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Abstract. We present @ step control ~ for continuation methods ~ Wwhich s
deterministic in the  sense that it Wil never cause the algorlthm to
jump 2o paths; (i) it computationally " rigorously Veri es  that
the  corrector Iteration will  converge: and (iii) each  predictor  step IS
as Iarge as pOSSIbIe’ SubJeCt 1o assured convergence of the corrector

Iteration. The teChnique IS general in the  sense that It can be used Wwith
various  choices  Of predictor direction and  corrector manifold. ~ We present

performance data and comparisons for Brown’s  almost linear  function
and the |ayne Watson exponential function in various dimensions.

1. MOTIVATION AND INTRODUCTION

Throughout, Will  assume knowledge ©f both continuation methods

and  interval  mMathematics. An excellent  Introduction to continuation
methods  appears in Thorough introductions to interval  methods
appear in the Dbooks [13] or The proceedings [14] contains  surveys

and descriptions ©°f applications ©f nterval methods, ~While the  recent
survey []_()] summarizes some  Of the Dbasic facts.

Continuation methods == uUsed t0 compute  sequences of points
solution ~ manifolds  of systems ©Of » equations in » + 1 unknowns; e,

they are Used to Compute pOintS on  arcs in the set

(1.1) z. . LY eRn+1$H(Y):0},

where H: Rn+l — R%
There is » wealth of lierawre o applications Which involve — nding

s in the set Z Of (1.1), These applications dVide naturally into o

classes.  In the rst class, H models = parametrized physical system,

which we wish to study = the parameter Varies, such = in [12], In the
second class, we Introduce arti cial  parameter in order to solve (Qr

nd all solutions  tQ) 2 system of » nonlinear  eqguations in n unknowns

for which locally convergent Methods unsuccessful. ~ For problems
the second class, w may have mathematically rigorous guarantees that

w Wwill nd all solutions to the original system Ot equations, provided
the continuation method  reliably tracks the s in Z OF (7 7)7 [15],

for = introductory  explanation.
Many continuation methods e instances  Of the following general

,predictor—correctoralgorithm.



ALGORITHM 1.1.

L. Input:
(a) the Initial p0|nt on the arc Y < YO and arC'fO”OW|ng Stopplng
criterion PS:

(b) the minimum predictor stepsize 6min, and the maximum predictor
stepsize 6m”; and

(C) a corrector stopping criterion CS.

2. (Predictor-corrector Iteration) Repeat the following until ‘PS5 s satis-
ed.1

(a) Compute - predictor step length 6;

(b) Compute = predictor step direction B (where 1) and .
predicted point o the

70 : Y + (SE.

(C) Choose an N—dimensional corrector manifold S such that ZQ E S

(d) Compute = corrected  point Z by using = locally convergent Method
whose  starting point is 70 and whose iterates all lie in S iterate
the method until CS is satis ed.

(e) Replace Y by 4

The direction B may be taken to Dbe tangent the g, it may D€
coordinate vector which is adaptively chosen on €ach corrector step,

may De « xed coordinate vector, o it may only Pe implicitly given =
B - Y Z0 when 2 higher-order method is used to determine Z0.

The corrector Iteration manifold S is often taken to be the af ne gpace

C()ntaining 20 and orthogonal to B. In that e  the corrector Iteration
may Pe dened Py applying Newton’s method o variations (such =

quasi-Newton methods) © the augmented system H(Y) 0, where

Alternately, for the same S = in (1,.2), the corrector iteration may  CONSISt
of applying Newton’s method to the system H. - (Q, where

(1) v H - ZIps-W)

where P (pl,p2,..,pn) @and Where {WJ}’)]_S . set of gorthogonal

vectors such that W~ B : 0 for between 1 and

1The items in this step may be  computed in . oOrder di erent from that  gjven here,
depending the detalls of how they ae computed.



Step 2(a) °f Algorithm 1.1 termed  the steplength algorithm, has been
much  studied; s [5], [6], [7], and  T20], among much such work.  As

is mentioned In [7], such  step controls  involve  heuristics which, under
certain  circumstances, may lead to failure of Algorithm 11. In partic—
ular, if 6 is chosen too Jarge, then the corrector Iteration may  converge

to a p0|nt which IS not on the O“g'nal arc: see F|gure 1. Such fallures

would be dif cult to detect automatically, ad may lead to misleading
conclusions about the prob|em. The failure cn be corrected for Speci C

prOblemS by using a more conservative heuristic, but Only prOV|ded we
know it has occurred.

