Math. 350-01 Summer, 2017 R. B. Kearfott

Fourth Exam Monday, July 24, 2017, 8:00-9:00AM

This exam is closed book, but you may use calculators. Make sure your name is on all pages. Show all work, and show it in a logical and organized manner.

• (Refer to Table 1 to do this problem.) Use Laplace transforms to find the solution to

$$y'' + y = \sin(2t) - u_{2\pi}(t)\sin(2(t-2\pi)), \quad y(0) = 0, \ y'(0) = 1.$$

$f(t) = \mathcal{L}^{-1}\{F(s)\}$	$F(s) = \mathcal{L}{f(t)}$	Notes
1. 1 concentration $\Gamma = (0)\gamma$	$\frac{1}{s}, s > 0$	Sec. 6.1; Ex. 4
$\frac{1}{2} e^{at} = \frac{1}{2} e^{at}$	$\frac{1}{s-a}, \qquad s > a$	Sec. 6.1; Ex. 5
3. t^n , $n = \text{positive interval}$	eger $\frac{n!}{s^{n+1}}, s > 0$	Sec. 6.1; Prob. 27
$4. t^p, \qquad p > -1$	$\frac{\Gamma(p+1)}{s^{p+1}}, \qquad s > 0$	Sec. 6.1; Prob. 27
5. sin <i>at</i>	$\frac{a}{s^2 + a^2}, \qquad s > 0$	Sec. 6.1; Ex. 6
6. cos at	$\frac{s}{s^2 + a^2}, \qquad s > 0$	Sec. 6.1; Prob. 6
7. sinh <i>at</i>	$\frac{a}{s^2 - a^2}, \qquad s > a $	Sec. 6.1; Prob. 8
8. cosh <i>at</i>	$\frac{s}{s^2 - a^2}, \qquad s > a $	Sec. 6.1; Prob. 7
9. $e^{at} \sin bt$	$\frac{b}{(s-a)^2+b^2}, \qquad s > a$	Sec. 6.1; Prob. 13
10. $e^{at}\cos bt$	$\frac{s-a}{(s-a)^2+b^2}, \qquad s > a$	Sec. 6.1; Prob. 14
11. $t^n e^{at}$, $n = \text{positive in}$	teger $\frac{n!}{(s-a)^{n+1}}$, $s > a$	Sec. 6.1; Prob. 18
12. $u_c(t)$	$\frac{e^{-cs}}{s}, \qquad s > 0$	Sec. 6.3
13. $u_c(t)f(t-c)$	$e^{-cs}F(s)$	Sec. 6.3
14. $e^{ct}f(t)$	F(s-c)	Sec. 6.3
15. $f(ct)$	$\frac{1}{c}F\left(\frac{s}{c}\right), \qquad c > 0$	Sec. 6.3; Prob. 19
$16. \int_0^t f(t-\tau)g(\tau)d\tau$	F(s)G(s)	Sec. 6.6
17. $\delta(t-c)$	a_{11} (a, this problem we need to assume that Goroliary 6.2.2 for $n = 1$ [b, c^{2-3}] and ($n = 1$)	Sec. 6.5
18. $f^{(n)}(t)$	$s^{n}F(s) - s^{n-1}f(0) - \dots - f^{(n-1)}(0)$	Sec. 6.2
19. $(-t)^n f(t)$	$F^{(n)}(s)$	the states good tank

Table 1: Table of Laplace Transforms

319