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Abstract

Multiplication of n-digit integers by long multiplication requires O(n2)
operations and can be time-consuming. A. Schönhage and V. Strassen
published an algorithm in 1970 that is capable of performing the task with
only O(n log(n)) arithmetic operations over C; naturally, finite-precision
approximations to C are used and rounding errors need to be accounted
for. Overall, using variable-precision fixed-point numbers, this results
in an O(n(log(n))2+ε)-time algorithm. However, to make this algorithm
more efficient and practical we need to make use of hardware-based floating-
point numbers. How do we deal with rounding errors? and how do we
determine the limits of the fixed-precision hardware? Our solution is to
use interval arithmetic to guarantee the correctness of results and deter-
mine the hardware’s limits. We examine the feasibility of this approach
and are able to report that 75,000-digit base-256 integers can be han-
dled using double-precision containment sets. This demonstrates that our
approach has practical potential; however, at this stage, our implemen-
tation does not yet compete with commercial ones, but we are able to
demonstrate the feasibility of this technique.
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1 Introduction

Multiplication of very large integers is a crucial subroutine of many algorithms such
as the RSA cryptosystem [10]. We are interested in the problem of mulipyling integers
with up to 75,000 digits or 600,000 bits (beyond the 1024 to 4096 bit range used in
RSA). Consequently, much effort has gone into finding fast and reliable multiplication
algorithms; [6] discusses several methods. The asymptotically-fastest known algorithm
[3] requires n log(n)2O(log∗(n)) steps, where log∗ is the iterated logarithm — defined
as the number of times one has to repeatedly take the logarithm before the number is
less than 1. However, Fuerer’s algorithm is only suitable in practice for specialized ap-
plications dealing with astronomically large integers. We shall concern ourselves with
the practicalities of the subject; we will demonstrate our algorithm’s feasibility on a
finite range of numbers with 75,000 or fewer digits using double-precision containment
sets. In this study we are unable to address the second-order question of comparing
the computational efficiency of a proof-of-concept implementation of our algorithm
(Section 5) with other optimized integer multiplicaiton algorithms in current use.

The algorithm we are studying here is based on the first of two asymptotically fast
multiplication algorithms by A. Schönhage and V. Strassen [11]. These algorithms are
based on the convolution theorem and the fast Fourier transform. The first algorithm
(the one we are studying) performs the discrete Fourier transform over C using finite-
precision approximations. The second algorithm uses the same ideas as the first, but it
works over the finite ring Z22

n
+1 rather than the uncountable field C. We wish to point

out that “the Schönhage-Strassen algorithm” usually refers to the second algorithm.
However, in this document we use it to refer to the first C-based algorithm.

From the theoretical viewpoint, the second algorithm is much nicer than the first.
The second algorithm does not require the use of finite-precision approximations to
C. Also, the second algorithm requires O(n log(n) log(log(n))) steps to multiply two
n-bit numbers, making it asymptotically-faster than the first algorithm. However, the
second algorithm is much more complicated than the first, and it is outperformed
by asymptotically-slower algorithms, such as long multiplication, for small-to-medium
input sizes.

The first Schönhage-Strassen Algorithm is more elegant, if the finite-precision ap-
proximations are ignored. More importantly, it is faster in practice. Previous studies
[4] have shown that the first algorithm can be faster than even highly-optimised im-
plementations of the second. However, the first algorithm’s reliance on finite-precision
approximations, despite exact answers being required, leads to it being discounted.

The saving grace of the Schönhage-Strassen algorithm is that at the end of the
computation an integral result will be obtained. So the finite-precision approximations
are rounded to integers. Thus, as long as rounding errors are sufficiently small for the
rounding to be correct, an exact answer will be obtained. Schönhage and Strassen
showed that fixed-point numbers with a variable precision of O(log(n)) bits would be
sufficient to achieve this.

For the Schönhage-Strassen algorithm to be practical over the range of integers
under consideration, we need to make use of hardware-based floating-point numbers;
software-based variable-precision numbers are simply too slow. However, we need to
be able to manage the rounding errors. At the very least, we must be able to detect
when the error is too large and more precision is needed. The usual approach to this
is to prove some kind of worst-case error bound (for an example, see [9]). Then we
can be sure that, for sufficiently small inputs, the algorithm will give correct results.
However, worst-case bounds are rarely tight. We propose the use of dynamic error
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bounds using existing techniques from computer-aided proofs.

Dynamic error detection allows us to move beyond worst-case bounds. For exam-
ple, using standard single-precision floating-point numbers, our näıve implementation
of the Schönhage-Strassen algorithm sometimes gave an incorrect result when we tried
multiplying two 120-digit base-256 numbers, but it usually gave correct results. Note
that by a ‘näıve implementation’ we simply mean a modificiation of the Schönhage-
Strassen algorithm that uses fixed-precison floating-point arithmetic and does not
guarantee correctness. A worst-case bound would not allow us to use the algorithm in
this case, despite it usually being correct. Dynamic error detection, however, would
allow us to try the algorithm, and, in the rare instances where errors occur, it would
inform us that we need to use more precision.

Interval arithmetic has been used to guarantee a correct solution set in problems
defined by integers (see for e.g. [2, 8, 1]). We will use complex interval containment sets
for all complex arithmetic operations. This means that at the end of the computation,
where we would ordinarily round to the nearest integer, we simply choose the unique
integer in the containment set. If the containment set contains multiple integers,
then we report an error. This rigorous extension of the Schönhage-Strassen algorithm
therefore constitutes a computer-aided proof of the desired product. When an error
is detected, we must increase the precision being used or we must use a different
algorithm.

For those unfamiliar with the Schönhage-Strassen algorithm or with interval arith-
metic, we describe these in section 2. Then, in section 3, we show the empirical results
of our study using a highly non-optimized proof-of-concept implementation. Section 4,
our conclusion, briefly discusses the implications of our results.

2 The Algorithm

For the sake of completeness we explain the Schönhage-Strassen algorithm, as it is
presented in [11]. We also explain how we have modified the algorithm using interval
arithmetic in subsection 2.4. Those already familiar with the material may skip all or
part of this section.

We make the convention that a positive integer x is represented in base b (usually
b = 2k for some k ∈ N) as a vector x ∈ Z

n
b := {0, 1, 2, . . . , b− 1}n; the value of x is

x =

n−1
∑

i=0

xib
i.

2.1 Basic Multiplication Algorithm

The above definition immediately leads to a formula for multiplication. Let x and y
be positive integers with representations x ∈ Z

n
b and y ∈ Z

m
b . Then

xy =

(

n−1
∑

i=0

xib
i

)(

m−1
∑

j=0

yjb
j

)

=
n+m−2
∑

i=0

min{n−1,i}
∑

j=max{0,i−m+1}

xjyi−jb
i =

n+m−1
∑

i=0

zib
i.