Flg 1. An undetectable farlure of the Step
control  algorithm.

In this paper,  we describe a step control  for which it is mathematically
|mpOSS|b|e for fallures as IN F|gure 1, even when the procedure IS ImM-

plemented on 2 Nite  precision computer. Our  step control is based o
interval  arithmetic  procedures Which  provide computational V&' cation
that there is a ynjque root in a2 given region, and that Newton’s  method

will converge  to that oot Such procedures generally give unambiguous
results prOVided the size of the region is small enough, while, In o

context, w may control the region’s size by increasing o decreasing the

stepsize.
An alternate  interval method  for describing the solution  set Z of (].1)



IS given in [18]. In that method, Neumaier obtains the entire  solution

set, = opposed t = set of points o = single =  However, that  technique

involves (adaptive) subdivision of the entire  gpace  TOr some problems,
the amount of work gy  Increase oo rapidly as - function of n INn con—

trast, the method proposed here  reliably solves a more modest problem,
but may  possibly be mee  easily modi ed o work practically for larger

n.

In Section 2 w present the ideas ynderlying the interval  gtep ~ control.

In Section 3, w gjive the iInterval step ~ control algorithm, and we also
present simple but  successful non—interval step control which  we  will

we for comparisons. I Section 4, we present or  humerical comparisons.
In Section 5 we Ssummarize and  present conclusions.

2. THE UNDERLYING CONVERGENCE TEST

Throughout, we Wil denote pOintS INn R” o n—vectors by uppercase
letters and scalars Py lowercase letters. We will denote  the corresponding

Interval guantities by boldface.
We denote  the box in p_gpace  deSCribed by

{X :(1131,a:2,...,;:1:n)|le< x for 1S 1S n}
by X. We  may then  transform the nonlinear problem

Find all solutions of the nonlinear system

F(X):  (fl(:cl,m2,...,.ern),...,fn(:cl,m2,....xn)) 0,

where bounds |-and . ae known such that

(2.1)
ligmi
to the linear Interval problem

Find a box X which contains all solutions of the
linear  Interval  gystem

(2-2) Fi(X)(x  X) - —F(X),
Where [’ is an elementwise Interval extension

of the Jacobian matrix,

and where X E X is = gpproximation t @ root of F. (See ey [13].)
Neumaier ~ shows in [17] that, for many  common ways OF solving (2.2),

if X c X, then the gsystem Of equations " (2.1)
(2-3) has 2 ynique solution  in X and Newton's method

Starting at X will converge to that solution.



Furthermore, ~ if directed  roundings [13]) ~ used, then the condition

in (2_3) may be checked with mathematical rigor o & computer.

Our Interval step control  will be based on (2.2) and (2.3)_ By including
the Interval value d - [0’5] in the computations, “e will  verify the
condition (2_3) simultaneously for all corrector Iterations corresponding

to pred|Ctor Steps between 0 and 5.
In the remainder of this section, w Wil st present the  convergence

test based on (22) and (23) N a general Setting. We will then de-
scribe  the speci ¢ version  of this  convergence test which we used in the

numerical  experiments.

Suppose that the corrector manifold S corresponding 1 Initial point
Y and predictor step 3 i given by

(24) s - {T0O/33,13) ¢ R"}
Also choose a function such that
(1) W) - 0;

(2) q(6) 's = monotonically increasing function  of 3;
We make the following assumption in order to assure that the test will

accept the predictor step for all suf ciently small 6.

ASSUMPTION 21.  The functions r and ¢ ae continuous, andr  is one-to—
one. Furthermore, for each ¢ such that 0 < ¢ g 1 and each ¢ > () there

exists 2 60 > O such that 1T S 60, then, for every W with 1
and W o B 7z g there is o V - 77WTOr somen with 7S 5 with V
r(Y,g’_X)Y for sme  3(—n the interior Of{x e R" ] 1]X]|0Og

Also, the Jacobian  matrix 81*(Y$5X)/6X is offul] rank for ey X SucCh
that HXHO@Bq(B),and each wvector U with U o (r(Y,6,X) YY) O iS
in the range  OF 5r(Y,6, X)/8X.

