mathematics
University of Southwestern Louisiana

Interval arithmetic is useful in automatically verified computations, that is, in computations in
which the algorithm itself rigorously proves that the answer must lie within certain bounds. In
addition to rigor, interval arithmetic also provides a simple and sometimes sharp method of
bounding ranges of functions for global optimization and other tasks.

Convenient use of interval arithmetic requires an interval data type in the programming lan-
guage. Although various packages supply such a data type, previous ones are machine-specific,
obsolete and unsupported, for languages other than Fortran, or commercial. The Fortran 90 mod-
ule INTERVAL ARITHMETIC provides a portable interval data type in Fortran 90. This data type is
based on two double precision real Fortran storage units. Module INTERVAL ARITHMETIC uses the
FORTRAN 77 library INTLIB (ACM TOMS Algorithm 737) as supporting library. The module
has been employed extensively in the author’s own research.

Categories and Subject Descriptors: G1.0 [Numerical Analysis]: General—Computer arith-
metic; Error analysis; Numerical Algorithms

General Terms: Programming Languages, Portability

Additional Key Words and Phrases: Interval arithmetic, operator overloading

1. INTRODUCTION AND SYNOPSIS

Interval arithmetic, when practical, allows rigor in scientific computations, and
can provide tests of correctness of hardware, compilers, and function libraries for
floating point computations. Interval arithmetic can also be useful in sensitivity
analysis. Additionally, since interval arithmetic provides rigorous bounds on the
ranges of functions, it is appropriate in applications in which Lipschitz constants
or bounds on moduli of continuity are required. In fact, interval arithmetic is a
convenient, and sometimes the sharpest, means of obtaining such information in
algorithms. For example, evaluation of f(x) = x4 + x3 + x over the interval [1, 2]
results in [1, 16] + [1, 8] + [1, 2] = [3, 26], which happens to be the range1 of f over

1Conditions under which the interval value is the range can be found in discussions of the properties
of interval arithmetic, such as in [Neumaier 1990]. In general, interval values are just bounds on
the range.

Author’s address: R. B. Kearfott, Department of Mathematics, University of Southwestern
Louisiana, USL Box 4-1010, Lafayette, LA 70504-1010 USA. Email: rbk@usl.edu
This work was supported in part by National Science Foundation grant CCR-9203730.
Permission to copy without fee all or part of this material is granted provided that the copies are
not made or distributed for direct commercial advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or
specific permission.

2 · R. B. Kearfott

C This standard FORTRAN-77 routine uses INTLIB directly.
PROGRAM TEST_INTLIB

C Intervals are represented as double precision arrays
C with two elements --

DOUBLE PRECISION X(2), F(2)
DOUBLE PRECISION TMP2(2), TMP3(2)

C Initialize machine constants and interval constants used in
C the standard functions --

CALL SIMINI

C The range over [1,2] will be computed --
X(1) = 1D0
X(2) = 2D0

C Round out in case the decimal-to-binary conversion is
C not exact --

CALL RNDOUT(X,.TRUE.,.TRUE.)

C Compute X**4 + X**3 + X --
CALL POWER(X,4,TMP2)
CALL POWER(X,3,TMP3)
CALL ADD(TMP2,TMP3,TMP2)
CALL ADD(TMP2,X,F)

WRITE(6,*) F(1), F(2)

END

Fig. 1. Interval evaluation in FORTRAN 77 using INTLIB

[1, 2].
The INTLIB package, ACM TOMS Algorithm 737, consists of a portable FOR-

TRAN 77 library for interval arithmetic and standard functions, so that interval
values can be obtained for most functions that can be calculated as Fortran sub-
routines. However, direct use of INTLIB is cumbersome. For example, an interval
computation of f([1, 2]) for f(x) = x4+x3+x, using INTLIB directly, would require
a program similar to that in Figure 1.

Fortunately, operator overloading in Fortran 90 allows a computation equivalent
to Figure 1 to be expressed in simple syntax. With module INTERVAL ARITHMETIC,
the computation can be expressed as in Figure 2. The actual machine operations
corresponding to Figure 2 will consist of a series of calls to INTLIB routines as in
Figure 1, with the order of these calls depending on the particular compiler.