We cannot simply set zi =
∑min{n−1,i}

j=max{0,i−m+1} xjyi−j ; this may violate the constraint
that 0 ≤ zi ≤ b− 1 for every i. We must ‘carry’ the ‘overflow’. This leads to the long
multiplication algorithm (see [6]).
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The Long Multiplication Algorithm

1. Input: x ∈ Z
n
b and y ∈ Z

m
b

2. Output: z ∈ Z
n+m
b # z = xy

3. Set c = 0. # c = carry

4. For i = 0 up to n+m− 1 do {
5. Set s = 0. # s = sum

6. For j = max{0, i−m+ 1} up to min{n− 1, i} do {
7. Set s = s+ xjyi−j.

8. }.
9. Set zi = (s+ c) mod b.
10. Set c = ⌊(s+ c)/b⌋.
11. }.
12. # c = 0 at the end.

This algorithm requires O(mn) steps (for a fixed b). Close inspection of the long
multiplication algorithm might suggest that O(mn log(min{m, n})) steps are required
as the sum s can become very large. However, roughly speaking, adding a uniformly
distributed bounded number (xjyi−1 < b2) to an unbounded number (s) is, on average,
a constant-time operation.

2.2 Preliminaries

The basis of the Schönhage-Strassen algorithm is the discrete Fourier transform and
the convolution theorem. Readers familiar with this material may skip the following
two sections.

2.2.1 The Discrete Fourier Transform

The discrete Fourier transform is a map from C
n to C

n. In this section we will define
the discrete Fourier transform and we will show how it and its inverse can be calculated
with O(n log(n)) complex additions and multiplications. See [6] for further details.

Definition 2.1 (Discrete Fourier Transform). Let x ∈ C
n and let ω := e

2πi
n . Then

define the discrete Fourier transform x̂ ∈ C
n of x by

x̂i :=
n−1
∑

j=0

xjω
ij (0 ≤ i ≤ n− 1).

There is nothing special about our choice of ω; the consequences of the following
lemma are all that we need ω to satisfy. Any other element of C with the same
properties would suffice.

Lemma 2.2. Let n > 1 and ω = e
2πi
n . Then

ωn = 1 and ωk 6= 1 for all 0 < k < n

and, for all 0 < k < n,
n−1
∑

i=0

ωik = 0.
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Note that the case where n = 1 is uninteresting, as ω = 1 and the discrete Fourier
transform is the identity mapping x̂ = x.

Proof. Firstly,

ωn =
(

e
2πi
n

)n

= e2πi = 1.

We know that eθ = 1 if and only if θ = 2πim for some m ∈ Z. Thus, if ωk = 1, then
k must be a multiple of n, which eliminates the possibility that 0 < k < n.

Fix k with 0 < k < n and let sk :=
∑n−1

i=0 ωik. Then

ωksk =

n−1
∑

i=0

ω(i+1)k =

n
∑

i=1

ωik =

n−1
∑

i=1

ωik + ωkn =

n−1
∑

i=1

ωik + 1 =

n−1
∑

i=1

ωik + ω0k

=

n−1
∑

i=0

ωik = sk.

So ωksk = sk. If sk 6= 0, then we can divide by sk to get ωk = 1, which is impossible.
So sk = 0.

Now we can prove that the discrete Fourier transform is a bijection.

Proposition 2.3 (Inverse Discrete Fourier Transform). Let x ∈ C
n and let ω = e

2πi
n .

Define x̌ ∈ C
n by

x̌i :=
1

n

n−1
∑

j=0

xjω
−ij (0 ≤ i ≤ n− 1).

Then this defines the inverse of the discrete Fourier transform — that is, if y = x̂,
then y̌ = x.

Proof. Fix x ∈ C
n, let y = x̂ and let z = y̌. We wish to show that z = x. If n = 1,

then this is trivial, as x = y = z, so we may assume that n > 1. First of all, it follows
from Lemma 2.2 that, if l ∈ Z and n does not divide l, then

n−1
∑

i=0

ωil = 0.

If, on the other hand, n divides l, then

n−1
∑

i=0

ωil = n.

Now, fixing i with 0 ≤ i ≤ n− 1, we have

zi =
1

n

n−1
∑

j=0

yjω
−ij =

1

n

n−1
∑

j=0

(

n−1
∑

k=0

xkω
jk

)

ω−ij

=
1

n

n−1
∑

k=0

n−1
∑

j=0

xkω
jkω−ij =

1

n

n−1
∑

k=0

xk

n−1
∑

j=0

ωj(k−i)

=
1

n

n−1
∑

k=0

xk

{

n, if n divides k − i
0, otherwise

}

=

n−1
∑

k=0

xk

{

1, if k − i = 0
0, otherwise

}

= xi.
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Now we explain the fast Fourier transform; this is simply a fast algorithm for
computing the discrete Fourier transform and its inverse.

Let n be a power of 2 and x ∈ C
n be given. Now define xeven, xodd ∈ C

n/2 by

(xeven)i = x2i, (xodd)i = x2i+1,

for all i with 0 ≤ i ≤ n/2− 1.

Now the critical observation of the Cooley-Tukey fast Fourier transform algorithm

is the following. Fix i with 0 ≤ i ≤ n− 1 and let ω = e
2πi
n . Then we have

x̂i =

n−1
∑

j=0

xjω
ij

=

n/2−1
∑

j=0

x2jω
2ij +

n/2−1
∑

j=0

x2j+1ω
2ij+i

=

n/2−1
∑

j=0

(xeven)j
(

ω2)ij + ωi

n/2−1
∑

j=0

(xodd)j
(

ω2)ij

=

n/2−1
∑

j=0

(xeven)j
(

ω2)(i mod n/2)j
+ ωi

n/2−1
∑

j=0

(xodd)j
(

ω2)(i mod n/2)j

= (x̂even)i mod n/2 + ωi (x̂odd)i mod n/2 .

Note that
(

ω2
)n/2

= 1, so taking the modulus is justified. This observation leads to
the following divide-and-conquer algorithm.

The Cooley-Tukey Fast Fourier Transform

1. Input: n = 2k and x ∈ C
n

2. Output: x̂ ∈ C
n

3. function FFT(k, x) {
4. If k = 0, then x̂ = x.

5. Partition x into xeven, xodd ∈ C
n/2.

6. Compute x̂even = FFT(k − 1, xeven) by recursion.

7. Compute x̂odd = FFT(k − 1, xodd) by recursion.

8. Compute ω = e
2πi
n .

9. For i = 0 up to n− 1 do {
10. Set x̂i = (x̂even)i mod n/2 + ωi (x̂odd)i mod n/2.

11. }.
12. }.

It is easy to show that this algorithm requires O(n log(n)) complex additions and mul-
tiplications. With very little modification we are also able to obtain a fast algorithm
for computing the inverse discrete Fourier transform.
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Note that, to compute ω, we can use the recurrence

ω1 = 1, ω2 = −1, ω4 = i, ω2n =
1 + ωn

|1 + ωn|
(n ≥ 3),

where ωn = e
2πi
n . Other efficient methods of computing ω are also available.

