Dear All: I am forwarding this from M.V.Rama=20
Rao.

I am retired from the university, but =
perhaps some=20
of you might be able to point him to possible post-doc =
positions.

Ray Moore

----- Original Message -----=20
**From:** M.V.Rama=20
Rao
**To:** Ray Moore
**Sent:** Wednesday, December 01, 2004 12:25 AM
**Subject:** Interval methods for uncertain mechanical=20
systems

Sir,

I submitted my Ph.d thesis on " Analysis of Cable stayed bridges by =
Fuzzy-finite element modelling" in May,2004 at Osmania=20
University,Hyderabad,India. The thesis is currently under review by =
examiners. I=20
am currently awaiting the result.

I made an attempt to extend the methodology of Prof. Rafi Muhanna =
to=20
include to effect of simulatneous presence of multiple uncertainties. I=20
considered uncertainties in Young's modulus, live load and mass density =
in my=20
analysis. I used object oriented programmming approach and developed a =
class=20
"Fuzzy" and used objects of that class (interval variables) in my =
finite=20
element program in place of floating point variables. I used my program =
to=20
analyse a cable-stayed bridge existing in Belgium (Centre canal bridge). =
I=20
tabulated the results for various combinations of uncertainties. I was =
able to=20
get good results.

I herewith enclose the abstract of my Ph.d thesis for your kind=20
comments.

I propose to pursue Post-doctoral research in this area as soon as =
I obtain=20
my Ph.d degree.

Can you please help me in this regard?

With warm regards

With warm regards

M.V.Rama Rao

*Ray Moore =
<rmoore17 [at] columbus [dot] rr.com>*=20
wrote:

This=20 well-written paper by Neumaier and Pownuk offer a new method =

representing=20 an advance over pre-existing methods for a particular class of =

problems:=20 uncertainty analysis in structural mechanics based on finite =

element=20 analysis when the only uncertainty is in the element stiffness=20

coefficients. The authors intelligently exploit the structure of = such=20

problems with "proper pre-conditioning" and iterative methods. = Well-chosen=20

examples illustrate the advantages over other = methods.

Perhaps only=20 two suggestions are in order. (1) Some brief summary of the key =

ideas of=20 "the new approach" should be included in the abstract and in the=20

introduction. (2) On page 22, lines 4 and 5 from the top, the u's = should=20

have double-primes.

Congratulations Arnold and Andrzej, = this is an=20 excellent paper.

Ramon Moore

----- Original Messa! ge = -----=20

From: "Arnold Neumaier"

To: = "interval"=20

Sent: Monday, November = 29, 2004=20 10:24 AM

Subject: Interval methods for uncertain mechanical=20 systems

> The following paper can be downloaded = from

>=20 = http://www.mat.univie.ac.at/~neum/papers.html#linunc

>

>

&= gt;

>=20 A. Neumaier and A. Pownuk,

> Linear systems with large = uncertainties,=20 with applications to truss

> structures

>

>

>=20 Abstract

> --------

> Linear systems whose coefficients = have large=20 uncertainties

> arise routinely in finite element calculations=20 for

> structures with uncertain geometry, material properties, = or=20 loads.

> However, a true worst case analysis of the influence of = such

> uncertainties was previously possible only for very small = systems

> and uncertainties, or in special cases where the = coefficients=20 do

> not exhibit dependence.

>

> This paper presents = a=20 method for computing rigorous bounds on the

> solution of such = systems,=20 with a computable overestimation factor that

> is frequently = quite=20 small. The merits of the new approach are

> demonstrated by = computing=20 realistic bounds for some large, uncertain

> truss structures, = some=20 leading to linear systems with over

> 5000 variables and over = 10000=20 interval parameters, with excellent

> bounds for up to about 10% = input=20 uncertainty.

>

> Also discussed are some counterexamples = for the=20 performance of

> traditional approximate methods for worst case=20 uncertainty analysis.

>

>=20

M.V.Rama Rao =
M.Tech,MIE,MICI,MISTE

Assistant=20 Professor in Civil Engineering(Selection Grade),

Vasavi College of=20 Engineering,Hyderabad-31 INDIA

Phone : = 91-40-2353 2350=20 (R) 91-40-2351 7494(R)

FAX 91-040-2352 5323 College =

e-mail ramu_mallela [at] yahoo [dot] com<= /DIV>

Assistant=20 Professor in Civil Engineering(Selection Grade),

Vasavi College of=20 Engineering,Hyderabad-31 INDIA

Phone : = 91-40-2353 2350=20 (R) 91-40-2351 7494(R)

FAX 91-040-2352 5323 College =

e-mail ramu_mallela [at] yahoo [dot] com<= /DIV>

Do you Yahoo!?