There are numerous previous packages for interval arithmetic, including those
based on the operator overloading technique here; the oldest is the Augment pre-
compiler [Crary 1976] in conjunction with a FORTRAN 66, somewhat transportable
interval library [Yohe 1979]. More recently, several C++ packages, including the
package mentioned in [Leclerc 1993], the package of [Knüppel 1994], and C-XSC

INTERVAL ARITHMETIC: An Interval Data Type · 3

PROGRAM EVALUATE_EXAMPLE

! This standard Fortran 90 routine
! evaluates X**4 + X**3 + X over [1,2].

USE INTERVAL_ARITHMETIC
TYPE(INTERVAL) X, F
CALL SIMINI

X = INTERVAL(1,2)
F = X**4 + X**3 + X
WRITE(6,*) F

END PROGRAM EVALUATE_EXAMPLE

Fig. 2. Fortran 90 Interval evaluation with module INTERVAL ARITHMETIC

[Klatte et al. 1993] have been developed. C-XSC, as well as Pascal-XSC [Hammer
et al. 1993], are commercial languages available on a variety of machines. An exten-
sion of FORTRAN 77, ACRITH-XSC [Walter 1993a] is an IBM product running
under the VM operating system. The preprocessor TPX [Husung 1989] translates
to Turbo-Pascal, and an alternate set of Fortran 90 modules [Walter 1993b] is under
development. However, our module INTERVAL ARITHMETIC, based on a minimalist
philosophy, is the first polished, publicly available and portable access to an interval
data type. It is reasonably efficient and practical in a variety of applications, and
is simple to maintain and extend.
INTERVAL ARITHMETIC is the most universally useful portion of the package de-

scribed in [Kearfott 1995].
In module INTERVAL ARITHMETIC, the endpoints of the interval are represented

as double precision Fortran variables. The module should be useful to persons
requiring portable interval arithmetic in standard Fortran 90, with reasonable, but
not optimal, accuracy and efficiency.

2. SYNTAX DEFINED IN INTERVAL ARITHMETIC

The module INTERVAL ARITHMETIC defines the four elementary operations (+, −, ∗,
and /), as well as negation (i.e. unary minus), on interval data types. Mixed-mode
operations are allowed only between intervals and double precision, or between
intervals and integer numbers2. Exponentiation ∗∗ is defined for interval-to-interval,
interval-to-integer, double precision-to-interval, interval-to-double precision, and
integer-to-interval.

The module defines the generic names

ACOS, ACOT, ASIN, ATAN, COS, COT, EXP, LOG, SIN,
SINH, SQRT, and TAN, (1)

2This is because intervals are stored and rounded out as double precision numbers. Arithmetic
between a single-length real and interval would first involve converting the single-length real to
double precision, then rounding according to the double precision machine epsilon. However, the
single-precision value may be only accurate to single precision, so the rounded interval would not
contain the theoretical value. Rigor would thus be sacrificed.

4 · R. B. Kearfott

Table I. Special interval functions in module INTERVAL ARITHMETIC

Syntax Corresponding
INTLIB routine

function

Z = ABS(X) IVLABS z ← {|x|, x ∈ x}
R = WID(X) IWID r ← x− x
R = MID(X) IMID r ← (x− x)/2
R = MAG(X) INTABS r ← max {|x|, |x|}

Z = MAX(X,Y) − z ← [max{x, y}, max{x, y}]
Z = MIN(X,Y) − z ← [min{x, y}, min{x, y}]

R = MIG(X) IMIG “mignitude:” r ← min{|x|, |x|} if 0 6∈ x,
and r ← 0 otherwise

each of which returns bounds on the range, to within roundout error, of the cor-
responding point-valued function. In each case, a corresponding INTLIB routine
[Kearfott et al. 1994] is used, with TAN and COT employing the INTLIB routines
ISIN and ICOS. (Here, “roundout error” is the excess width of the interval result
caused by rounding the lower endpoint down and the upper endpoint up after each
operation in a series of interval computations.)
Additionally, the special interval functions in Table I are defined3. The defini-
tions of ABS and MAG vary slightly from those in ACRITH-XSC [Walter 1993a] and
other languages with interval data types: the function ABS in ACRITH-XSC cor-
responds to the INTERVAL ARITHMETIC function MAG, and is consistent with use of
| ◦ | throughout the literature on interval computations. However, when coding
objective functions for interval branch and bound algorithms, it is more natural for
ABS to return the range of | ◦ |.