2.2.2 The Convolution Theorem

We start by defining the convolution. Let a, b ∈ C
n. We can interpret a and b as the

coefficients of two polynomials — that is,

fa(z) = a0 + a1z + · · ·+ an−1z
n−1 and fb(z) = b0 + b1z + · · ·+ bn−1z

n−1.

The convolution of a and b — denoted by a ∗ b — is, for our purposes, the vector
of coefficients obtained by multiplying the polynomials fa and fb. Thus we have
fa∗b(z) = fa(z)fb(z) for all z ∈ C. Note that we can add ‘padding zeroes’ to the end
of the coefficient vectors without changing the corresponding polynomial.

The convolution theorem relates convolutions to Fourier transforms. We only use
a restricted form.

Theorem 2.4 (Convolution Theorem). Let a, b ∈ C
n and c := a ∗ b ∈ C

m, where
m = 2n− 1. Pad a and b by setting

a′ = (a0, a1, · · · , an−1, 0, · · · , 0), b′ = (b0, b1, · · · , bn−1, 0, · · · , 0) ∈ C
m.

Then, for every i with 0 ≤ i ≤ m− 1,

ĉi = â′
ib̂′i.

Proof. By definition, if ω = e
2πi
m and 0 ≤ i ≤ m− 1, then

ĉi = fc(ω
i) = fa(ω

i)fb(ω
i) = fa′(ωi)fb′(ω

i) = â′
ib̂′i.

The convolution theorem gives us a fast method of computing convolutions and,
thus, of multiplying polynomials. Given a, b ∈ C

n, we can calculate c = a ∗ b using
only O(n log(n)) arithmetic operations as follows.

• Let k = ⌈log2(2n − 1)⌉. (We need a sufficiently large power of two for the fast
Fourier transform algorithm to work.)

• First we pad a and b to get a′ and b′ in C
2k .

• We calculate â′ and b̂′ using the fast Fourier transform.

• We calculate ĉ using the convolution theorem — that is, ĉi = â′
ib̂′i (0 ≤ i ≤

2n− 2).

• We calculate c from ĉ using the inverse fast Fourier transform.
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The Fast Convolution Algorithm

1. Input: a, b ∈ C
n

2. Output: c = a ∗ b ∈ C
m

3. Set k = ⌈log2(2n− 1)⌉ and m = 2k.
4. # Pad a and b so they are in C

m.

5. Set a′ = (a0, a1, · · · , an−1, 0, · · · , 0) ∈ C
m.

5. Set b′ = (b0, b1, · · · , bn−1, 0, · · · , 0) ∈ C
m.

6. Compute â′ = FFT(k, a′) and b̂′ = FFT(k, b′).

7. For 0 ≤ i ≤ m− 1, set ĉi = â′
ib̂′i.

8. Compute c = FFT−1(k, ĉ).

2.3 The Schönhage-Strassen Algorithm

The Schönhage-Strassen algorithm multiplies two integers by convolving them and
then performing carrys. Let two base-b integer representations be x and y. We consider
the digits as the coefficients of two polynomials. Then x = fx(b), y = fy(b) and

xy = fx(b)fy(b) = fx∗y(b).

So, to compute xy, we can first compute x ∗ y in O(n log(n)) steps and then we can
evaluate fx∗y(b). The evaluation of fx∗y(b) to yield an integer representation z is
simply the process of performing carrys.

The Schönhage-Strassen Algorithm

1. Input: x ∈ Z
n
b and y ∈ Z

n
b

2. Output: z ∈ Z
2n
b # z = xy

3. Compute x ∗ y using the fast convolution Algorithm.

4. Set c = 0. #carry

5. For i = 0 up to 2n− 2 do {
6. Set zi =

(

(x ∗ y)i + c
)

mod b.
7. Set c = ⌊

(

(x ∗ y)i + c
)

/b⌋.
8. }.
9. Set z2n−1 = c.

Thus the Schönhage-Strassen algorithm performs the multiplication using O(n log(n))
complex arithmetic operations.

When finite-precision complex arithmetic is done, rounding errors are introduced.
However, this can be countered: We know that x ∗ y must be a vector of integers.
As long as the rounding errors introduced are sufficiently small, we can round to the
nearest integer and obtain the correct result. Schönhage and Strassen [11] proved that
O(log(bn))-bit floating point numbers give sufficient precision.
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2.4 Interval Arithmetic

Our rigorous extension of the algorithm uses containment sets. By replacing all com-
plex numbers with complex containment sets, we can modify the Schönhage-Strassen
algorithm to find a containment set of x ∗ y; if the containment set only contains one
integer-valued vector, then we can be certain that this is the correct value. We have
used rectangular containment sets of machine-representable floating-point intervals
with directed rounding to guarantee the desired integer product. A brief overview of
the needed interval analysis [7] is given next.

Let x, x be real numbers with x ≤ x. Let [x, x] = {x ∈ R : x ≤ x ≤ x} be a closed
and bounded real interval and let the set of all such intervals be IR = {[x, x] : x ≤
x ; x, x ∈ R}. Note that R ⊂ IR since we allow thin or point intervals with x = x. If
⋆ is one of the arithmetic operators +, −, ·, /, we define arithmetic over operands in
IR by [a, a] ⋆ [b, b] := {a ⋆ b : a ∈ [a, a], b ∈ [b, b]}, with the exception that [a, a]/[b, b]
is undefined if 0 ∈ [b, b]. Due to continuity and monotonicity of the operations and
compactness of the operands, arithmetic over IR is given by real arithmetic operations
with the bounds:

[a, a] + [b, b] = [a+ b, a+ b]

[a, a]− [b, b] = [a− b, a+ b]

[a, a] · [b, b] = [min{ab, ab, ab, ab},max{ab, ab, ab, ab}]
[a, a]/[b, b] = [a, a] · [1/b, 1/b], if 0 /∈ [b, b] .

In addition to the above elementary operations over elements in IR, our algorithm
requires us to contain the range of the square root function over elements in IR∩[0,∞).
Once again, due to the monotonicity of the square root function over non-negative reals
it suffices to work with the real image of the bounds

√

[x, x] = [
√
x,

√
x], if 0 ≤ x.

To complete the requirements for our rigorous extension of the Schönhage-Strassen
algorithm we need to extend addition, multiplication and division by a non-zero integer
to elements in

IC :=
{

[z, z] := [z1, z1] + i[z2, z2] : [z1, z1], [z2, z2] ∈ IR
}

.

Interval arithmetic over IR naturally extends to IC, the set of rectangular complex
intervals. Addition and subtraction over [z, z], [w,w] ∈ IC given by

[z, z]± [w,w] = ([z1, z1]± [w1, w1]) + i([z2, z2]± [w2, w2])

are sharp (i.e. [z, z] ± [w,w] = {z ± w : z ∈ [z, z], w ∈ [w,w]}) but not multiplication
or division. Complex interval multiplication and division of a complex interval by a
non-negative integer can be contained with real interval multiplications given by

[z, z]·[w,w] = ([z1, z1]·[w1, w1]−[z2, z2]·[w2, w2])+i([z1, z1]·[w2, w2]+[z2, z2]·[w1, w1]).