The all-new My = Yahoo! =96 What=20 will yours do? ------=_NextPart_001_001C_01C4D778.F0CA65A0-- ------=_NextPart_000_001B_01C4D778.F0CA65A0 Content-Type: application/pdf; name="abstract of phd thesis.pdf" Content-Transfer-Encoding: base64 Content-Disposition: attachment; filename="abstract of phd thesis.pdf" JVBERi0xLjMKJcfsj6IKOCAwIG9iago8PC9MZW5ndGggOSAwIFIvRmlsdGVyIC9GbGF0ZURlY29k ZT4+CnN0cmVhbQp4nOVdSXMdNRC++1e8Y6giw+zLMWwFB6gi+JgLJISlCBDC/uvx+D07Uunr0dct zfNMnn1xyaOeVqvV6n1eH8qiqg/l/Hv3x/NXV6+vPnjaH75/c/X6MBbN/HP7H/fv568OH17fPHYz qWqLsj1cv7wqi2kay6m9faA61P1QjO1hKIfb/7+6evTkveufrqqyKKdpftf1i6tHH85DU9EMwzic hr6eh26mVu10GrkOH3oaggLQPwqHAKzDPHSzlO5ws5q36zgto6r7Qz+2xdTfruHj+eGx6Lu+a07z v5uHuqKeyuo08mYeaYt+HG9mHYd+nIeaoun79m7e98d541TV3Wnol3moL8qqakcXu64Yhqq8W8Ov 4VMvj+CnfugWJn4TYAoeAsj/ESL/e/jCP0O0ngcvBKDAPAA9xP3nEBS3nH+PT/VdOUyqRYc7/eqe naYFkoLlhKBeh2QAlAF8REEHCzyEZABr/iHEIdwKMM8MPcQdgPqNmQcIA84JOE1gItjokAzg+IYn gFqf6oivRON1Tk45yBQFSHxLI/+4bepirIfD47oshl4SseBMhRtJyR+w25TMCEdeCGK/KfqyHxd4 4i/jMQDQgWABq5HEiA8LSGYAHjB0iDzAAYACvBSCKo7zyrIbWhn301A79v3dCj8/Dg31UNUyWmAi wFQmoDuRkt9gKJzHMSlAlL9vfdRzXyE+9I0qJ/x96y8H7E6avIjsBBAhYCIvc/154BSCFwLkQ+iA 18CQlTIh94W8EI44rNDJrEBxNrVgcNmGF13fSgdYtiUiigZYFLVn0j0TVVAkroyqfNRJBLgDalHC IKO+xenxVoWIkrhAeQBYgc3hZCLAHWwFB4tjb6DtbWHHqMOzgsuga8ruDlZGjQxAt1pjHLsB+kmq nI/Wl/OQ76vJaOxxVxQQ4u9TyDunsxNxMNMUHDtJY0F2FdhwoxFFae7UDQpeJythYzs0nUweydb2 JwruNN9S2I3GCnDPr8u70DmhDrYCHDOwaMoWot0zUdRVxrILazcXuiS3/OVQcsBKZOoqNZu8gNXA UxqjY5kwAFErqIw0pk4Jd48618SCsM1nREnUS7SY2qKp59mLUt9/iNIgrJqoFThl9vB+n7aoy7Fs ZaQyGv/ghYpr25+Y5CL3Qe3mcpcUZn85t/HSsSi7rllw5YYcwjknV2U/TnaDE85d5RQ3UJxMHWfr pQaQoq4diupc8Efh8/YRNU9cJxa44OKjNoy6i07mFBBl0l3UF1VTDak3CAB1CTeWj+YZbqyoms2p gLyvNSohNOyxLCHAsQNDnOOJ2VSOPVRHyR1SqBOrERm498ASqaAvt2iwO4AO4V4AHpVkdQyUwgiK 7g5nXCzZ/PfZCdbl8IYYMkrCR8FmU/KOSnOwGlVyJN2NsoGhz+ahqEf27/ApijCUmJS9GBHyGb1H AAVA9nBvOO2VE4qa8HQOTR/saUgqKucgyez35wGu4nR/IM0BeKuKYw2UaPIzluep3FCRaFS4GsAL Vp8/R5iQ0wDqXDAZ4G41NrQHNXoRRW9tOYaxzA6ilUJdbVZlPHeAMqqcbNNPQ+kYnG5C3aJcEDMj Vhm1ZSr/DVCdC5PQkaHNadQUg6ZmVLhDCpsratzIWTfuRCogAc4g2B3pqotmWYA3csjz6XX+PFvW GnBpccptbuMA2Tu7cjj7rs+HcTj7OGzE4ewjtU2Hs5x0kyNVC2iFGbc5LdsgtjtgzZTTgWOQcB5l NZh3UBFF8CemSvgIl3KlXEnmbkKerZt4RqWacDbjojQqBxkHjoChMJdMdWTOXKqLZyiaplXicJpY V82QRZH3QW3UOuM1A385O0+O9BeT5C7yQVnrZgA9OYuDMhABolwlrvVG5MR+4hF3lwNAAR2dzxnx oT+c3/P+AuGOZRInI+NlZ+5PN+1v8+5Pgx7or3BdPwyHA1d5xEk8yixmlJWMxp+ZMFzmxbqYrpuh u0pweuFQqGqb3aHro6B0VUKgxinKRXzwVi1Rk88cqWLnEBVrOdyHHHaQJb61vF9hsCFz5myZ3Dp+ NuoCh3DTEtN2l7VAcF6pWBNfNhqNkMvJyzmowOvCUbP7IqzkqI9RLhZYiWkvIUEzuuL8JQXuC5MU gLbo+nFQpVloveC6WIfM2i6iCkmEjKCN+m40GU+u0qQ46P7EM/RR8F+o6u7hTtxKHwUfq43ykSbL yl3Oboo6c54BUYd2H6J4jcsGCt8HyE5FRAGe1oZvVEsfQATZggsj6U3Z3MhhV/sHLarkPdO3a6La /1gFS8Y+VgArTrCAwwLknaKZQ7QzEpedwqlcnL+I2sRL1fd9KlB8SxmIssjN0qor4/HllMqcnEzJ U8qlrvJPPaTMentw7qMX1OZkD14kGqZjOVULPjdrWRsVXrACV5XQuguk0mGsWfvZy9p83FWOJnfi pV4Emci33XIQH88tRAKlRoc+ps8ehcA+mYf86MWz98LHJCXNfwFndFB1Zxx0a0ASQNfeD50PSu1n 5BJwxWCFVV5zOgrHYpzBxcXHUvzt/vsuVezGPAmagKALiQp4mTnN6s/TxAiX6cLRE9xZgNH+O0Jv q7Jp5CFJWlucSNYL0FoVDRDNWGCdGKkP/Tz1VBVd5+ntnx5f21d1v4BJ2k72xdDUYy/zzhkKHfwl bqTQwUdqm4UOAFHKz8yBSsuS92FRPnJNZ4vIms3V3ta7VXLhxNgoZ2cV/qbxsTIvJ7HA0wWldt12 8hJlWee+MTEYSikbQChZ/bf/HOe5bZzMZNxwiNZfjiI8Fd3c3CHaTGdo3UZRHD8kduqJ7JgiR3MX zKxpe+AuZ5s1EZKO2hftVMsjVltZ0xnBeR0lD5eVJhM7Oihw6pDoBuGucKuRRPkbrbJajntWdTfd