Finally, INTERVAL ARITHMETIC defines the operators exhibited in Table II. The
binary operations in Table II that correspond to Fortran intrinsic relational oper-
ators on default data types (i.e. .LT., .GT., .LE., .GE., .NE., and .EQ.) admit
mixed mode operations between intervals and double precision or integers, while
either or both arguments of .CH. may be double precision. Also, note that, in stan-
dard Fortran 90, the relational operations may be given either by .LT., .GT., .LE.,
.GE., .NE., and .EQ. or by <, <=, >, >=, /=, and ==, respectively. For example, the
expression “A < B”, where A and B are intervals, is equivalent to “A.LT.B”.

With the exception of ABS and MAG, the operators and functions in the list (1)
and Tables I and II act similarly to those in ACRITH-XSC.

The interval data type in module INTERVAL ARITHMETIC is a user-defined se-
quenced structure with two components (e.g. the interval X has components X%LOWER
and X%UPPER). In contrast, the interval data type in INTLIB consists of a singly-
dimensioned array with two elements, e.g. the lower bound X(1) and the upper
bound X(2). In a non-portable version of INTERVAL ARITHMETIC, the Fortran 90 in-
terval data type was associated directly and efficiently with corresponding INTLIB
intervals through subroutine calls. This technique worked, since the storage se-
quence of the Fortran 90 data type is the same as the storage sequence of an inter-
val in INTLIB. However, this implicit equivalencing is non-standard, and cannot be
expected to be possible on all systems, i.e., it cannot be assumed that an interval

3In Table I, the Fortran 90 interval variables X, Y and Z are identified with intervals x = [x, x],
y = [y, y] and z = [z, z], while r is identified with the double precision variable R.

INTERVAL ARITHMETIC: An Interval Data Type · 5

Table II. Relational operators defined in module INTERVAL ARITHMETIC

Syntax Corresponding
INTLIB routine

function

Z = X.IS.Y ICAP z ← x ∩ y

Z = X.CH.Y IHULL z ← [min{x, y}, max{x, y}]
X.SB.Y IILEI .TRUE. if x ⊆ y
X.SP.Y IILEI .TRUE. if x ⊇ y
X.DJ.Y IDISJ .TRUE. if x ∩ y = ∅
R.IN.X IRLEI .TRUE. if r ∈ x
Y.IN.X IRLEI .TRUE. if y is in the interior of x

Y.LT.X − .TRUE. if y < x
Y.GT.X − .TRUE. if y > x

Y.LE.X − .TRUE. if y ≥ x
Y.GE.X − .TRUE. if y ≥ x

Y.NE.X − .TRUE. if y 6= x (set inequality)
Y.EQ.X − .TRUE. if y = x (set equality)

as defined by INTERVAL ARITHMETIC can be passed directly as an actual argument
to an INTLIB routine. For this reason, the module INTERVAL ARITHMETIC uses
the (less efficient) technique of actually moving the data between the data types.
(INTERVAL ARITHMETIC also contains Fortran 90 versions of some low-level INTLIB
routines, for efficiency.)

Assignment of interval values can be done using the default Fortran 90 assign-
ment to structures, e.g. X = INTERVAL(.3D0,.3D0). However, this scheme is not
recommended, since the values may not be properly rounded when converted from
character strings to floating point numbers. The function IVL, which accepts ei-
ther one or two double precision or integer arguments, causes the internally-stored
result to be rigorously rounded4. Also, the module INTERVAL ARITHMETIC over-
loads assignment (=), so that, when an integer or double precision number is as-
signed to an interval, the result is properly rounded. For example, X=IVL(.3D0),
X=IVL(.3D0,.3D0), and X=.3D0 each5 cause a properly rounded inclusion of the
number .3 to be stored in the interval variable X.

The left and right endpoints of an interval X are double precision numbers ac-
cessed as X%LOWER and X%UPPER, respectively. These expressions may occur on
either side of an assignment statement. The lower and upper endpoints of an inter-
val may also be accessed in an expression (but not on the left side of an assignment
statement) with INF(X) and SUP(X), respectively. Implicit conversion between in-
tervals and other data types is not allowed: conversions are done with INF, SUP,
and MID.