See [5] for details about how C-XSC manipulates rectangular containment sets over IR
and IC.

3 Proof of Concept Demonstration

We have implemented the Schönhage-Strassen algorithm, our containment-set version
with rectangular complex intervals and long multiplication in C++ using the C-XSC
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Figure 1: CPU timing comparisons between three implementations of the first

Schönhage-Strassen algorithm and the long multiplication algorithm.

library [5]. Our implementation is available at
http://www.math.canterbury.ac.nz/~r.sainudiin/codes/capa/multiply/ 1.

Results show that, using base 256, our version of the algorithm is usually able to
guarantee correct answers for up to 75,000-digit numbers.

The following graph compares the speed of long multiplication (labelled ‘Long mul-
tiplication’), the conventional Schönhage-Strassen algorithm with different underlying
data types (the implementation using the C-XSC complex data type is the line labelled
‘complex näıve SS’ and the one using our own implementation of complex numbers
based on the C++ double data type is labelled ‘double näıve SS’) and our containment-
set version (‘cinterval extended SS’) on uniformly-random n-digit base-256 inputs.
All tests were performed on a 2.2 GHz 64-bit AMD Athlon 3500+ Processor running
Ubuntu 9.04 using C-XSC version 2.2.4 and gcc version 4.3.1. Times were recorded
using the C++ clock() function — that is to say, CPU time was recorded. Note
that only the ‘Long multiplication’ and ‘cinterval extended SS’ implementations are
guaranteed to produce correct results. The ‘double näıve SS’ and ‘complex näıve SS’
implementations may have produced erroneous results, as the implementations do not
necessarily provide sufficient precision; these are still shown for comparison. Note also
that by ‘näıve’ we mean that these implementations use fixed-precision floating-point
arithmetic, whereas the ‘real’ Schöhnage-Strassen algorithm uses variable-precision,
which is much slower.

Figure 1 shows that the Schönhage-Strassen algorithm is much more efficient than
long multiplication for large inputs. However, our modified version of the algorithm
is slower than the näıve Schönhage-Strassen algorithm. We believe that C-XSC is
not well-optimised; for example, their point complex data type (used in the ‘complex
näıve SS’ implementation) is much slower than our double-based complex data type
(used in the ‘double näıve SS’ implementation), even though ostensibly they are the

http://www.math.canterbury.ac.nz/~r.sainudiin/codes/capa/multiply/
http://www.math.canterbury.ac.nz/~r.sainudiin/codes/capa/multiply/
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Figure 2: Proportion of correct products returned by the algorithms.

same thing. We see that the C-XSC cinterval type (used in the ‘cinterval extended
SS’ implementation) is about three times as slow as the complex type. This leaves
the possibility that a more optimised implementation of containment sets would be
able to compete with commercial algorithms. Investigations such as [4] have shown
that the Näıve Schönhage-Strassen algorithm is able to compete with commercial
implementations.

Note that the “steps” seen in the graph can be explained by the fact that the algo-
rithm will always round the size up to the nearest power of two. Thus there are steps
at the powers of two. The most important feature of our results is the range of input
sizes for which our algorithm successfully determines the answer. Using only stan-
dard double-precision IEEE floating-point numbers, we are able to use the algorithm
to multiply 75,000-digit, or 600,000-bit, integers; this range is more than sufficient
for most applications, and at this point the second Schönhage-Strassen algorithm will
become competitive.

Figure 2 shows the proportion of correct products returned by ‘double näıve SS’
and ‘cinterval extended SS’ algorithms. The correctness was verified against the output
from the long multiplication algorithm for 100 pairs of random input integers with up
to 106 base-256 digits. Both ‘complex näıve SS’ and ‘double näıve SS’ returned the
same correct answer in our experiments. Unlike ‘double näıve SS’ or ‘complex näıve
SS’, if ‘cinterval extended SS’ algorithm fails (between 75000 and 106 base-256 digits)
due to its enclosure containing more than one integer then we know that the result is
incorrect and can take appropriate measures to increase precision of ‘cinterval extended
SS’ or resort to the second SS algorithm. On the other hand we have no guarantees
that ‘double näıve SS’ and ‘cinterval extended SS’ algorithms have indeed produced
the correct result without further confirmation by a verified algorithm. This makes
‘cinterval extended SS’ algorithm auto-validating.
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4 Conclusion

Our investigation has demonstrated that the Schönhage-Strassen algorithm with con-
tainment sets is a practical algorithm that could be used reliably for applications
requiring the multiplication of large integers. However, as our implementation was
not optimised, this is more of a feasibility study than a finished product.

Note that the advantage of our algorithm over the original Schönhage-Strassen
algorithm is that we make use of hardware-based floating-point arithmetic, whereas
the original is designed to make use of much slower software-based arithmetic. Both the
original algorithm and our adaptation always produce correct results. However, we use
a different approach to guaranteeing correctness. The näıve algorithms we mention
are not guaranteed to be correct because they are modifications of the Schönhage-
Strassen algorithm which does not take measures to ensure correctness — they simply
use fixed-precision floating-point arithemtic and hope for the best; these are only useful
for speed comparisons.

It remains to optimise our implementation of the algorithm to compete with com-
mercial libraries. This is dependent on a faster implementation of interval arithmetic.
It may also be interesting to use circular containment sets rather than rectangular con-
tainment sets. The advantage of circular containment sets is that they easily deal with
complex rotations — that is, multiplying by eiθ; this is in fact the only type of complex
multiplication (other than division by an integer) that our algorithm performs.
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5 Code

/∗
∗ Copyright (C) 2009 , 2010 Thomas Ste inke
∗ ( schonhagestrassen@thomasste inke . org ) 2010−03−09
∗ This i s a program to t e s t the Schonhage−Stras sen Algorithm us ing
∗ complex i n t e r v a l a r i thmet i c .
∗ I t uses the C−XSC l i b r a r y f o r va l ida t ed ar i thmet i c .
∗
∗ This program i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/ or modify
∗ i t under the terms o f the GNU General Publ ic Li cense as publ i shed by
∗ the Free Software Foundation ; e i t h e r ve r s i on 3 o f the License , or ( at
∗ your option ) any l a t e r v e r s i on .
∗
∗ This program i s d i s t r i bu te d in the hope that i t w i l l be use fu l , but
∗ WITHOUT ANY WARRANTY; without even the impl i ed warranty of
∗ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
∗ General Publ ic Li cense f o r more d e t a i l s .
∗
∗ You should have r e c e iv ed a copy of the GNU General Publ ic L i cense
∗ along with t h i s program ; i f not , wr i t e to the Free Software
∗ Foundation , Inc . , 675 Mass Ave , Cambridge , MA 02139 , USA.
∗/

