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Abstract

In predictor / corrector continuation meth-
ods, a step control adjusts the size of each
predictor step. In traditional step controls,
a heuristic is used to try to prevent these it-
erates from jumping to separate branches.
Such heuristics are not foolproof.

In interval step controls, the step con-
trol can be made rigorous in the sense that
it is mathematically impossible for the it-
erates to jump across paths or for bifur-
cation points to remain undetected, even
in finite precision arithmetic. Recent ex-
periments illustrate that such step controls
are effective and, in some instances prac-
tical. Recent programming language and
software developments make interval step
control technology more widely accessible.
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Outline of Talk

. Predictor—Corrector Methods
. Traditional Step Controls

. General Properties of Interval Newton
Methods

. Parametrized Interval Newton Methods
and Theory

The step control
Examples of Comparison
Speed of Interval Arithmetic

Availability of Interval Arithmetic Soft-
ware
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General Predictor—Corrector
Methods

correcting plane
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predictor
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Heuristic Step Controls

The predictor step length § is adjusted
(say doubled or halved) to control

1. the residual or

2. the number of steps of corrector itera-
tion, etc.

In [den Heijer and Reinboldt, STAM J. Nu-
mer. Anal. 18, 5 (1981), pp. 925-947], §
is adjusted according to an estimate for the
radius of convergence of corrector iteration.

Den Heijer and Rheinboldt observe that it
is impossible to have an infallible step con-
trol that is based on information only at a
finite number of points. However, interval
step controls implicitly use global informa-
tion.
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Illustration of Failure

This actually happens frequently!

X correcting plane
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Interval Newton Methods

Computational Fixed Point Theorems

Interval Newton methods are based on
Brouwer’s Fixzed Point Theorem or a vari-
ant of it, Miranda’s Theorem. They are op-
erators from interval vectors (boxes) X =
(x1,...,%,)! into themselves:

~

X =N(F; X, X)

where F' : R" — R", X € R" is a base
point, and N(F; X, X) is computed via in-
terval evaluations of the Jacobi matrix and
interval numerical linear algebra. (Details
can be found in various places.)

If N(F;X,X) C X then there exists a
solution of F(X) = 0 within X. For cer-
tain specific types of operators N(F; X, X),
it can also be concluded that this solution
is unique. (For example, see my upcoming
book, or other references.)
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Interval Newton Methods

Illustration
X
(1, z2)
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In this case, an interval Newton method
proves existence.
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Parametrized Interval Newton
Methods

In a parametrized interval Newton method,
an interval Newton method is applied to
H : R — R" by singling out a coordi-
nate t. Then, with appropriate interval ex-
tensions to the Jacobi matrix,

N(H(-,t);X,X) c HX,t)

implies that, for every t € t, there is a
unique solution of H(X,t) = 0.

Furthermore, we have proven that there
is a unique path passing through the faces
(X,t) and (X, 1) of the box (X,t) c R
Theorem 3.1, STAM J. Numer. Anal. 31,
3 (1994), pp. 892-914].

Because of this uniqueness, the iterates
cannot jump across branches or bifurcation
points with an interval step control.
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Parametrized Interval Newton

Illustration
X
e H(X7 t) — O ‘‘‘‘‘ l
Xl }J(X
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In this situation, the computations prove
that there is a unique path in the box, pass-
ing through the faces t =t and t = ¢.
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Interval Step Controls

Interval step controls involve adjusting the
size of X and choosing the index and width
of the parameter coordinate t to ensure

N(H(,t);X,X)CcX

A specific step control is given by Zhaoyun
Xing and me in [Theorem 3.1, STAM J. Nu-
mer. Anal. 31, 3 (1994), pp. 892-914].
We compare its performance to PITCON
on some problems with rapidly changing cur-
vature.
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Layne Watson’s Exponential
Cosine — n =35

With different heuristic parameter choices in PITCON,
behavior was erratic and unpredictable. In the interval
step control, heuristic parameters affected only efficiency,

not the curve obtained.
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Topologist’s Sine Curve

(w,sin(1/z))
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Dimension-Dependence

A Discretized Figenvalue Problem

The initial-boundary problem:
y' 4+ X =0
y(0) =0, ¥'(1)=0
is discretized with central differences into
H(X) =0, where

L1,
=1,
Ti_1 — 2x; + xiy1 + xNneYi x d,
Hi(X) = =9 N2
TN-1— TN-2,
1 =N —1,

where d = 1/(N —2)? and zy = X. To
include portions with changing curvature,
the curve is followed from A = 0 and x; = 0,
1 =1,...,N — 1, past a turning point of xy
with respect to xy_1. A plot of the curve is
in our paper.
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Discretized Eigenvalue
Problem

Interval Step Control

These results were with ACRITH-XSC on
an IBM 3090.

N steps ave.d CPU(s) CPUr. N°r.
10 252 0.019910  27.35

20 315 0.019921 198.00 7.24 8
30 371 0.019910 732.19 3.70 3.37
40 420 0.019950 1968.17 2.69 2.37
50 464 0.019954 4425.24 2.25 1.95
60 504 0.019957 8510.62 1.92 1.73

Average d and number of steps were very
similar with PITCON. Other comparisons
to PITCON, including performance near bi-
furcation points, also appear in the paper.
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Approximate Bifurcation Point

A Parametrized Family of Hyperbolas

H(z,t) =2 — (t — 0.5)* — p°
This picture was generated with p = 1071, PITCON

jumped across to the other branch. The step sizes varied

from appropriately large to appropriately small; a table

is in the paper.
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On the General Speed of
Interval Arithmetic

Task ACRITH| INTARITH
2106

10 1.0D0 30.7 | 19.7

6

I1;%.1.0D0 34.6 | 24.1
Compute sin(1) 117 7 11049
10® times
Compute 1% 10° 96
times '

Ratios of of interval to floating point CPU
times for ACRITH-XSC on an IBM 3090

and for INTLIB_ARITHMETIC on a
Sun Sparc 20 model 51

Interval Step Control

AMSSU-95-17




Interval Computations
Language Support

e Software developed under Prof. Dr. Kulisch’s
direction (the “SC” languages and the
“XSC” languages) will be described in
the afternoon sessions next week.

e I have portable software.

—INTLIB — A TOMS Algorithm, in
standard FORTRAN-77.

— Fortran 90 modules — an interval data
type, automatic differentiation, sup-
port for interval Newton methods.

— Reprints are available.
— Browse the URL:

ftp://interval.usl.edu/pub/interval math/www/kearfott.html
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