xTZADwpOMeNL+/wXvltZsLJx765528FlF9PLdW7peRRMTAz2uqA2bLsaEOWcZw/zHZZomqDcp4n2 Y97hcAbT4h3NAa3bPrUlPucj5LIoFa14PNyZ3GtrjtzjkMJWSwLIDI1H3FkwWAwXLwXQrY0pZI+u g2g4okrZc+Yl3gIOJE79BGQB75OT8ZwXqqTfKkumjoP1Q6ucTqxoehWdyN2hVKIapx+atRLNR4JS dJ77tCpNwDALlRWdFDN/9tOP16i8Tu7EjI5oc2TpHY1luThsJpblImXtSQDOIleiBZ7iMmTAdcTt vflchIR4+Kbc3PqsgZeHqI81B2L8icvOkE7emzM4Q5DtdKkukUwdRJOY3ge1UStW05/SXc42IwsA UdWnqyNMk//T1RFmk1vqRewlqtCPop+gdxq4gWI1Tj+2loqfUB+GqqxFPM99/abl48+rKSdDQrlP hrQgKrJCdlOjKocjQeZDZOjJPORHpACncN+0kOz9PN/osvaLV6WJLe8reCi76RpRMmQVPXL35Czy 5FC19rF/GG07csGv++0rXleIyouL0JbF7YpFnzIyLbJeKLcBeIi6erjUJS6fAGi15jR5iuNyqhFc jr85tJjoXX+Hu3hs2IbyEd1zx1pFQQRbNjFUxdhMxv4YfgIbdzgUOpcFvDVNQdGg00dLUAX9h8zt ubgPOyUls0cx3b93O9rkeTeJb2kJEKu1pQ+JBWSqOfnOShneTeSvJt3KuA+t8maGj0JidcWW8xx9 k/8CzRTOF6LyTbgTc7YpAE9ReheQ89yqrf5KLm0p80dTfdQzfq/Z3A2dksNcQwKKDLK70X3KWuxA OYDOnREAcvuAiQ40ETBxcTXnWIzo8D5DP9lYaae5yAmwPFCIrCmMiRLDqYjh2Cac98U8Ut1sVVku tMKwfpuKSm4PkVr3U1hpaq+HKGcOctA1So+Dwo51HopBVaqLM2/LVrKHqCr4gg+JHJLO8L04izN6 M/ZBWzT1jO7uz0puL59PGBCdBU9RMUhQengCVZfj/R1jtiuYzQEcnvRdcB918ydmODJwVhKnS65K ZfO3gBWXrU8t1dcg3ImJTTf1jGuMvBqFEUBT1T/RnbibPM4L/5porHSOmrcve2d71bxnjyLJMTsX Lc5FYi642dXdnanIiOvIbZVuGZ0w1uOk6oQe4YbNqzD3ERVFO9WMQoSs5eaCmeB0ZE+lNdRpA5qd 5VM9WXgaPAX8axm1A6qskeuyo8m5iRSrrvrlTK5ol0pY45wcqeX+kdYvD/Uh1YxNO1xQXMYfU8vA ndVzs99GNUqtebl0k+W1Lz+5Pnx1Nf/+D3SXaX1lbmRzdHJlYW0KZW5kb2JqCjkgMCBvYmoKMzE1 MwplbmRvYmoKMTkgMCBvYmoKPDwvTGVuZ3RoIDIwIDAgUi9GaWx0ZXIgL0ZsYXRlRGVjb2RlPj4K c3RyZWFtCnic7V3Lltw0EN33V3iZnMMofj+WcA5LFgy9zAYSAgQGGN7wGXwx9rg7UaEr+5Zsd8uZ STY5iqu6qlSqt+X7JDVZnqTD3/M/Xt0d7g/3SWuK4c/Dkv3vV3fJJ8fDi9usSnqA45tDarquTbuH /8ySLk2atDNpmxzvDs9+en58e6hNmmVl2//38fXh2ZthqTBd3VTnpWRYavrfKNPstHQ3LHWmaJru vPS7i+uHEVdR12VxWvrNXfrOXfqZwvX1sFSZvHtHFqAUkPWju/TKQeUi/8WVDODmSwcO8Aco4ATj UvXrsFKaum27+rRkRrg0rZpSCibPiub8g7fDUmvSqio6DXawN0CNAIcAl3cHbUJVSmoDvnYBgUgB LrBEqYP7ELfRgHYgLAAIaAD67io3QAXgKA4BoYCdP0dlq6u6mtBuQNa3LlkAPTBH7jkElHLEu6jA tgJlmyS09WMHYqDUD0jURQ7s6AOdN2WRmzZvkps8NXX5WG1nMsLVad12/qeAYL5yl94yNFCH0wXz qZskHaAC1vQEWLZ1fWYQWEDA8z8jWWWWFoV/6e9xqa7SpvP/YvBOU8r2h4uKPxqSUPAUkKmLnfNG gOdvRlRtl+WVSn5+9bYBXfmFCgtoSKBxA7LyBTWSmeNocu0AEHgQT9ghUYE4BygW2HouQKKiIf8p tykF3s9FxflWQKhFQ+V/ijsVQJV91kH4o6bW6njZpzhN6xcHkBmXdACuAAuarZxRJ2ARACClTuBg U9ZTYypniAJbGLwV3mM8Q0MMgXSoSIOtEohPKJGC3fH7lWkOFVHzbKioseo2qtCcJri6ESosilCA KdR5g4MJNmc9fw5In04SVbqwthKh7MiVBSV7IGiwHS5c6AE+ucM8bdNStf2hsTalI6HlBl8YKBlc FAZKVKEG4wJlMkmookwmASP1kHy6PssORajPikjsVFkJwIHT6zLoIue870fUoQjeVK5wFrpfi+IE iQroO2WfqARqmhtduwGwQ5lWb2Z0mXqNrWBR12tsQles1/hjuRnJcIA7qcQAyhfG+jaqhbG+jWr3 jm1OyJocwcbEpYeUjefObqheqerXNiDlboFeUTE9JWPOEQBbce8+BXC5NAAzACy5FT/LBKdoM9OJ /ObjYV2mYz5FrU3Z5X49dZ9xjxMVWHkkL1Bzpx6IFKgkEKAv1tpEBKE53417KjmxuCQsKm7WfUyV Z42fG66LCdCDSrJXOWwaFM5ZAlIujnLOQKKLmgGSTi5+X9Z5kr+4q4qTJP0SYfP4ixMpCrcXoQUa b8pAeRCqHrxo7KUwTd48jLZd45SpYnWbUG7TACCIX4ARXJQgLpgBsAFjTEc4/jQJwzTHocNhVLoA KFAU8SRgzAOZktKnoSLPRvvtx0bqvkZ+XHn36wKtUdSVibNe72tbwAjFXlrUyZilfdNWDSBBYd5m D2OoGC4T89m4qJAJPEQVMcBWAI0EwuKsfLAAKZvO2djgcxipBkZal+Tt7rIS54S2rd0hRXkPV1+j EhFOfdcOJGqTV1mn68MAwIUKbaPihpIoDqlckgkOT2RmRfau0Kk6+zZgzMG1pPSxBtdSCqoi3wwg IJ5qCXBGHvwgKLptP0UtxbAw6Jw5OtrYx1/fvUTsg3KMnUVApSnygQO1FZSAixyGRLX7CCjSGbEX t1meZO27136H3x7e+s3rwlR5UuW9KpcPb/4mp8fxW8J53Zm8tZ/ffdQ0OynEFWYBLqoqyjW6AA1c