// to compi le :
// g++ mult ip ly . cpp −I / usr / l o c a l / inc lude −I / usr / l o c a l / cxsc / in c lude
// −L/usr / l o c a l / cxsc / l i b − l c x s c −lm −o SSmultiply
/∗
Inc lude standard l i b r a r i e s
∗/
#inc lude <iostream>

#inc lude <ca s se r t>

#inc lude <fstream>

#inc lude <ctime>

/∗
Inc lude C−XSC l i b r a r i e s
∗/
#inc lude ” r e a l . hpp”
#inc lude ” i n t e r v a l . hpp”
#inc lude ”complex . hpp”
#inc lude ” c i n t e r v a l . hpp”
#inc lude ”rmath . hpp”
#inc lude ” imath . hpp”

/∗
Clock r e s o l u t i o n
∗/
#i f n d e f CLOCKS PER SEC
#i f d e f CLK PER SEC
#de f in e CLOCKS PER SEC CLK PER SEC
#e l s e
#e r r o r CLOCKS PER SEC Not Defined
#end i f
#end i f

us ing namespace std ;
us ing namespace cxsc ;

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
Random number generat ion code f o r g enerat ing random t e s t ca se s
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

/∗
Delegate random number genera t ion to the operat ing system .
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This w i l l not work on a l l systems ; i f i t doesn ’ t , implement something e l s e here .
∗/
i f s t r eam urand ( ”/dev/urandom ” ) ;

/∗
Generate a random b i t
∗/
bool RandomBit ( ) {

return ( ( urand . get ( ) % 2) == 0 ) ;
}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
We de f i n e a c l a s s to r ep re sen t natura l numbers that we can then mul t ip ly . We
de f in e ba s i c ope rat ion s . Later we implement the Schonhage−St ra s sen f a s t
mu l t i p l i c a t i on a lgor i thm .
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
typedef unsigned long long unint ; //The bas i c hardware i n t e ge r we use

/∗
This c l a s s r ep r e s en t s a na tura l number .
S ince ther e are s e v e ra l mu l t i p l i c a t i o n a lgo r i thms that need to acce s s the data
conta ined in Natural , they are l e f t publ i c and much o f the management i s done
ou t s id e o f the c l a s s . Bad karma , but meh !
∗/
s t ru c t Natural {

unint ∗ x ; // d i g i t s
i nt n ; //number of d i g i t s
i nt k ; //number of b i t s per d i g i t
// value = x [ 0 ] + 2ˆk∗x [ 1 ] + 2ˆ(2∗ k)∗x [ 2 ] + . . . + 2ˆ(( n−1)∗k)∗x [ n−1]

/∗
Get the l th b i t o f n .
∗/
unint GetBit ( in t l ) cons t {

i f ( l < 0 | | l >= n ∗ k) return ( ( unint ) 0 ) ;
e l s e return ( x [ l / k ] >> ( l % k ) ) & (( unint ) 1 ) ;

}

/∗
Compare −− used f o r checking c o r r e c t ne s s o f r e s u l t s
∗/
bool operator==(const Natural & other ) cons t {

a s s e r t (k == other . k ) ;
i f (n != other . n) return f a l s e ;
i f (n == 0) return true ;
f o r ( i n t i = 0 ; i < n ; i++)

i f (x [ i ] != other . x [ i ] ) return f a l s e ;
return true ;

}

bool operator !=( const Natural & other ) cons t {
return ! (∗ t h i s == other ) ;

}
} ;

/∗
Create a random n−d i g i t number in base 2ˆk
∗/
Natural RandomNumber ( i n t n , i n t k ) {

Natural a ;
a . n = n ;
a . k = k ;
a . x = new unint [ n ] ;
f o r ( i n t i = 0 ; i < n ; i++) {

a . x [ i ] = 0;
f o r ( i n t j = 0 ; j < k ; j++) {

a . x [ i ] = ( ( a . x [ i ] << 1) | (RandomBit ( ) ? ( unint ) 1 : ( unint ) 0 ) ) ;
}

}
a . x [ n − 1 ] = ( a . x [ n − 1 ] | ( ( ( unint ) 1) << (k − 1 ) ) ) ;
return a ;

}

/∗
Output hexadecimal
∗/
ostream & operator <<(ostream & s , cons t Natural & n) {

i f (n . n == 0) {
s << ’ 0 ’ ;

} e l s e {
cons t char ∗ hexd i g i t s = ”0123456789 abcdef ” ;
a s s e r t (n . n > 0 && n . x [ n . n − 1 ] != 0 ) ;
in t nbi t s = 0 ;
whi l e (n . x [ n . n − 1 ] >= ( ( ( unint ) 1) << nb i t s ) ) nb i t s++;
nb i t s += (n . n − 1) ∗ n . k ;
in t n d i g i t s = nbi t s / 4 + ( nb i t s % 4 == 0 ? 0 : 1 ) ;
f o r ( i n t i = nd i g i t s − 1 ; i >= 0; i−−) {

i n t k = n . GetBit (4∗ i ) + 2 ∗ n . GetBit (4 ∗ i + 1) + 4 ∗ n . GetBit (
4 ∗ i + 2) + 8 ∗ n . GetBit (4 ∗ i + 3 ) ;

s << h exd i g i t s [ k ] ;
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}
}
return s ;

}

/∗
Multiply two numbers us ing the O(nˆ2) elementary method
∗/
Natural Multiply ( cons t Natural & a , cons t Natural & b) {

a s s e r t ( a . k == b . k ) ;
i f ( a . n == 0 | | b . n == 0) {// zero

Natural cc ;
cc . x = NULL;
cc . n = 0 ;
cc . k = a . k ;
return cc ;

}
a s s e r t ( ( i n t ) s i z e o f ( unint ) ∗ 4 >=

a . k ) ; // i f t h i s i s n ’ t true we are en te r i ng over f low t e r r i t o r y
unint base = ( ( ( unint ) 1) << a . k ) ;
Natural c ;
c . n = a . n + b . n ;
c . k = a . k ;
c . x = new unint [ c . n ] ;
unint carry = 0 ;
f o r ( i n t i = 0 ; i < c . n ; i++) {

unint newcarry = carry / base ;
carry = carry % base ;
f o r ( i n t j = ( i − b . n + 1 > 0 ? i − b . n + 1 : 0 ) ; j <= i && j < a . n ; j++) {

carry += a . x [ j ] ∗ b . x [ i − j ] ;
newcarry += carry / base ;
carry = carry % base ;

}
c . x [ i ] = carry ;
carry = newcarry ;

}
a s s e r t ( carry == 0 ) ;
whi l e ( c . n > 0 && c . x [ c . n − 1 ] == 0) c . n−−;
return c ;

}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
The Complex number handl ing r ou t i n e s . These need to prov ide complex a r i thmet i c
and they need to round complex numbers to unints . Most o f t h i s i s done by the
C−XSC l i b r a r y .
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

/∗
Complex c l a s s based on a r e a l type such as f l o a t or double
∗/
template <c l a s s R> c l a s s Complex {