3. INSTALLATION AND USE

The system consists of the following components.

4assuming that INTLIB has been installed properly to take account of the conversion errors; see
[Kearfott et al. 1994].
5IVL also accepts integer arguments, such as X=IVL(3), X=IVL(3,3D0), or X=3, where X is an
interval variable. However, many machines can store small integers exactly in floating point
formats; for such machines, outward rounding is not necessary, and X=INTERVAL(3,3) would be
more logical.

6 · R. B. Kearfott

IVL DEF: a small Fortran 90 module that defines the interval
data type;

INTERVAL ARITHMETIC: the Fortran 90 module, approximately 866 lines, that
defines the syntax of §2;

TEST INTERVAL ARITHMETIC: a short program to test proper installation of the sys-
tem;

TEST INTERVAL SYSTEM: a lengthier program for more extensive testing6 of the
installation.

SAMPLE.OUT: sample output from TEST INTERVAL SYSTEM.
TINYSMPL.OUT sample output from TEST INTERVAL ARITHMETIC

INTLIB: the FORTRAN 77 library that provides the actual
elementary operations and standard functions [Kear-
fott et al. 1994].

D1MACH: a portable, Fortran 90 version of this SLATEC rou-
tine, that can replace the version in INTLIB.

Installation of the system is in the following order.

(1) Install INTLIB according to the instructions of [Kearfott et al. 1994].
(2) Compile IVL DEF in the directory for Fortran 90 modules.
(3) Compile INTERVAL ARITHMETIC in the directory for Fortran 90 modules, making

sure the compiler has access to the module IVL DEF.
(4) Compile and link TEST INTERVAL ARITHMETIC, making sure the compiler has

access to the modules IVL DEF and INTERVAL ARITHMETIC; the linker should
have access to the object code for IVL DEF and INTERVAL ARITHMETIC, as well
as to the object library for INTLIB.

(5) Run TEST INTERVAL ARITHMETIC (or TEST INTERVAL SYSTEM) to check proper
installation.

The program TEST INTERVAL ARITHMETIC provides a template for use of the sys-
tem. The syntax is as in §2.

The program TEST INTERVAL SYSTEM provides a somewhat more exhaustive test
of module INTERVAL ARITHMETIC. The program TEST INTERVAL SYSTEM causes each
executable statement in module INTERVAL ARITHMETIC to be executed, and checks
that operators and functions give the proper results. Since most of the results are
intervals with integer endpoints, the exact results are input explicitly as integer
constants, then converted, e.g. [1, 2] is input as INTERVAL(1,2). The computed
results are compared to the exact results so input, and an error is flagged if the
computed results do not contain the exact results. If no errors are flagged, then
a message stating that module INTERVAL ARITHMETIC appears to be installed cor-
rectly is printed at the end of the output. Output, to the file INTARITH.OUT, also
includes printouts of the results of the explicit conversion routine IVL, results of
rounding out near the underflow threshold, and results of precipitating two types
of errors that INTLIB catches. Examining the less significant digits in the printed

6Note that INTLIB comes with its own set of tests, for the arithmetic itself. The tests provided
with the module INTERVAL ARITHMETIC check the syntax defined in INTERVAL ARITHMETIC.

INTERVAL ARITHMETIC: An Interval Data Type · 7

results of IVL and the rounding out may help the installer to determine that the
simulated directed rounding is operating correctly. The output should correspond
roughly to the sample file SAMPLE.OUT that is supplied with the algorithm, ex-
cept that the endpoints may differ slightly depending on the characteristics of the
arithmetic and on the details of the particular implementation of binary-to-decimal
conversion for formatted output. This should not be a problem, assuming INTLIB,
and, in particular, D1MACH, have been installed correctly. Correct simulated directed
rounding is important for mathematical rigor in the computations.

If some of the tests in TEST INTERVAL SYSTEM fail, it can be due to inaccurate
conversion of the character strings representing integer and decimal floating point
constants, either in the program TEST INTERVAL SYSTEM or in the INTLIB routine
SIMINI. It is assumed in TEST INTERVAL SYSTEM that such conversions give the
closest machine number to the decimal string representation, and it is assumed in
INTLIB that such conversions are of the same accuracy as the four basic arithmetic
operations. Failure of the tests in TEST INTERVAL SYSTEM can also be due to an
insufficient number of decimal digits in the representation, if DOUBLE PRECISION
on the target machine corresponds to more than 30 digits.