PweQ5Z4LgJ3LOjm3SHmpDYzbKkOQ1wuc0onW5AUiJ5QiLZk0KU1ZtmeXHfxKDeBy7ZBHEAoiHso/ AAZdokDhCLAc2g71uyiLv92XoAQ3u4u/LNpXO1vcENeKORvfZBd0KgoUm8Wb0RYoVgrNpwsU5524 ToHi6WKB97KQ161wUuAmZ76nT4akgUu7qJsluAEirnBGWUnAzu79XGO6osp01zBE4+gk8dT8CBf1 LLxYx6ZK4Y4k4JpTdJrLrGwaNrGblV9+K9pNzXv+Lrl/jb9hVxap0JuzZav5dG6qHRgb7p2bz4al rBdTOpW3UmPtgEEqpf+XsoGA9otdUjGX94Glm6xoTd2fTitE+WLE2PRhlir048wEZ405e6k4bAEu /FrDljOi8QPmZX2etQw1EcHVQUrJ/UbCIl01tWnBRTy0Oc2dZojNwkSlcVSAGXwkGTIfa8IjhKAa brXgPqw5xVOME03PCGluWzbFWWK77/xIdjifCkq2/njCRs/d8sbtK2W2GJux4jsbitsHpGC4W4oo U7ZxKsvxExwjMBvGqfLCt65tVEBDuG7hinpEcRj6GhF4COTloQ6fe/UHPGUJecKCeO30NM9Uy++U 7oC7l6g4ihuQCL01Behg6B12FFXgIcpt+rRypeb0BTRV/uC0pk6YFsqUcXc4cUsr3vQU2uyJOuOX 92C+fObqW7wZlKR9xTGbbUMKQLvq5NuAseeNE7VjoJEvn1NMK6SFMqvdDxe2vaWvu86PKpZEURK6 +0RRsqOowEnA4JtffFGERE/dXBfanaU2WtFCk4D7MuGSdoVRak3T1M0G98UD7ItyQInq6dsU+6io Pqa75hRNPNzXS02Rd3Z0MD7b/8r79+AXfjTAfqX+0oNm3K0SILnnalVgqgigp/JArsLEhSNcOBeo hdz9Dfu9dWTFygElvOD7MPy9oet+qeY6VzjNfbTlSpc3zXyHJLS+yX2KRxGioxAiRh8IiuALTY2N avep8WxPKZbUWBKqui1so72PdgZekqlyBDMtrGhe0pedmkeYuvjjeFswCwPxGRlTimzpmm5ife3w CFU2g7+E6ul0zX4ulep0hX7ihJ+Mm/006v77NAFfHL3OZGZj0q6oAhybBLzANZjyBxWxogTc9osO odcyq75AOyMH3sZKVPF2DiWdkRmMibOjMhgzx4lqmZ0yoQ8gL7BDi6jzglXKt5RkACru6wncK2yg fQQAudcXOVxrV5FvsrY0RR8z/r8+/Okx+fww/P0Pux7E1WVuZHN0cmVhbQplbmRvYmoKMjAgMCBv YmoKMjI1MAplbmRvYmoKNyAwIG9iago8PC9UeXBlL1BhZ2UvTWVkaWFCb3ggWzAgMCA2MTIgNzky XQovUm90YXRlIDAvUGFyZW50IDMgMCBSCi9SZXNvdXJjZXM8PC9Qcm9jU2V0Wy9QREYgL1RleHRd Ci9FeHRHU3RhdGUgMTYgMCBSCi9Gb250IDE3IDAgUgo+PgovQ29udGVudHMgOCAwIFIKPj4KZW5k b2JqCjE4IDAgb2JqCjw8L1R5cGUvUGFnZS9NZWRpYUJveCBbMCAwIDYxMiA3OTJdCi9Sb3RhdGUg MC9QYXJlbnQgMyAwIFIKL1Jlc291cmNlczw8L1Byb2NTZXRbL1BERiAvVGV4dF0KL0ZvbnQgMjEg MCBSCj4+Ci9Db250ZW50cyAxOSAwIFIKPj4KZW5kb2JqCjMgMCBvYmoKPDwgL1R5cGUgL1BhZ2Vz IC9LaWRzIFsKNyAwIFIKMTggMCBSCl0gL0NvdW50IDIKL1JvdGF0ZSAwPj4KZW5kb2JqCjEgMCBv YmoKPDwvVHlwZSAvQ2F0YWxvZyAvUGFnZXMgMyAwIFIKPj4KZW5kb2JqCjYgMCBvYmoKPDwvVHlw ZS9FeHRHU3RhdGUvTmFtZS9SNi9UUi9JZGVudGl0eS9CRyA0IDAgUi9VQ1IgNSAwIFIvT1BNIDEv U00gMC4wMj4+CmVuZG9iagoxNiAwIG9iago8PC9SNgo2IDAgUj4+CmVuZG9iagoxNyAwIG9iago8 PC9SMTIKMTIgMCBSL1IxNQoxNSAwIFI+PgplbmRvYmoKNSAwIG9iago8PC9GaWx0ZXIvRmxhdGVE ZWNvZGUKL0Z1bmN0aW9uVHlwZSAwCi9Eb21haW5bMAoxXQovUmFuZ2VbLTEKMV0KL0JpdHNQZXJT YW1wbGUgOAovU2l6ZVsyNTZdL0xlbmd0aCAxMj4+c3RyZWFtCnica2gY2QAARMCAAQplbmRzdHJl YW0KZW5kb2JqCjQgMCBvYmoKPDwvRmlsdGVyL0ZsYXRlRGVjb2RlCi9GdW5jdGlvblR5cGUgMAov RG9tYWluWzAKMV0KL1JhbmdlWzAKMV0KL0JpdHNQZXJTYW1wbGUgOAovU2l6ZVsyNTZdL0xlbmd0 aCAxMj4+c3RyZWFtCnicY2AY2QAAAQAAAQplbmRzdHJlYW0KZW5kb2JqCjIxIDAgb2JqCjw8L1Ix MgoxMiAwIFIvUjE1CjE1IDAgUj4+CmVuZG9iagoxNCAwIG9iago8PC9UeXBlL0ZvbnREZXNjcmlw dG9yL0ZvbnROYW1lL0xEWUNOSStUaW1lcy1Sb21hbi9Gb250QkJveFstMTY4IC0yODEgMTAwMCA5 MjRdL0ZsYWdzIDM0Ci9Bc2NlbnQgOTI0Ci9DYXBIZWlnaHQgNjc2Ci9EZXNjZW50IC0yODEKL0l0 YWxpY0FuZ2xlIDAKL1N0ZW1WIDExMQovTWlzc2luZ1dpZHRoIDI1MAovWEhlaWdodCA0NjEKL0No YXJTZXQoL3NwYWNlL3F1b3RlcmlnaHQvcGFyZW5sZWZ0L3BhcmVucmlnaHQvY29tbWEvaHlwaGVu L3BlcmlvZC9BL0MvRC9FL0YvSC9JL00vTi9SL1MvVC9hL2IvYy9kL2UvZi9nL2gvaS9qL2svbC9t L24vby9wL3Evci9zL3QvdS92L3cveC95L3opCi9Gb250RmlsZTMgMTMgMCBSPj4KZW5kb2JqCjEz IDAgb2JqCjw8L1N1YnR5cGUvVHlwZTFDL0ZpbHRlci9GbGF0ZURlY29kZS9MZW5ndGggMjIgMCBS Pj5zdHJlYW0KeJydV3lYk1fWf2NM3lerWEkzkmKTTOtSq1K7Y1tXsGpFRARkkbIGCIQkJAGSkJUk bJcEsgBJgERAdmQREXEZ6lpordPa6qhd1OnY6fbV2uk892Venu/5bnCe6Twz/et7nvyR5N57zj2/ c8/v/A4Nmz8Po9ForKjIpIjo3WvjhIUC+fpYSWGGOPD3WjKURi6fRz5Fp96kjv5D848NjKewqFb6 YpK7CDu8nD0RPCNZOvPEEvL+448MWWndtAnazLPxsQfXrF27LkIiVcmEuXkK/gsbN27kZ6r4/1zh RwrkwlwxfxX6UiIQSaSFArEijH9AIOAr8gT8HKFIwI/YF5O0O3on/9md0fH8nQKxQJYh4scUZ4qE WfwoYZZALBes4edIZHzRox/8LIk4W6gQSsTyMP42OT+DL5cKsoTokECZJZAGFtbxpQJZoVAuR9/5 Qjk/V5YhVgiy+QoJXyjOEhVnB9yj/3MkYgVfKpOg9UK0gkzFSOQKeZZMKFXwkceYyLce3VGRl6EI +JUL0TJfkoN2ZkuyigPR/GtNkSEUy/kKgVIR8JMp4GcL5VJRhgr5RaakMuHcFYrlQnHur97X8WWC 3AxZtkggn7MbQOXX+Pj/FnWGVCpSzZ2VzO36l3+hQi4Q5YRFCwszi+X8uZzyoyUb+VH8WEFusShD 9t8rv+br/5dBDMPWb1OJs/aqJdnREVJBZFHODlnuW/K8WIXwwK7i/LjdJQWlogxlYeYa/rr1Yauf xbCnsWRsHxaJhWEpWAy2A3seW4Htx97CVmKx2E5sFXYA24WtxuKw3dhLWDz2NvYytgZLwPZgr2DP YQexKCwR24ttx5KwaCwCW4jRsMVYELYEI7AFWBh6kNh8TIDdpx2kDc0LnffOvD76GnrT/MXz6+b/ yMhj3GVuYk7hq/H/JUQL6AtUC+kLcxZefEzw2GeLohadWxy0eNfi3qCtQTeWsJaMPb7l8QdL9yyt X+pcem3p18G04I3BOmgLmskBfph4nPy9nzaT4GO/YzM25F2nrOSVkFImlT2r30Ot0pelVHOUMNmH p5S6u5tsnno3bwIuYEAv8/jaJqmjCGg5QKY2JdQQSujEZ3WwgQ1x2A0JqpsRRFZR4jvklJ9GSsgE NhWqYfY3l5dV1liqzLznqB4Kh3aLp9INGjmg1es4YSW8VKYW76xsMTjVkEnVhNhM3sLupOZcoOEA jSJKXagtKlZqgQWUW431Soe6Tg0IRWmpPL9fNnb19AW44hwPhpHr3P2NDR02DvIPvOST52kf3IGR d+jN5NNsu62hthEQ3S5NMo+qxUGsQZtYSWhgnhdPrNM0gSECHsVPn2xrGgDEmQ7Rbh4lwEGUTp0U 2JTtxZPr9U3gDAFV+LdpF7alitR7dnJv42ZrskpoiCtDHmOMn5CMHhq4SSefhhvYKTty5bGA2LDn M4j/fP7a50NuQ04Dz17slLSqDgNOZ5uv/cKOU68lJ5bmZvKS0iQ7wZsE9bvbYZB+crS5b4jb1eHr 6r1MBP1jMfDNzPfRfhgnWx/SZ14lP2bPJuEgXK97swIhP+DDt9drPeAaQcbg4Jrbfd1O+KgUnCqa tVJlpJVBJSuZX1S49WA7MfscDlZoleEWdE7vwzfXqdvBTwS5God1s6cYHiaKAfSST/bSyFdhKFtV Z0yylOnUHK1aWJ4ICIrLhG3kGoaXeoBXUQsZrUzXp17ve4CAXCblm13D0JCLcQS8sZt8sZsG7kPP fTq0kels6ncb1lJcKvSbVTAYBn//d8iFy57/jnqCp5Ow71xeSz1FMd7ZuTU7p2O0hCeZLPsYxfLd qelr3ICtSdBMLkTW7sHSO3T4g5ENV08ymnFVTTWoAkSuqXGCR36AV1hT1HnGPWpOGe6stQMnIIZd xkwetQEX9Esbs9Dd8TCKQT1NPXHjZTjvwoj/1FHeHhzS5gOzWW80qEplRjEgwuM+g0sg48z1P717 5lACDxWJwV8ewD4YYf/S+DLWSZI0sMl2HLzXMOxzexo8dSN1CGy9Eh+p8lR6y/1aVy7YS1D38Vk2 qWRQW5TME8BjGj1EzO7FWYm/hf1ynOUmoxH6QTPPa8fJn0dpABL0GQwVTTksYZQwLSVl+lJQDjQ2 jT25Ocl5CGwE4aK9cTv2CsIANQ+E9b7yh9j33v6r4EcAGeDHianPCVXrtsjdheGAEwUO+NNH4s6I 7gNIJ+Dub+ACuPLiZEnWKLe/wCvxvU0E6rSwRd2qgoXGfjLoveCP78Die8tYFS7yKbar1gFcgDjq MB7izebh4KDBEGMhWKvUsAJnvdOKb63VNYL3CfgCPpjfYRxDD2HhX+F8uBI+vuMvzx1Ik8Wn8W7i Fmt8SZ4uTs2Bz21l914Ymrh+ZgtFUPTkrRGHYod6uYG6+QiK+yE+RCPXwXB2ypZ08R4QC9J7xBdV I+aB6ikCTjFNV4w9sv7CodTDB0ESOKQSCA9lSiPBRvQqP3kF4t/duAyxMS51C65jN946OjwFpkCH xP0yEWA6n3KYvDus9AV/9ZBkQtoyVu3fII0NIvS6LRUES6SEwzgkwC8D0xeuXB7+C/gB3C+8FXd+ 50cUbYh6Cr2ddiZruRK/bXaVg21o/8MBdl+j8/i9K2XC09xb8cdfARQGqIWZr71+KFG8X/8yILL0 rn7eHLQebQuMnSKDu4PRCy67s4ylgbPkJnZqV6ErG1leupaaT62ggj988dtL5ztPj/MoVMMHVJpI dK8zamjw4HFNJicYI8jvDPh26ks2kFfqjKZiZb5eBERA2lDqL+gpuQI+RNC/e/3udF/+Lm4QvIeo b3U/zOimfYlqZjrAv0sgwbzk6xs57DGKW7nNRU3GFkC0+1rbh9I69+1NkKYW8YrSTLk1bxAbC76g rjLBdoM+IkB8bi++0WZoBDcIeBUGofKGATjhiePQNYIQ/fPDZSwF+S3cxJYwkygsXU49AwgpMxlk 1JsdFbbqRtBCQADD8C+AV+cOJ9qhRsE0Z1ZqDFqdWmI6hDAIgzJmt93exYWhTPSC2zQtLxBHmFXw GcZsN5NVq8SvW9xasIOYRdDs0Gq2I2gileQw/ijOTX7atTt0B/kk22Nz1TYB4oirLI1H2XCQZDbv 0aMIzF58p03tBRcJWIz3nzjbZXdVGBu5zdpGixsQHd6W7oESvxDJqchk3l8RkyQU5+pilJy5DnYR vuSHy47A/GP1iIM+hmU3u7rpZD4Zwj62GS9FNVnqKHaGSBuk9UWACNsWsSGqS/BhPk+pUqktFfli XSkoBSVN+uOlkQel+SCHSLiV9t2NW51jk9yRvpZ+MAKmD41ts1Fse0iCVeYCzcA/MNjldNU4amzA V+2usYNhMOrt6xro9g6Cs6Cnol3bT1Dm2SfZA+bPLGcA8fWALnf/lmyK8dL+nvF2h3vsLK8efsO+ 