The conditions on the Jacobian matrix  5r(Y, 6,X)/8X preclude the

surface 7'(Y’6, *) from d|pp|ng tangentla”y towards Y. They also  assure
that the surfaces I’(Y, B, ()) where O is a xed gpen set in the interior of

X with O 0 will interSECt, in the limit I O’ all  arcs emanating
from Y at « acute gngle with  B. These  conditions are  CONvenient In

the proofs, have not been  proven  t0 D€ necessary.
Assumption 21 would hold if S is de ned a In (13), if

(Y,6P)  Y+5B+Zp,-W,,

and If C](6) - 6—77for some 17> 0. This situation is illustrated N Figure
2.



F|g 2. lllustration of Assumption 2.1 when S
s the hyperplane perpendicular to B.

Assump’[ion ) 1WOU|d also hold If the S CorrespOnding to 3 were a
sphere of radius 6 centered at Y and If the parametrization P and CI(G)

were  Such that {X ER" | HXHO® wee  the  hemisphere centered

at Y + EB. (Sych could be grranged easily With = parametrization ~ in
terms  Of spherical coordinates and  with 6q(6) the appropriate Constant.)

When we  Solve (22) for i’ the Components of 1  will genera”y have
smaller  widths  than  those of X proyijded each matrix A in the Interval

extension F’ (X) of the Jacobian matrix ~ of F is well-conditioned and  pro-
vided the widths of the entries of F'(X) ae suf ciently small. (COmpare
with  Proposition 5 I [17].) For common Interval  extensions of  compo—
nents  Of continuous F’ the widths of F'(X) tend to zr  as the widths

of X tend to 0. In other \ords, if there is a X* E X with FOX*) - 0, If

the entries of F’ are continuous, and If F'(X") 1S nonsingu|ar, then (23)
will  hold provided the widths of the Components of X are suf Ciently

small. ~ For this yea50n. we Wish to have the following property.

ASSUMPTION 2.2.  Assume |imgn0 5q(5) 0.

We may now State our main results. For O S 3 S 6, let

X: {Xe R 1HXHOO 6q(3)},



let

(2.5) X, X0 U Xb.
03535

De ne
F5(X)  H(r(Y.6,

so  that
ar (\(&67‘ X)

8X

F5(.X):H'(r(1”,6,}5))
Furthermore, de ne the extension of FAX) to d by
FAX) - H (‘r(Y.,d, X)),

and extend |0 to X6 by

mpg) " (my, d,X6)).

Similarly extend by

(97°

(3 (mm

(2.6,) Eton) - 1 (r(17,d,Xa))

Where $956011 X5) is the matrix  of partial derivatives of  with  respect
to the variables X formally evaluated with  grgument Y and Interval

arguments d and X5, We then have

THEOREM 23.  Assume X 6 X5, Consider  (2.2), with X5 replacing

X, £711029placing F(X) (Where X & X5 replaces X), and
replacing F'(X). Also  assume that the interval  enclosure  3(- of the <«

lution set o (2 .2) IS Inclusion monotonic with  respect t© F’(X) and
1f(X) oHE ¢ xE then, for each 0 s 3 g 6 the system ©F equations

FE(X) - H (7'(Y,5’X)) O has & ynique solution X3, and  Newton’s

method  applied 1© F3(X)and with  starting point X Wil converge 0

X.
6.

PROOF orF THEOREM 2.3:  As described in the statement of the theo-
rem. (2.2) becomes

(2.7) o
A (r(Y,d, X6)) 8T((\>{d,@(g$) (1- X): -Fd(X).

8X

On the other phand7 the system corresponding t (2.2) for F3(X) 0

2Such is the case for the methods of obtaining | treated I [16] and [17].