R x , y ; //Real and imaginary pa rt s .
publ i c :

// Just the ba s i c ope ra t ions
Complex<R>(R xx = 0 , R yy = 0) : x ( xx ) , y ( yy) {}
Complex<R> ope rator+(const Complex<R> & other ) cons t {

return Complex<R>(x + other . x , y + other . y ) ;
}
Complex<R> operator −( cons t Complex<R> & other ) cons t {

return Complex<R>(x − other . x , y − other . y ) ;
}
Complex<R> operator −() cons t {

return Complex<R>(−x , −y ) ;
}
Complex<R> ope rator ∗( cons t Complex<R> & other ) cons t {

return Complex<R>(x ∗ other . x − y ∗ other . y , x ∗ other . y + y ∗ other . x ) ;
}
Complex<R> ope rator /( cons t Complex<R> & other ) cons t {

R t = ( other . x ∗ other . x + other . y ∗ other . y ) ;
return ∗ t h i s ∗ Complex<R>(other . x / t , − other . y / t ) ;

}
R re ( ) cons t {

return x ;
}
R im() const {

return y ;
}

} ;

/∗
Round Complex<R> x to the neare s t non−negat ive i n t eg e r
∗/
template <c l a s s R> unint Roundunint ( cons t Complex<R> & x) {

// unint i = f l o o r (Re(x ) ) ;
//This i s s i n f u l l y i n e f f i c i e n t , but ther e i s no automatic funct ion f o r
// conver t ing a r e a l to an i n t should take O( log (x ) ) time
unint min = 0;
unint max = 1;
whi l e ( ( (R) ( double ) max) <= x . re ( ) ) max ∗= 2;
whi l e (min + 1 < max) {

unint mid = (min + max) / 2 ;
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i f ( ( (R) ( double ) mid ) <= x . re ( ) ) {
min = mid ;

} e l s e {
max = mid ;

}
}
unint i = ( abs ( x . re ( ) − (R) ( double ) min) <= abs (x . re ( ) − (R) (

double ) max) ? min : max ) ;
return i ;

}

/∗
Do the same with a C−XSC complex point
∗/
unint Roundunint ( cons t complex & x ) {

// unint i = f l o o r (Re(x ) ) ;
//This i s s i n f u l l y i n e f f i c i e n t , but ther e i s no automatic funct ion f o r
// conver t ing a r e a l to an i n t should take O( log (x ) ) time
unint min = 0;
unint max = 1;
whi l e ( ( ( r e a l ) ( double ) max) <= Re(x ) ) max ∗= 2;
whi l e (min + 1 < max) {

unint mid = (min + max) / 2 ;
i f ( ( ( r e a l ) ( double ) mid) <= Re(x ) ) {

min = mid ;
} e l s e {

max = mid ;
}

}
unint i = ( abs (Re(x ) − ( r e a l ) ( double ) min ) <= abs (Re(x) − ( r e a l ) (

double ) max) ? min : max ) ;
return i ;

}

/∗
Find the unique i n t eg e r in the c i n t e r v a l x
I f none e x i s t s throw an except ion
∗/
unint Roundunint ( cons t c i n t e r v a l & x) {

a s s e r t (0 <= Im(x ) ) ;
// unint i = f l o o r (Sup (Re(x ) ) ) ;
//This i s s i n f u l l y i n e f f i c i e n t , but ther e i s no automatic funct ion f o r
// conver t ing a r e a l to an i n t should take O( log (x ) ) time
unint i = Roundunint ( complex (Sup (Re( x ) ) ) ) ;
i f ( ( ( r e a l ) ( double ) i ) <= Re(x ) ) {

//do nothing
} e l s e i f ( ( ( r e a l ) ( double ) i + 1) <= Re(x ) ) {

i ++;
} e l s e i f ( ( ( r e a l ) ( double ) i − 1) <= Re(x ) ) {

i−−;
} e l s e {

a s s e r t ( f a l s e ) ;
}
i f ( ( ( r e a l ) ( double ) i + 1) <= Re(x) | | ( i > 0

&& (( r e a l ) ( double ) i − 1) <= Re(x ) ) ) {
throw diam(Re( x ) ) ;

}
return i ;

}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
Now we have the Schonhage−St ras sen Algorithm proper ( with some prece ed ing
sub rout ine s ) .
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

/∗
Ca lcu lat e the vec to r [ 1 , w, wˆ2 , . . . , w ˆ (2ˆn − 1 ) ] , where w = exp (2∗ Pi∗ i /2ˆn )
That i s , we compute the 2ˆn−th p r imi t i ve root s o f unity .
R i s a r e a l c l a s s and C i s a corresponding complex c l a s s .
R must be compatible with i n t e g e r s and have a s qr t func t ion ;
C must have a C(R, R) con st r uc to r .
∗/
template<c l a s s R, c l a s s C> C ∗ ComplexRoots ( in t n) {

// (k = 0) cos (2∗ Pi /1) = 1
// (k = 1) cos (2∗ Pi /2) = −1
// (k = 2) cos (2∗ Pi /4) = 0
// (k >= 3) cos (2∗ Pi /2ˆk ) = sq r t ( (1 + cos (2∗ Pi /2ˆ(k−1)))/2) where the
// square root i s o f a non−negat ive r e a l number
// (k = 0) s i n (2∗ Pi /1) = 0
// (k >= 1) s i n (2∗ Pi /2ˆk ) = sq r t ( (1 − cos (2∗ Pi /2ˆ(k−1)))/2) where the
// square root i s o f a non−negat ive r e a l number
// (k >= 0) exp (2∗ Pi∗ i /2ˆk ) = cos (2∗ Pi/2ˆk ) + i ∗ s in (2∗PI/2ˆk )
// c o s i n e s [ k ] = cos (2∗ Pi /2ˆk ) ; s i n e s [ k ] = s i n (2∗ Pi /2ˆk )
R ∗ co s in e s = new R[ n + 3 ] ; //Extra spaces to avoid going over the end
R ∗ s i n e s = new R[ n + 1 ] ;
c o s i n e s [ 0 ] = 1 ;
c o s i n e s [ 1 ] = −1;
c o s i n e s [ 2 ] = 0 ;
f o r ( i n t k = 3 ; k <= n ; k++)

c o s i n e s [ k ] = sqr t ( ( ( 1 + co s i n e s [ k−1 ] )/2 ) ) ;
s i n e s [ 0 ] = 0;
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f o r ( i n t k = 1 ; k <= n ; k++)
s i n e s [ k ] = sqr t ( ( ( 1 − co s in e s [ k−1 ] )/2 ) ) ;

// ans [ k ] = exp (2∗ Pi∗ i /2ˆn )ˆk
C ∗ ans = new C[ 1 << n ] ;
f o r ( i n t i = 0 ; i < (1 << n ) ; i++) {