3D040depLmzmtuY1pYJs4oA4L3VfxpXvUbm9C3xw6t/Sl0fKYRkb5QXXv6HSvIEysjKQkfpARpb/ RkZu/pqRHagNGQJFNNeGNtehNvQJAcVwJf45aNE0vY7ohWNs0/vJML+uLRhMw40fL2Otg3+EV9mV cDnDwKyuLjfX1FQCjgUYrYZ6gtXiLC6uKwp9MzYx4kB/1t0U3qX8wdIWORBx0gokiUKRu03JLTlS 3q67SJRRG9xMR0OdFSWdFeUCnup2RE4tlu6uytbQmx9c+visfGDfEI/CPpA0a46ALs5oX/fExV7h i+3cR+og9FxAHUSjEnkBfs8em+htOQaIs0dyd/CoZBzsNOr2Wx7Jg/gGixN8RMAU/JeMc6/HZMj3 pXLhRbzCJtTLTAfKOFITowyvq7WBekCccJrSebMF6Klayveb0HmRF99vNzah84jhgY/8OUBEdx9C XYCIbs6s9rEFttIG8VEqE9pDrrp7mwa6+jt9Y+AUOKEbLuoRHA/vXI9y0sNknVTiN0wNBhD5CHij fmugl/Qi4Ot17gDwSfgFKyynphjwFSYrcTaFvMfubnSOwqWX0tcnlWTkKrmpRXmWtdVEEOwzTpKL +oMBrKD2Ila6C52IJVgfrUI00VBjs3DN5ZZys1EQl55SVkmw7hrMFnPFk6CqttpWTbA+epc6x3yt N/3ymZGOyQGurrFEpjYWA06Oput9HjyGs+7+xEQuEMSPeQf9cPHD4OmHryIvv8CIgBp4Po6hQW26 yequdQFOx1y9anAQYTS8FWAcoxffXW9qCAQEcRaZCEvYUoVCImlTdPe0t/V0K9rFiFvf1Q4V+0nq uNAf3HMPan9axlpOHpgJZ5cwKxUGgxoYAVKIToI14MnJcRaEpoM0db44T6TKAAfBG+MH4PyYTwST mUcELl19CZATu5JSt78YdR4GJXEVzF4qj9HGZEX5aps83lBEYZU+M7KkGRk1jYZC/C+3f/4i7goV co339KWMcXCOOD82Mn1yTJk7yO0r8BQ1x6BimWs78Mw4HPbRvnoILzykQwGk2DABB580Nt50INXQ p8RvmhsNIGIuna8Z9ZsCddTnw7faUTqvETATXqAO/tZKQOj9txUqYU58XYr1k6+3aD3B03fgW3cC sMjPsiuYqQaklOD31Is4a0CNT1c1GUESQelxIKnQag3SYpG+EBDZBUfHeKwWeJtapcVPV3k0IJWg 6vE3Tyd+OnysuauLe+IEIxxnRdVVn/UPNf7Bw0FZpsRHZ+bPJRm+Opflb2A8mcqusMUoBLoYFVJk 9bVeq7e2AXDaXWpUG0twsKVKZii1GLUmLdAAo0N9WNWudZUhPa9SFxeMKs7BeZf/BJ/msX5KnNny W8lHPYj8nzEaNCJYHTMYe7YKB68aDOEBmE768I11Wjf4lCCd53DIBG2qdmoe0cG0wM2M2SmmhdrM 6GB2QFq7D84HRKCLPJLXyBYekAVbdfrXqpChs8iQrcwTMITw/tTjvhPQemeV+N2KJgMSAghsrZ98 E004RYEOy0MTTpXXCJTAWG2sND5LNYWshC6Lp8oDXGjGaXQM2tCMk6jBR6odxokVcBE1GmK12Mw2 k11lN9mBHTjc3mH4BLwe0vNHu6PXRjxiqXAv7QZqcDN0NioXhCIx0KBL4c2WIDlWVRURaHA6L15a m2XVeMAgB0bhkE/ts1Vaq6xVtiqO02izgAqivNyi5yo1UOxlptlEvow/UOthQkhP17UPpyd6nBxv nceK9IDTS6VrmcdqGiuBFpjKtVo9kuZBIWQ4XmkV6MWm/WWcQhMSqjn/jPuPKG4NftTcYAZqoLHI DdIXKFnIa1ChngAAuDmgrdFxyoGiTtPgw5VNBn+8Q+lQ2lUbqJSQZ6GnsqG6ATRwwOEm59E6tGuX Bm+vdhrbEmEo9V1IU6FTa0eM6nQ3dSJRaQ75mjJ4cuosdsBxgHpX8yiaIn4MaR2z1fuRC3yOb2i3 79B9CCk7s7G2qRZNAf0NWiRdi3AQr9VFVSCsDF48qk7fAM4T5LcoqoNqgfEt9dzsdjH2EhnSEez7 Ej77eUDpR3/IVmv1FRr0Ks2ecR5ElThZ0aPpKB5K98UAYv225CiFv7S947C/ra6mvsbBq3bVOIGD 6OpvGz3TJY7nRuNU2F61KV1QXKoVgnyClRg1njY1fvzw5BSX5T5Y31pyPPQoCn5wBC1RzyNtJ6oo L9HLtZLyEkDkSY6e4NXh4PLxIbh4fO4t+MmXvDTY9zuY6mWKQGmzaJx6AiaGfAkXoUGxub+W46Ve 1OC91Q0WlD69vlgmqrDoVbpSrT9EMqY6CtzA43b01iKkszQuvBc06/oOfUutCKGY1MbCTKM5v4qj gSu9uERf77Y7vG4/7zZc8jXFr7NYLcDCASpzZT7qHTM+9CqfmqShSSEq8KH70HDttjkDw3WnqyyF R9kDeGsO1CC8ZV48wappBMcIOIgDq7PB4TjSfqJlEBDjbXmo0RYiuWswxAZ4X+HFY2s1LWCagPV4 74mB1glAXGyVhvOoXDSsm0z7zWiTxIsXWQutulZwjAMzcbgw+73N+xOL9sdzVReFXfEgDUi04VHE DTSXJyrRXK4J6Dg02Tz2Pu3DO7D0KzpcP7OJXWHN0EhNh3QccaBz22vrgAMQo67yDN5sMy66m/8Z DHkI58Fn4JIt366O3p+bXMpNmH/s1NDkrbObqCCKnrJn48F32o8EpPbMCj8Nbr5HH6F2sK+f7u0c nrj258EHAC4A8ImcH156mHm6qO1gv74s5LOorrzurR27GreA1eAZXbg0WhJVmBuxHzGQDX0s/rK/ BT84toyV/iX1e/bVgZNT4D3ibN6xd/LkCiGXdbigXTlkd9TW2rmsdKsDgNpQp91iKpDkxOfw0DVg wvtocKyhH4MN7ChY8z6qB5sB3WzpA3ahrEgkPiLr6es80tNX1FkY2E5+9Dfag2P0v5M7/tPVr34c VuQFkQJyky/JfeQmEC24R4enUafdllJYlJMa+XLeakAtABRreM1XK4+ndBZPFjQ1h7zxvmRQekN+ 1fAn8AD84v6ia7p7unfok0tEUKmfTPDDOD+zd+Hdx3qdixbdbV20GMP+D9UpM5wKZW5kc3RyZWFt CmVuZG9iagoyMiAwIG9iago0ODgzCmVuZG9iagoxMSAwIG9iago8PC9UeXBlL0ZvbnREZXNjcmlw