7



[ 1164 x3) arge®( & 3))
> IH’(r(Y,d, Xa))Waiting)

provided w have made inclusion monotonic interval extensions
(Cf [13]) . Since we also have FAX) Q Fd (X) and since we are also
assuming that Y in (2.2) IS Inclusion monotonic with respect o the
interval function and  Jacobian matrices, we obtain

10e1CXq,

where the second inclusion s tue by hypothesis. Therefore, (2.3) IS true
for X3replacing 1, Wwith X5 replacing X, and with  F3eplacing F i
(2.1). That  completes the proof.

Theorem 2.3 assures us that, 1 (27) hOIdS, then there IS a un|que
solution  to the corrector equation (as In (1.2) or (1.3)) for each predictor
step 3 E [0,5], and  corrector iteration with initial  guess X Will  converge

to that solution.

The next theorem wWill  assert that  the point X[ of Theorem 2.3 to

which corrector Iteration converges Corresponds to a pOint / E Z of
(11) on the same connected Component of Z a the previous po|nt Y,
In_other  \yords, we ae assured that the phenomenon of Figure 1 cannot

oceur. We make the following assumption in order to gpply the implicit
function theorem as  IN

ASSUMPTION 24.  Assume  that H q, and 1 have continuous rst partial
derivatives.

We make the following assumption = that, in combination with  As-

sumption 2.1, v may conclude that (Y d, X5) has = (n+ 1)-dimen—
sional interior.

ASSUMPTION  25. IfH’(Y)VO O, then V0o B 7[EO.

THEOREM 2.6. Suppose the hypotheses of Theorem 2.3 and Assump_
tions 21 24 and 25 hold. Then  the point X: to which  corrector



Iteration converges COrreSpOndS 0 a p0|nt Z on the same arc on as Y.

Furthermore, the Jacobian matrix IS nOnsingu|ar at  every point on the
are between Y and Z.

PROOF oF THEOREM 2.6:  Fijrst, oObserve XinUSt Contain@” solutions

to all systems of equations of the form A(X | X) r FAX)’ where
A. E F:5(X5); therefore, Fé(X)iS nonsingular T every X E X5 and gyepy

with 0 g 3 g 5 Thus, H (To; 5,X)) is of full rank and gn; 5, X) /aX
must  be ponsingular " every (6,X) E d x X5, = the jmplicit function

theorem s Stated o 5 20 of IS true at gyery point Z0 E 7O(Yd, X5).
Also, r(Y,d,X5) s compact and, by Assumption 21 and Assumption
2.4 must Dbe (11+1)_dimen3i0na|. These  facts allow w to conclude  that

Z 1 7'(Y,d,X5) CoNsIsts of = nite  number of nonintersecting s  and
circles.

| et 16(5) represent the arc such that 16(0) : Y and such that 5

represents  arclength, 'et \/(s)  1’b(s)- Y, and let \VQdenote the tangent
to the a at Y ie. VD  YQO'(O)Furthermore, orient VO« that VOOB -

2c0 > 0. Also, since |ims_,0 - VD, there is = 5 such
that, for s < E (V(s) ° > co.

The above and Assumption 21 allow s to conclude that there is a
60 6 such that, for each 3 g 50 there is s s < 5 such that YO(5)

Corresponds to a Solution of F X) ; 0 IN X5 TO  see thlS, choose

° < maxsgg :”V(S)Hz,then use Assumption 21 to set a B0 so that, If
3 g 60’ there are W and V s IN Assump'“()n 2.1 with W o B ?  c0.

Now note  that, since |imsag HV(5)“2 0, there ae a0 g1 g 3 such that
IVEDIZ2® minWE ijé) “WM, and a3 With 5 S 5 g 5 with

HV(32)H2 maxWEdyyax |, Then, for each s with 5 < s <
92 de ne W(s) E 7*(Y,3,X5t) be a vector in r(Y’3’X5) in the same
direction as V(S). must  exist  phy Assumption 2.1.) We then  set

h(s) = HV(B)H2 “Vt/(5)*“, Then, from the portion of Assumption 21
dealing with  8r/8X W(S) may be de ned s that h(s) IS continuous.
Furtherm()re’ h(SI) B 0 and Mn) 2 0. Therefore’ for  some 53 between

51 and 92 h(53) -0, V(53) r W(53) Thus’ since Theorem 2.3
asserts ~ that such solutions In X5 a ynique, It 5- 50, the conclusion  of

Theorem 2.6 IS true.

