Exact Bounds on Sample Variance of Interval Data

Scott Ferson1, Lev Ginzburg1,
Vladik Kreinovich2, and Monica Aviles2

1Applied Biomathematics, 100 North Country Road,
Setauket, NY 11733, USA, \{scott,lev\}@ramas.com
2Computer Science Department, University of Texas at El Paso
El Paso, TX 79968, USA, \{maviles,vladik\}@cs.utep.edu

Abstract

We provide a feasible (quadratic time) algorithm for computing the
lower bound V on the sample variance of interval data. The problem of
computing the upper bound \overline{V} is, in general, NP-hard. We provide a
feasible algorithm that computes \overline{V} for many reasonable situations.

Formulation of the problem. When we have n results x_1, \ldots, x_n of repeated
measurement of the same quantity, traditional statistical approach usually starts
with computing their sample average

$$E = \frac{x_1 + \ldots + x_n}{n}$$

and their sample variance

$$V = \frac{(x_1 - E)^2 + \ldots + (x_n - E)^2}{n - 1}$$

(or, equivalently, the sample standard deviation $\sigma = \sqrt{V}$); see, e.g., [1].

Sample variance is an unbiased estimator of the variance of the distribution
from which observations are assumed to be randomly sampled. For Gaussian
distribution, this estimator is a maximum likelihood estimator of the distribution
variance.

In some practical situations, we only have intervals $x_i = [\xi_i, \pi_i]$ of possible
values of x_i. This happens, for example, if instead of observing the actual value
x_i of the random variable, we observe the value \tilde{x}_i measured by an instrument
with a known upper bound Δ_i on the measurement error; then, the actual
(unknown) value is within the interval $x_i = [\tilde{x}_i - \Delta_i, \tilde{x}_i + \Delta_i]$.
As a result, the sets of possible values of E and V are also intervals. The interval E for the sample average can be obtained by using straightforward interval computations, i.e., by replacing each elementary operation with numbers by the corresponding operation of interval arithmetic:

$$E = \frac{x_1 + \ldots + x_n}{n}.$$

What is the interval $[V, \overline{V}]$ of possible values for sample variance V?

When the intervals x_i intersect, then it is possible that all the actual (unknown) values $x_i \in x_i$ are the same and hence, that the sample variance is 0. In other words, if the intervals have a non-empty intersection, then $\overline{V} = 0$. Conversely, if the intersection of x_i is empty, then V cannot be 0, hence $\underline{V} > 0$. The question is (see, e.g., [2]): What is the total set of possible values of V when the above intersection is empty?

For this problem, straightforward interval computations sometimes overestimate: E.g., for $x_1 = x_2 = [0, 1]$, the actual $V = (x_1 - x_2)^2 / 2$ and hence, the actual range $V = [0, 0.5]$. On the other hand, $E = [0, 1]$, hence $(x_1 - E)^2 + (x_2 - E)^2 = [0, 2] \supset [0, 0.5]$. Three intervals x_i equal to $[0, 1]$ show that a centered form also does not always lead to the exact range.

The problem reformulated in statistical terms. The traditional sample variance is an unbiased estimator for the following problem: observation points x_i satisfy the equation $x_i = u - \varepsilon_i$, where u is an unknown fixed constant and the ε_i are independently and identically distributed random variables with zero expectation and unknown variance σ^2.

In our paper, we want to handle a situation in which each observation point \tilde{x}_i satisfies the condition $\tilde{x}_i - u - \varepsilon_i \in \Delta_i \cdot [-1, 1]$, where the values Δ_i are assumed to be known. From this model, we can conclude that each $u + \varepsilon_i$ is contained in the corresponding interval $\tilde{x}_i + \Delta_i \cdot [-1, 1] = x_i$. As a solution to this problem, we take the interval consisting of all the results of applying the estimator V to different values $x_1 \in x_1, \ldots, x_n \in x_n$.

Our first result: computing V. First, we design a feasible algorithm for computing the exact lower bound \underline{V} of the sample variance. Specifically, our algorithm is quadratic-time, i.e., it requires $O(n^2)$ computational steps for n interval data points $x_i = [x_i, \overline{x}_i]$. We have implemented this algorithm in C++, it works really fast. The algorithm is as follows (the proof that this algorithm is correct will be provided in the full paper):

- First, we sort all $2n$ values x_i, \overline{x}_i into a sequence $x_{(1)} \leq x_{(2)} \leq \ldots \leq x_{(n)}$. This sorting requires $O(n \cdot \log(n))$ steps.
- Second, we compute E and \overline{E} and select all “small intervals” $[x_{(k)}, x_{(k+1)}]$ that intersect with $[E, \overline{E}]$.

• For each of selected small intervals $[x(k), x(k+1)]$, we compute the ratio $r_k = S_k / N_k$, where

$$S_k \stackrel{\text{def}}{=} \sum_{i: x_i \geq x(k+1)} x_i + \sum_{j: x_j \leq x(k)} x_j,$$

and N_k is the total number of such i’s and j’s. If $r_k \notin [x(k), x(k+1)]$, we go to the next small interval, else we compute

$$V'_k \stackrel{\text{def}}{=} \frac{1}{n-1} \left(\sum_{i: x_i > x(k+1)} (x_i - r)^2 + \sum_{j: x_j < x(k)} (x_j - r)^2 \right).$$

(if $N_k = 0$, we take $V'_k \stackrel{\text{def}}{=} 0$).

• Finally, we return the smallest of the values V'_k as V.

Second result: computing V is NP-hard. Our second result is that the general problem of computing V from given intervals x_i is NP-hard.

Third result: a feasible algorithm that computes V in many practical situations. NP-hard means, crudely speaking, that there are no general ways for solving all particular cases of this problem (i.e., computing V) in reasonable time.

However, we show that there are algorithms for computing V for many reasonable situations. For example, we propose an efficient algorithm A that computes V for the case when the “narrowed” intervals $[\bar{x}_i - \Delta_i / n, \bar{x}_i + \Delta_i / n]$ where $\bar{x}_i = (\bar{x}_i + \bar{x}_i) / 2$ is the interval’s midpoint and $\Delta_i = (\bar{x}_i - \bar{x}_i) / 2$ is its half-width do not intersect with each other. We also propose, for each positive integer k, an efficient algorithm A_k that works whenever no more than k “narrowed” intervals can have a common point.

Acknowledgments. This work was supported in part by NASA under cooperative agreement NCC5-209 and grant NCC 2-1232, by NSF grants CDA-9522207, ERA-0112968 and 9710940 Mexico/Conacyt, by the Air Force Office of Scientific Research grant F49620-00-1-0365, and by Grant No. W-00016 from the U.S.-Czech Science and Technology Joint Fund.

The authors are greatly thankful to the anonymous referees for very useful suggestions.

References