dG9yL0ZvbnROYW1lL0RLWkROSStUaW1lcy1Cb2xkL0ZvbnRCQm94Wy0xNjggLTM0MSAxMDAwIDk2 MF0vRmxhZ3MgMzQKL0FzY2VudCA5NjAKL0NhcEhlaWdodCA2OTIKL0Rlc2NlbnQgLTM0MQovSXRh bGljQW5nbGUgMAovU3RlbVYgMTY5Ci9NaXNzaW5nV2lkdGggMjUwCi9YSGVpZ2h0IDQ3MwovQ2hh clNldCgvc3BhY2UvQS9CL0MvUi9TL1QpCi9Gb250RmlsZTMgMTAgMCBSPj4KZW5kb2JqCjEwIDAg b2JqCjw8L1N1YnR5cGUvVHlwZTFDL0ZpbHRlci9GbGF0ZURlY29kZS9MZW5ndGggMjMgMCBSPj5z dHJlYW0KeJydUmtMFFcUnlnZnVEQLJuN790b2yoK0jY+Irb4ANRQcLtFrSCluuzeZQdmZ9aZWbsg 4KIo6LXQDUIpUFdxalFA8UW3tQbbNCZt04e2RZL+aWPSxsTExrS5s16adHZttEn/9d+59zvn+853 zqGpJANF03R6QdGOAnth5lbOB+WleSLvjv9manNpbZ5Bmz+FvETuPqx/uNU4nyp+zzhds6ZQ/fOM r6Vr5CntXpp2Z8Yjnrfo03SU1jK2lWxfnJmZlS/6ayWuyquAF3JyckBlLfgHAQVQ5qoEsFAP9kBe 9PugoGSDLRACxQuBh+MhyH/FUVZo3wQyNtm3gU1QgJKTB45AJc+5QDHngoIMFwOPKAH+0QO4RMHN KZwoyNlgvQycQPZDF6cXwaAL+uNAFvBDycfJsh4DTgZVklNQoBsoIuAEFx9wx+X1f48oKMAviTru 0xGdyiHKiuySOL8CdEVHwcZHPSpepxLXlTkdBqJHz3SLrkDczWNMcXKCDBQYVOI6lRC4OdnPO2t1 XZ3KL3GJFgIyJ1Q9Uc8CEqxySm4eygne+FSe+AP/cu30+/naRK2YyHqszyky5D3Zds5XGZBBiehz CsAu5oBisBm6uYDvv8CTdf2/BVIUxazPyy/ZshVQ1ALqaeoZahm1nFpB0RSrXweVRPHUH7SX/tPQ Zpgw/ITbUmMepOJ1F7EcwVsidGyDamkxudHeE2V4GpG1/lmiiUiTUZi9r758/2wJ71QZR7vShd5H 3R3qiU97Ls7CAdNw7jtVKID2NDZ5Dx9CjUcaDrMSnmAmW3HIche3/E5ajKmx55AqDWoPz0hq+h28 HD+Pc4gVr5tpXtIbW2Ux90jMdy3H96JSdjLIoNL6fXkHWHO1hMcZnIuTxrExGrzsPWvznuF6NvSw Zh6zw6OXb895kP05edFqJ79YzpjM1Q+ubSOGJZVlq3fW9X1o044mne/pvmg18zcHdy1dUC2StFab 7jd4NTZ1iEZ4w5TYszjL4thcI+8ICvuqD4qoEBWfE8aE6w3fo/ssdn2FDTjl49FaOGoddfdXn1vL qrjRb2rwhkJBtB/Vtwc6HafKu8oRS8rJYpJNdpFKvIgsxK5bN/pGPrMNnjwZiV5jEzPW/hpOOF+J i/DameaJ2E7VUosaw03dpAJfmHXjuNr9gTpwuvcSirKYyfiSFFnJuMkclZgfD71bj/LZSTuD8pqa cvfrs/1VZXI7m7rQLRaXnmawi3xtxE6TuXSySLtnQeH2nrZwuLP3bRWxv43sWlBU767ZY9tdxzWv PcKmateDQ7E5Z4OR9GOYxgdx8kzzKi2oiRbs8zHNuw8cqNOthdoCHax5ovf1mjCcS+atWkPSl40V 4+QS2zc1d5yndqPtszfueGPNq2XqJ9DqH2kYqrvJCgQNmMJqx7Fe1IG6Wk82X6sbaR5FLM64/zNO H68YLxq0kUU/rL4UUNHV2V9cufBt9ErQc9467O0VIi+ziQuJJUdoLOGVU3AYT7Wg9aHQimbdb0xl lodDneg2q51icFrLWEUfSWYHTIdxhXHynqmVVBgHTH04eewjPKOdTdXP+s2I5ozg7RHT0DQMkoeG UlIw6E+ZTlF/A/IBS9wKZW5kc3RyZWFtCmVuZG9iagoyMyAwIG9iagoxMjA1CmVuZG9iagoxMiAw IG9iago8PC9TdWJ0eXBlL1R5cGUxL0Jhc2VGb250L0RLWkROSStUaW1lcy1Cb2xkL1R5cGUvRm9u dC9OYW1lL1IxMi9Gb250RGVzY3JpcHRvciAxMSAwIFIvRmlyc3RDaGFyIDEvTGFzdENoYXIgMjU1 L1dpZHRoc1sgMzMzIDMzMyAzMzMgMjc4IDU1NiA1NTYgMTY3IDMzMyA2NjcgMjc4IDU3MCAzMzMg MzMzIDY2NyA0NDQKMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAy NTAgMjUwIDI1MCAyNTAgMjUwCjI1MCAzMzMgNTU1IDUwMCA1MDAgMTAwMCA4MzMgMjc4IDMzMyAz MzMgNTAwIDU3MCAyNTAgMzMzIDI1MCAyNzgKNTAwIDUwMCA1MDAgNTAwIDUwMCA1MDAgNTAwIDUw MCA1MDAgNTAwIDMzMyAzMzMgNTcwIDU3MCA1NzAgNTAwCjkzMCA3MjIgNjY3IDcyMiA3MjIgNjY3 IDYxMSA3NzggNzc4IDM4OSA1MDAgNzc4IDY2NyA5NDQgNzIyIDc3OAo2MTEgNzc4IDcyMiA1NTYg NjY3IDcyMiA3MjIgMTAwMCA3MjIgNzIyIDY2NyAzMzMgMjc4IDMzMyA1ODEgNTAwCjMzMyA1MDAg NTU2IDQ0NCA1NTYgNDQ0IDMzMyA1MDAgNTU2IDI3OCAzMzMgNTU2IDI3OCA4MzMgNTU2IDUwMAo1 NTYgNTU2IDQ0NCAzODkgMzMzIDU1NiA1MDAgNzIyIDUwMCA1MDAgNDQ0IDM5NCAyMjAgMzk0IDUy MCAyNTAKNTAwIDI1MCAzMzMgNTAwIDUwMCAxMDAwIDUwMCA1MDAgMzMzIDEwMDAgNTU2IDMzMyAx MDAwIDI1MCAyNTAgMjUwCjI1MCAzMzMgMzMzIDUwMCA1MDAgMzUwIDUwMCAxMDAwIDMzMyAxMDAw IDM4OSAzMzMgNzIyIDI1MCAyNTAgNzIyCjI1MCAzMzMgNTAwIDUwMCA1MDAgNTAwIDIyMCA1MDAg MzMzIDc0NyAzMDAgNTAwIDU3MCAyNTAgNzQ3IDMzMwo0MDAgNTcwIDMwMCAzMDAgMzMzIDU1NiA1 NDAgMjUwIDMzMyAzMDAgMzMwIDUwMCA3NTAgNzUwIDc1MCA1MDAKNzIyIDcyMiA3MjIgNzIyIDcy