Assume  that S5 > g@Q, and that the conclusion to  Theorem 2.6 IS

not  true. We note  that {YO(S) |s 2 ()} r(Y,d,X5) is closed since
X5 and d ae  closed. But, if for each 3 S @ there wee  w o with

Y0(5q)E r(Y’g’XS), then  Theorem 26 would be true py the ynpjque-

ness  conclusion of Theorem 23.  Therefore, w must conclude there  are

an 54 and a 61 2 60 such that YO(54)E 87'(Y,61,X5), and there s no



point of YO(s)in r(bY,3,X5%r 3> 51. (See Figure 3.) However, for
each 3 with @1 < 6 < 6, there must be an Yg(s) and  an 33 such
that Y3(53)E r(Y’g’X6) But Y?)(S) r(Y,d’X6) must  also be closed,
o there Is a2 62 withgbl < 62 < 3 such that there is no point of Ygin

r(Y’ 6*,)(5) for 6* < 62. Therefore, there must be 2 third ac Y5_WhiCh

intersects 7]_(Y(1,X5)_ We may continue this  argument to conclude  that
there ae an In nite  number  of acs  wWhich intersect r(Y’ (1,)(5)- but that

contradicts oor  previous —conclusions. Therefore, Theorem 2.6 must be
true. |
Flg 3. Illustration of what must occur 1T con-
vergence iIn  Theorem 2.3 IS to  more than  one
The nal theorem  in this section  assures ss that I ¢ X5 whenever

we choose 6 small enough.

THEOREM  27.  Syppose Assumptions 2.1, 2.4, and 25 phold, and X5
F5,and [F'Qee o in Theorem  2.3.  Fyrthermore, esume H* is offull rank

N a neighborhood of Y. Fina”y’ assume that the interval extension F2
is such  that, ifA E.FZ(X5)Ehen A — Fg(.)()s (d,X5) - (6, Also,
assume we solve (2 . 2) Via one of the methods exp|a| ned IN [17] _ Then,

for X suf Cientlyclose to a solution of FAX) O and for 6 gf ciently
small, X cC Xb.

10



We note that most  common interval  extensions  obey the assumption
on in Theorem 2.7. We g|sp note that most  common prediCtOl" steps
B and corrector manifolds - obey Assumptions 2.1, 22 24, and 25

orovided q is chosen = explained Pelow Assumption 21

PROOF ofF THEOREM 2.7. The proof will be based o Proposition 5, p.
265 of [17].
By the assumption the interval  extension Fz’by the nonsingularity

assumptions o H and 8r/(9X, by Assumption 2.2, and  py the portion
of Assumption 21 dealing With the range OF (aw/(3X,* may choose =

(51such  that, if 5< 61, then each A E FHXg)IS nonsingular, that  the

Interval INVerse F2(X5)|h one of the  senses I exIsts. AISO, let
Xglbe the solution to EEOC) O which Corresponds to the ar through

Y. Then. = Iin the proof of Theorem 26, v may take 60 S 51 « that

X5emuxn n %adm maemmxmsmemmnmofx@y

If X (Xl,XZ, n) where  x. - [ab|y] then we de ne
the vecor gp| alb2 @2.. bn an), and de ne  p(M) S|m|IarIy, It
M is a Interval  matrix. Also, w de ne

(max all: amax a’zla . amax‘llalla

and de ne similarly. (See [16] for details of these e nitions.) Then
2 consequence of Proposition 5 of [17]'s
am HK—X
where

Ham)Fuxnllm.

On the other hand, since X_Egint(x5) and since [0,6] 1S compact,

T In‘In > (),
03636

Where d(p 6Q) is the distance  of the pojnt P © the boundary o©f the set
Q In the in nity nom By this de nition, it follows that

llls-st . < = 'eX¢

o that it remains to show that, for suf ciently small 5 we have



But  (2.9) implies

7I

N IX_OOX?“ f X—Xg . < . for  every 6 f O°.

|
T0 COmpIete the prOOf, we show that we can make IX XEJ‘I as

small s w please by making 5 small and by making )2 X 6 1. small.