C x ( 1 ) ;
f o r ( i n t j = 0 ; j < n ; j++) {

i f ( ( i & (1 << j ) ) != 0) {
//x ∗= exp (2∗ Pi∗ i /2ˆn )ˆ(2ˆ j )
x = x ∗ C( co s i n e s [ n−j ] , s i n e s [ n−j ] ) ;

}
}
ans [ i ] = x ; // & exp ( c i n t e r v a l (0 , (2 ∗ Pi ( ) ∗ i ) / (1 << n ) ) ) ;

}
d e l e t e [ ] c o s i n e s ;
d e l e t e [ ] s i n e s ;
return ans ;

}

/∗
Reverse the binary r ep r e s en ta t i on of the n−b i t i n t eg e r x
−− used by the DFT algor i thm
∗/
i n t ReverseBinary ( i n t n , in t x) {

i nt y = 0 ;
f o r ( i n t i = 0 ; i < n ; i++) {

i f ( ( x & (1 << i ) ) != 0) {
y = (y | (1 << (n − i − 1 ) ) ) ;

}
}
return y ;

}

/∗
Compute the d i s c r e t e f o u r i e r transform of input and s to r e in output
Both input and output have 2ˆn elements . Roots i s a vector o f the 2ˆn 2ˆn−th
p r imi t i ve root s o f unity i f the i nv e r s e f l a g i s s e t to true , then the i nv e r se
d i s c r e t e f o u r i e r transform i s computed in s t ead .
∗/
template <c l a s s C> void DFT( bool inver se , i n t n , cons t C ∗ roots , C ∗ output ,

cons t C ∗ input ) {
i nt m = (1 << n ) ;
f o r ( i n t i = 0 ; i < m; i++) {

output [ ReverseBinary (n , i ) ] = input [ i ] ;
}
f o r ( i n t i = 1 ; i <= n ; i++) {

// Sp l i t into 2ˆ(n−i ) b locks o f 2ˆ i and do d ft
f o r ( i n t j = 0 ; j < (1 << (n − i ) ) ; j++) {

// block i s j ∗2ˆ i to ( j +1)∗2ˆ i−1
//w = roo t s [ 1 << (n − i ) ]
f o r ( i n t k = 0 ; k < (1 << ( i − 1 ) ) ; k++) {

C u , v , w;
i n t l = ((1 << (n − i ) ) ∗ k ) % (1 << n ) ;
i f ( i nv e r s e ) {

l = ( (1 << n) − l ) % (1 << n ) ;
}
w = roo t s [ l ] ;
u = output [ j ∗ (1 << i ) + k ] ;
v = w ∗ output [ j ∗ (1 << i ) + (1 << ( i − 1) ) + k ] ;
output [ j ∗ (1 << i ) + k ] = u + v ;
output [ j ∗ (1 << i ) + (1 << ( i − 1 )) + k ] = u − v ;

}
}

}
i f ( inv e r s e ) {

f o r ( i n t i = 0 ; i < (1 << n ) ; i++) {
output [ i ] = output [ i ] / (1 << n ) ;

}
}

}

/∗
This i s the Schonhage−Stras sen mu l t i p l i c a t i on a lgor i thm
R and C are as in the func t ion ComplexRoots , and rep re s ent the r e a l and
complex types to be used f o r the f l o a t in g−point computations .
∗/
template <c l a s s R, c l a s s C> Natural SchonhageStrassen ( cons t Natural & a ,

cons t Natural & b) {
a s s e r t ( a . k == b . k ) ;
i f ( a . n == 0 | | b . n == 0) {// zero

Natural cc ;
cc . x = NULL;
cc . n = 0 ;
cc . k = a . k ;
return cc ;

}
// F i r s t we need to f ind a power of 2 b igge r than or equal to a . n + b . n
i nt n = 0 ;
whi l e ((1 << n) < a . n + b . n) n++;
unint base = ( ( ( unint ) 1) << a . k ) ;
// Fi rs t , c a l c u l a t e root s
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C ∗ roo t s = ComplexRoots<R, C>(n ) ;
//Now three working a rrays
C ∗ work1 = new C[1 << n ] ;
C ∗ work2 = new C[1 << n ] ;
C ∗ work3 = new C[1 << n ] ;
//Load a in to work1
f o r ( i n t i = 0 ; i < a . n ; i++) work1 [ i ] = ( (R) ( double ) a . x [ i ] ) ;
f o r ( i n t i = a . n ; i < (1 << n ) ; i++) work1 [ i ] = 0 ;
//Do d ft
DFT<C>( f a l s e , n , roots , work2 , work1 ) ;
//Load b in to work1
f o r ( i n t i = 0 ; i < b . n ; i++) work1 [ i ] = ( (R) ( double ) b . x [ i ] ) ;
f o r ( i n t i = b . n ; i < (1 << n ) ; i++) work1 [ i ] = 0 ;
//Do d ft
DFT<C>( f a l s e , n , roots , work3 , work1 ) ;
// Pointwise mu l t i p l i c a t i o n
f o r ( i n t i = 0 ; i < (1 << n ) ; i++) work1 [ i ] = work2 [ i ] ∗ work3 [ i ] ;
// i nve r s e f o u r i e r transform
DFT<C>(true , n , roots , work2 , work1 ) ;
//Now read c out of work2
Natural c ;
c . n = (1 << n ) ;
c . k = a . k ;
c . x = new unint [ c . n ] ;
unint carry = 0 ;
bool i s s u c c e s s f u l = true ;
r e a l b a l l = 0; //whatever we catch and then pass on
try {

f o r ( i n t i = 0 ; i < c . n ; i++) {
carry += Roundunint (work2 [ i ] ) ;
c . x [ i ] = carry % base ;
carry = carry / base ;

}
} catch ( r e a l exc ) {

i s s u c c e s s f u l = f a l s e ;
b a l l = exc ;

}
// c l ean up
whi l e ( c . n > 0 && c . x [ c . n − 1 ] == 0) c . n−−;
d e l e t e [ ] r oot s ;
d e l e t e [ ] work1 ;
d e l e t e [ ] work2 ;
d e l e t e [ ] work3 ;
i f ( ! i s s u c c e s s f u l | | carry != 0) {

de l e t e [ ] c . x ;
c . x = NULL;
c . n = 0 ;
throw ba l l ;

}
return c ;

}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
Now there are ju s t some ana l y s i s rou t in e s . Testing and timing the a lgor i thm .
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

/∗
F ir s t we package every a lgor i thm into a ni c e Algorithm ob je c t . Then we can
r e f e r to a lgo r i thms ju s t by numbers
∗/
s t ru c t Algorithm {

cons t char ∗ name ; // The name o f the a lgor i thm
Natural (∗ func t ion ) ( cons t Natural &,

cons t Natural
&); // The algor i thm i t s e l f −− note that t h i s may

// throw an except ion ( in the form of a double ) i f i t f a i l s
Algorithm ( const char ∗ n , Natural (∗ f ) ( cons t Natural &,

cons t Natural &)) :
name(n ) , f unc t ion ( f ) {}

} ;