Sample output to the less exhaustive test program TEST INTERVAL ARITHMETIC
is in the file TINYSMPL.OUT, while running TEST INTERVAL ARITHMETIC produces
the file TEST F90 INTARITH.OUT. The output to TEST INTERVAL ARITHMETIC will
be the same on many systems.

The source code to INTERVAL ARITHMETIC is meant to be readable and modifiable
by the user, although a conservative approach to modifications is recommended. In
particular, it is hoped that this module will provide a basis for standardization of
syntax for interval computations in Fortran.

4. ADDITIONAL ASSUMPTIONS AND COMMENTS

In addition to the assumptions for which INTLIB is rigorous, it is assumed that
0 and 1 are represented exactly in double precision, and that conversion from in-
teger to double precision (e.g. with DBLE(I)) yields an exact representation. The
integer-to-double conversions are used in the mixed mode binary operations; if such
conversions are not exact, then the conversion should be done explicitly using the
function IVL. Representations of 0 and 1 are assigned explicitly in the module to
the parameter variables ZERO and ONE.

The four elementary operations, unary negation, and the routine RNDOUT were re-
defined in this module (i.e. the corresponding INTLIB routines are not always used)
for a combination of portability and efficiency considerations. The corresponding
INTLIB routines were used as templates.

Finally, as with INTLIB, the author has a non-portable version, using assembler
language for the directed rounding as in [Knüppel 1994], available for Sun Sparc
systems, that runs roughly twice as fast on those systems.

ACKNOWLEDGMENTS

I wish to thank my students Kaisheng Du, Xiaofa Shi and Shiying Ning, as well
as Claire Adjiman and George Corliss, who have used the system over a period of
several years, and have provided valuable suggestions. I also wish to thank John

8 · R. B. Kearfott

Reid for the extensive help he gave. Finally, I thank the referee, whose extensive
comments led to substantial changes.

REFERENCES

Crary, F. 1976. The AUGMENT precompiler. Technical Report 1470, MRC, University of
Wisconsin, Madison.

Hammer, R., Neaga, M., and Ratz, D. 1993. PASCAL-XSC, New concepts for scientific
computation and numerical data processing. In Adams, E. and Kulisch-U. (Ed.), Scientific
computing with automatic result verification, New York, etc., pp. 15–44. Academic Press.

Husung, D. 1989. Precompiler for scientific computation (TPX). Technical Report 91.1, Inst.
for Comp. Sci. III, Technical University Hamburg–Harburg.

Kearfott, R. B. 1995. A Fortran 90 environment for research and prototyping of enclosure
algorithms for constrained and unconstrained nonlinear equations. ACM Trans. Math. Soft-
ware 21, 1 (March), 63–78.

Kearfott, R. B., Dawande, M., Du, K.-S., and Hu, C.-Y. 1994. Algorithm 737: INTLIB:
A portable FORTRAN 77 interval standard function library. ACM Trans. Math. Soft-
ware 20, 4 (December), 447–459.

Klatte, R., Kulisch, U., Wiethoff, A., Lawo, C., and Rauch, M. 1993. C-XSC A C++
Class Library for Extended Scientific Computing. Springer-Verlag, New York.

Knüppel, O. 1994. PROFIL/BIAS — A fast interval library. Computing 53, 277–287.
Leclerc, A. 1993. Parallel interval global optimization in C++. Interval Computations 1993, 3,

148–163.
Neumaier, A. 1990. Interval Methods for Systems of Equations. Cambridge University Press,

Cambridge, England.
Walter, W. V. 1993a. ACRITH-XSC: A Fortran-like language for verified scientific comput-

ing. In Adams, E. and Kulisch, U. (Ed.), Scientific Computing with Automatic Result
Verification, New York, etc., pp. 45–70. Academic Press.

Walter, W. V. 1993b. FORTRAN-XSC: A portable Fortran 90 module library for accurate
and reliable scientific computing. Computing (Suppl.) 9, 265–286.

Yohe, J. M. 1979. Software for interval arithmetic: A reasonably portable package. ACM
Trans. Math. Software 5, 1 (March), 50–53.