But, for 6 gmall enoquf may app|y the implicit function  theorem on
o, 20 of to F5 to obtain, for 0 f 6 S 5

(2.10) - XE.  0(6).

lloo

we complete the proof by applying (2.10) '™ conjunction with ~ the  tri—
angle Inequality. |

We conclude this section  with  some interpretive  observations. First,
Assumptions 2.1, 2.4, and 25 ae ot restrictive, ~ but e« usually be
made to hold if the continuation method  algorithm s constructed  prop—

erly. Also, Assumption 2.2 deals with how we construct the  step control
algonthm’ and  can be made to hold. F|na||y, we  Note that we can ob—

tain a Interval  extension o any function which is | jpschitz continuous.

Hence, e can, N theory, devise = foolproof continuation method  for

any parameter-dependent system H the  components of whose  Jacobian
matrix  ae | Jpschitz continuous.

3. SPECIFIC  ALGORITHMS

In this section, w give details ~ of the glgorithms in which we have
Implemented the ideas in Section 2 while in Section 4 w report ™

merical  experiments  based o these  glgorithms. ~ OUr algorithms have
several  parts, which  we  sjngle out In Section 3 ] we describe  the con-

struction of » and construction of the function F5 and Interval Jacobian
matrix 2 In Section 32 we detail the Interval Gauss-Seidel procedure

we  Uuse to solve (22) In  Section 33, we  describe the algonthm we  use
o adjust 6 s that the conditions of Theorem 2.3, Theorem 2.6, and

Theorem 2.7 ae Satis ed. In Section 3.4, w outline the non-interval

step control  procedure v employ for comparisons. Finally, in Section
3.5 we indicate  the three  ays which w choose the predictor step B in

the experiments.

3.1 The  functions F5and F'.
As is indicated above (2.6), w must compute 7 in order to obtain

values for F5 and In o experiments, e take 7 consistent with

12



(1.3), namely

(3.1) T012213) Y + 5183+ 21 mm,

1:0

where P (pl’pz”pn) and  where {I/VJ}’)Ii a set Of OrthOgOna|

vectors such that \\/ o B - 0 forj between 1 and
See Section 3.5 for the three a5 in which w select B in the experi-

ments.

Once w have computed B, v determine the orthogonal  set {VVJ}f)l

by Computing 2 QR—factorization of the Jacobian matrix of B de ned in
(12) the rst 7z columns of Q are then Vectors W] which are Orthogonal

to B

Once B’ {VI/j}?Z and 6 Section 3.3 beIOW) are ava| Iable, we
compute  F5, Fd, and Fd directly from (3.1) and from the de nitions
of Fd and Fd above (2.6). We similarly compute and  F7(X)

directly from (3.1) and (2.6), once we have observed that jth column  of

%(Y,d,X5) -+ simply W],
We also similarly compute F5 and F

The computations simplify considerably if B. is o of the coordinate
vectors. In that  .55e  the Wj ae also chosen to Dbe coordinate vectors.

3.2 The Interval Gauss-Seldel procedure.

The basic prgcedure for Computing enclosures to the System (22) IS
similar ~ to that in [1Q] and in T11], but is adapted to this context. The

oUrpose of the algorithm in this  context IS to determine whether 2 given

Stepsize 6 IS acceptab|e according to the criterion X ¢ X of Theorem
2.3, Theorem 2.6, and Theorem 2.7.  We summarize in the  following

algorithm.
ALGORITHM  3.1.
(1) Input Y, B, {W]_}:z, and 6.

(2) (Get hypothetical ~bounds  for the new  point o e arc.)
(a) Evaluate q(6) - 60, Where

~ (10g(T)/10s(6m) ' 10g(T)/108(6m)> -
{_'9 it log(T)/10g(6m)g —1

Where T is the maximum allowed  tangent Of = angle between

the pred|Ct0r Step and the tangent to the ac al Y, and 5m
is the minimum  predictor Stepsize.3

3This sets it ;, s« that the secant between the ac at Y and the pojnt o 7~ at 6m I
assumed to be at most T. In the experiments, used T : 50 and 6m : V1067”7 |

47 x 10—8,where cm is or double  precision machine  epsilon.
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