Natural f l o a tMu l t ip ly ( cons t Natural & a , cons t Natural & b) {
return SchonhageStrassen<f l o a t , Complex<f l o a t > >(a , b ) ;

}
Natural doubleMultip ly ( cons t Natural & a , cons t Natural & b) {

return SchonhageStrassen<double , Complex<double> >(a , b ) ;
}
Natural po intMul t ip ly ( cons t Natural & a , cons t Natural & b) {

return SchonhageStrassen<rea l , complex >(a , b ) ;
}
Natural s e tMu l t ip ly ( cons t Natural & a , cons t Natural & b) {

return SchonhageStrassen<i n t e rva l , c i n t e r v a l >(a , b ) ;
}

Algorithm algo r i thms [ ] = {
Algorithm (” elementary mu l t i p l i c a t i o n a lgor i thm” , &Multiply ) ,
Algorithm (” f l oa t −based Schonhage−St ras sen a lgor i thm” , &f l oa tMu l t i p l y ) ,
Algorithm (”double−based Schonhage−St ras sen a lgor i thm” , &doubleMultip ly ) ,
Algorithm (” bas i c Schonhage−St ra s sen a lgor i thm” , &pointMul t ip ly ) ,
Algorithm (”Schonhage−Stras sen a lgor i thm with containment s e t s ” , &se tMu l t ip l y ) ,

} ;
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/∗
This func t ion w i l l run the a lgor i thms s p e c i f i e d by mask on two random n−d i g i t
base−2ˆk numbers . I f (mask & 1 != 0) , then the remaining outputs are compared
to t h i s output to check f o r co r r e c tn e s s .
( a lgor i thm 0 i s deemed to be the standard f o r c o r r e c t ne s s )
I f data != NULL, then we output the data in CSV format ( f o r an a l y s i s ) .
∗/
void runalgorithm ( i n t mask , i n t n , in t k , i n t r , ostream ∗ data ) {

i nt numalgorithms = s i z e o f ( a lgo r i thms ) / s i z e o f (
Algorithm ) ; // Total number o f a lgor ithms

f o r ( in t reps =0; reps < r ; reps++) {
//Generate t e s t data
Natural a = RandomNumber (n , k ) ;
Natural b = RandomNumber (n , k ) ;
cout << ”a = ” << a << endl ;
cout << ”b = ” << b << endl ;
cout << ”n = ” << n << ” k = ” << k << endl ;
Natural a lg0 ; // t h i s i s the output of a lg0 to compare with
f o r ( i n t i = 0 ; i < numalgorithms ; i++) {

i f ( (mask & (1 << i ) ) != 0) {
i n t s ta tu s = 0 ; //This i d e n t i f i e s the outcome of the computation
Natural axb ;
c l o c k t s ta r t = c lo ck ( ) ;
try {

axb = (∗ ( a lgo r i thms [ i ] . f unc t ion ) ) ( a , b ) ;
} catch ( r e a l e ) {

cout << ”The ” << a lgor i thms [ i ] . name << ” f a i l s ( ” << e << ” ) . ”
<< endl ;

s t at us = st a tus | 1 ; // se t the f a i l b i t
axb . n = 0 ;
axb . k = 0 ;
axb . x = NULL;

}
c l o c k t f i n i s h = c lo ck ( ) ;
double e lapsedt ime = (( double ) ( f i n i s h − s t a r t ) )

/ ( ( double ) CLOCKS PER SEC) ;
cout << ”The ” << a lgor i thms [ i ] . name << ” took ” << e lapsedt ime

<< ” s . ” << endl ;
// i f we have a l ready run algor i thm 0
i f ( i > 0 && (mask & 1) != 0) {

//do check
i f ( axb . x != NULL && axb != alg0 ) {

// er ror , i n c o r r e c t r e s u l t
cout << ”The ” << a lgo r i thms [ i ] . name

<< ” gave an i n c o r r e c t r e s u l t . ” << endl ;
s t a tu s = sta tu s | 2 ; // se t the i n co r r e c t b i t ;

}
} e l s e {

s t at us = st a tus | 4 ; // se t the not−checked b i t
}
// s t at us 0 : a lgor i thm succeeded
// s t at us 1 : a lgor i thm f a i l e d
// s t at us 2 : i n c o r r e c t r e s u l t
// s t at us 3 : a lgor i thm f a i l e d
// s t at us 4 : no e r r o r de te cted −− not checked
// s t at us 5 : a lgor i thm f a i l e d
// s t at us 6 : i nva l i d
// s t at us 7 : a lgor i thm f a i l e d
i f ( data != NULL) {

//Output data in . csv format
// <a lgor i thm number>,< s tatus >,<n>,<k>,<time /s>
∗data << i << ” , ” ;
∗data << s t a tus << ” , ” ;
∗data << n << ” , ” ;
∗data << k << ” , ” ;
∗data << e lapsedt ime << endl ;

}
// c l ean up or s to r e f o r l a t e r
i f ( i == 0) {

a lg0 = axb ;
} e l s e {

d e l e t e [ ] axb . x ;
}

}
}
// l a s t c l ean up
i f ( (mask & 1) != 0) de l e t e [ ] a l g0 . x ;
d e l e t e [ ] a . x ;
d e l e t e [ ] b . x ;
cout << endl ;

}
}

/∗
The main funct ion only c a l l s runalgorithm . E s s e n t i a l l y a l l i t does i s read in
4 i n t e g e r s and c a l l runalgorithm with those parameters . For example the input
”31 100 8 10” would c r ea t e two 100− d i g i t base−256 natura l numbers and mul t ip ly
them with a l l f i v e av a i l a b l e a lgo r i thms 10 times .
I t does prov ide f a c i l i t i e s to log output . One command l i n e parameter w i l l
s p e c i f y a f i l e to wri t e CSV format in format ion to .
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∗/
/∗ you can pass ’ in ’ into the e x ec u t i b l e ’ SSmultiply ’ and output to ’ out ’

as f o l l ow s :
$ cat in | . / SSmultiply out
$ cat in
31 1024 8 100
31 2048 8 100
31 4096 8 100
31 8192 8 100
31 16384 8 100
31 32768 8 100
31 65536 8 100
∗/
i n t main( i n t argc , char ∗∗ argv ) {

ostream ∗ data = NULL;
i f ( argc == 2) {

data = ( ostream ∗) new ofstream ( argv [ 1 ] , i o s ba s e : : app ) ;
}
whi l e ( true ) {

i n t mask , n , k , r ;
c in >> mask >> n >> k >> r ;
i f ( c in . eo f ( ) | | mask < 0

| | mask >= ( in t ) (1 << ( s i z e o f ( a lgo r i thms ) / s i z e o f ( Algorithm ) ) )
| | n <= 0 | | k <= 1 | | k > ( in t ) s i z e o f ( unint ) ∗ 4) break ; // i nv a l i d

runalgorithm (mask , n , k , r , data ) ;
}
i f ( data != NULL) d e l e t e ( ofstream ∗) data ;
return 0 ;

}
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