MiA3MjIgMTAwMCA3MjIgNjY3IDY2NyA2NjcgNjY3IDM4OSAzODkgMzg5IDM4OQo3MjIgNzIyIDc3 OCA3NzggNzc4IDc3OCA3NzggNTcwIDc3OCA3MjIgNzIyIDcyMiA3MjIgNzIyIDYxMSA1NTYKNTAw IDUwMCA1MDAgNTAwIDUwMCA1MDAgNzIyIDQ0NCA0NDQgNDQ0IDQ0NCA0NDQgMjc4IDI3OCAyNzgg Mjc4CjUwMCA1NTYgNTAwIDUwMCA1MDAgNTAwIDUwMCA1NzAgNTAwIDU1NiA1NTYgNTU2IDU1NiA1 MDAgNTU2IDUwMF0KPj4KZW5kb2JqCjE1IDAgb2JqCjw8L1N1YnR5cGUvVHlwZTEvQmFzZUZvbnQv TERZQ05JK1RpbWVzLVJvbWFuL1R5cGUvRm9udC9OYW1lL1IxNS9Gb250RGVzY3JpcHRvciAxNCAw IFIvRmlyc3RDaGFyIDEvTGFzdENoYXIgMjU1L1dpZHRoc1sgMzMzIDMzMyAzMzMgMjc4IDU1NiA1 NTYgMTY3IDMzMyA2MTEgMjc4IDU2NCAzMzMgMzMzIDYxMSA0NDQKMjUwIDI1MCAyNTAgMjUwIDI1 MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwCjI1MCAzMzMgNDA4 IDUwMCA1MDAgODMzIDc3OCAxODAgMzMzIDMzMyA1MDAgNTY0IDI1MCAzMzMgMjUwIDI3OAo1MDAg NTAwIDUwMCA1MDAgNTAwIDUwMCA1MDAgNTAwIDUwMCA1MDAgMjc4IDI3OCA1NjQgNTY0IDU2NCA0 NDQKOTIxIDcyMiA2NjcgNjY3IDcyMiA2MTEgNTU2IDcyMiA3MjIgMzMzIDM4OSA3MjIgNjExIDg4 OSA3MjIgNzIyCjU1NiA3MjIgNjY3IDU1NiA2MTEgNzIyIDcyMiA5NDQgNzIyIDcyMiA2MTEgMzMz IDI3OCAzMzMgNDY5IDUwMAozMzMgNDQ0IDUwMCA0NDQgNTAwIDQ0NCAzMzMgNTAwIDUwMCAyNzgg Mjc4IDUwMCAyNzggNzc4IDUwMCA1MDAKNTAwIDUwMCAzMzMgMzg5IDI3OCA1MDAgNTAwIDcyMiA1 MDAgNTAwIDQ0NCA0ODAgMjAwIDQ4MCA1NDEgMjUwCjUwMCAyNTAgMzMzIDUwMCA0NDQgMTAwMCA1 MDAgNTAwIDMzMyAxMDAwIDU1NiAzMzMgODg5IDI1MCAyNTAgMjUwCjI1MCAzMzMgMzMzIDQ0NCA0 NDQgMzUwIDUwMCAxMDAwIDMzMyA5ODAgMzg5IDMzMyA3MjIgMjUwIDI1MCA3MjIKMjUwIDMzMyA1 MDAgNTAwIDUwMCA1MDAgMjAwIDUwMCAzMzMgNzYwIDI3NiA1MDAgNTY0IDI1MCA3NjAgMzMzCjQw MCA1NjQgMzAwIDMwMCAzMzMgNTAwIDQ1MyAyNTAgMzMzIDMwMCAzMTAgNTAwIDc1MCA3NTAgNzUw IDQ0NAo3MjIgNzIyIDcyMiA3MjIgNzIyIDcyMiA4ODkgNjY3IDYxMSA2MTEgNjExIDYxMSAzMzMg MzMzIDMzMyAzMzMKNzIyIDcyMiA3MjIgNzIyIDcyMiA3MjIgNzIyIDU2NCA3MjIgNzIyIDcyMiA3 MjIgNzIyIDcyMiA1NTYgNTAwCjQ0NCA0NDQgNDQ0IDQ0NCA0NDQgNDQ0IDY2NyA0NDQgNDQ0IDQ0 NCA0NDQgNDQ0IDI3OCAyNzggMjc4IDI3OAo1MDAgNTAwIDUwMCA1MDAgNTAwIDUwMCA1MDAgNTY0 IDUwMCA1MDAgNTAwIDUwMCA1MDAgNTAwIDUwMCA1MDBdCi9FbmNvZGluZyAyNCAwIFI+PgplbmRv YmoKMjQgMCBvYmoKPDwvVHlwZS9FbmNvZGluZy9EaWZmZXJlbmNlc1sKMTQ2L3F1b3RlcmlnaHRd Pj4KZW5kb2JqCjIgMCBvYmoKPDwvUHJvZHVjZXIoR05VIEdob3N0c2NyaXB0IDcuMDUpCi9UaXRs ZShQREY5OTUsIEpvYiAyKQovQ3JlYXRvcihQU2NyaXB0NS5kbGwgVmVyc2lvbiA1LjIpCi9DcmVh dGlvbkRhdGUoNi8yLzIwMDQgMTE6OTo0MSkKL0F1dGhvcihSYW0pPj5lbmRvYmoKeHJlZgowIDI1 CjAwMDAwMDAwMDAgNjU1MzUgZiAKMDAwMDAwNTk4MCAwMDAwMCBuIAowMDAwMDE1ODU2IDAwMDAw IG4gCjAwMDAwMDU5MDUgMDAwMDAgbiAKMDAwMDAwNjMzNyAwMDAwMCBuIAowMDAwMDA2MTg5IDAw MDAwIG4gCjAwMDAwMDYwMjggMDAwMDAgbiAKMDAwMDAwNTYwMSAwMDAwMCBuIAowMDAwMDAwMDE1 IDAwMDAwIG4gCjAwMDAwMDMyMzggMDAwMDAgbiAKMDAwMDAxMjEzNiAwMDAwMCBuIAowMDAwMDEx ODg1IDAwMDAwIG4gCjAwMDAwMTM0NDggMDAwMDAgbiAKMDAwMDAwNjg5NSAwMDAwMCBuIAowMDAw MDA2NTI3IDAwMDAwIG4gCjAwMDAwMTQ2MTQgMDAwMDAgbiAKMDAwMDAwNjExNiAwMDAwMCBuIAow MDAwMDA2MTQ2IDAwMDAwIG4gCjAwMDAwMDU3NjEgMDAwMDAgbiAKMDAwMDAwMzI1OCAwMDAwMCBu IAowMDAwMDA1NTgwIDAwMDAwIG4gCjAwMDAwMDY0ODQgMDAwMDAgbiAKMDAwMDAxMTg2NCAwMDAw MCBuIAowMDAwMDEzNDI3IDAwMDAwIG4gCjAwMDAwMTU3OTIgMDAwMDAgbiAKdHJhaWxlcgo8PCAv U2l6ZSAyNSAvUm9vdCAxIDAgUiAvSW5mbyAyIDAgUgo+PgpzdGFydHhyZWYKMTYwMDgKJSVFT0YK ------=_NextPart_000_001B_01C4D778.F0CA65A0-- From owner-reliable_computing [at] interval [dot] louisiana.edu Wed Dec 1 22:41:08 2004 Received: from interval.louisiana.edu (daemon@localhost [127.0.0.1]) by interval.louisiana.edu (8.13.1/8.13.1/ull-interval-math-majordomo-1.5) with ESMTP id iB24ewj5004929 for