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Abstract

A new deterministic oating-point arithmetic called precision arith-
metic is developed to track precision for arithmetic calculation s. It uses a
novel rounding scheme to avoid the excessive rounding errorpropagation
of conventional oating-point arithmetic. Unlike interva l arithmetic, its
uncertainty tracking is based on statistics and the central limit theorem,
with a much tighter bounding range. Its stable rounding erro r distribution
is approximated by a truncated Gaussian distribution. Gene ric standards
and systematic methods for comparing uncertainty-bearing arithmetics
are discussed. The precision arithmetic is found to be superior to inter-
val arithmetic in both uncertainty-tracking and uncertain ty-bounding for
normal usages.

The arithmetic code is published at:
http://precisionarithm.sourceforge.net .
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1 Introduction

1.1 Measurement Precision

Except for the simplest counting, scienti�c and engineerin g measurements never give
completely precise results [18, 42]. The precision of measured values ranges from an
order-of-magnitude estimation of astronomical measurements to 10� 2 to 10� 4 of com-
mon measurements to 10� 14 of state-of-art measurements of basic physics constants
[17].

In scienti�c and engineering measurements, the uncertaint y of a measurement x
usually is characterized by the sample deviation �x [18, 42, 19]. In certain cases,
such as raw reading from an ideal analog-to-digital converter, the uncertainty of a
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measurement x is given as a bounding range � x1 [25]. If [x � �x, x + � x] crosses 0,
x is neither positive nor negative for certainty due to the fol lowing two possibilities:

1. Either � x is too large to give a precise measurement ofx;

2. Or x itself is a measurement of zero.

To distinguish which case it is, additional information is r equired so that the measure-
ment x� � x itself is insigni�cant if [x � � x; x + � x] crosses 0. An insigni�cant value
also has conceptual di�culty in participating in many mathe matical operations, such
as calculating the square root or acting as a divisor.

P � �x= jxj is de�ned here as the (relative) precision of the measurement, whose
inverse is commonly known as the signi�cance [18, 42]. Precision represents the reli-
able information content of a measurement. Finer precision means higher reliability
and thus better reproducibility of the measurement [18, 42] . Taking the traditional
de�nition in measurement, precision in this paper does not m ean the maximal bit
count of signi�cand as in the term \arbitrary precision arit hmetic" 2 [1].

1.2 Problem of Conventional Floating-Point Arithmetic
The conventional oating-point arithmetic [23, 21, 26] assumes a constant and best-
possible precision for each value all the time, and constantly generates arti�cial infor-
mation during the calculation [30]. For example, the follow ing calculation is carried
out precisely in integer format:

64919121� 205117922� 159018721� 83739041 =

13316075197586562� 13316075197586561 = 1; (1.1)

If Formula (1.1) is carried out using conventional oating- point arithmetic:

64919121� 205117922� 159018721� 83739041 =

64919121:000000000� 205117922:000000000

� 159018721:000000000� 83739041:000000000 =

13316075197586562: � 13316075197586560: = 2 :0000000000000000; (1.2)

1. The multiplication results exceed the maximal signi�can ce of the 64-bit IEEE
oating-point representation; so they are rounded o�, gene rating rounding er-
rors;

2. The normalization of the subtraction result ampli�es the rounding error to most
signi�cant bit (MSB) by padding zeros.

Formula (1.2) is a showcase for the problem of conventional  oating-point arithmetic.
Because normalization happens after each arithmetic operation [23, 21, 26], such gen-
eration of rounding errors happens very frequently for addi tion and multiplication,
and such ampli�cation of rounding errors happens very frequ ently for subtraction and

1x is normally an integer as the output of an ADC (Analog-to-Dig ital Converter). Ideally,
� x equals a half bit of ADC. � x can be larger if the settle time is not long enough, or if the
ADC is not ideal.

2Arbitrary precision integer means a digital integer which h as arbitrary number of bits,
while arbitrary precision arithmetic usually means �xed-p oint arithmetic [5] which has arbi-
trary fractional bits.
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division. The accumulation of rounding errors is an intrins ic problem of conventional
oating-point arithmetic [34], and in the majority of cases such accumulation is almost
uncontrollable [30]. For example, because a rounding error from lower digits quickly
propagates to higher digits, the 10� 7 precision of the 32-bit IEEE oating-point format
[23, 21, 26] is usually not �ne enough for calculations invol ving input data of 10 � 2 to
10� 4 precision.

Self-censored rules are developed to avoid such rounding error propagation [34, 11],
such as avoiding subtracting results of large multiplicati on, as in Formula (1.2). How-
ever, these rules are not enforceable, and in many cases are di�cult to follow, e.g.,
even a most carefully crafted algorithm can result in numeri cal instability after exten-
sive usage. Because the propagation speed of a rounding error depends on the nature
of a calculation itself, e.g., generally faster in nonlinear algorithms than linear algo-
rithms 3 [15], propagation of rounding error in conventional oatin g-point arithmetic
is very di�cult to quantify generically [44]. Thus, it is di� cult to tell if a calculation
is improper or becomes excessive for a required result precision. In common practice,
reasoning on an individual theoretical base is used to estimate the error and validity
of calculation results, such as from the estimated transfer functions of the algorithms
used in the calculation [34, 31, 35]. However, such analysisis both rare and generally
very di�cult to carry out in practice.

Today most experimental data are collected by an ADC (Analog -to-Digital Con-
verter) [25]. The result obtained from an ADC is an integer wi th �xed uncertainty;
thus, a smaller signal value has a coarser precision. When a waveform containing
raw digitalized signals from ADC is converted into conventi onal oating-point repre-
sentation, the information content of the digitalized wave form is distorted to favour
small signals since all converted data now have the same and best possible precision.
However, the e�ects of such distortion in signal processing are generally not clear.

What is needed is a oating-point arithmetic that tracks pre cision automatically.
When the calculation is improper or becomes excessive, the results become insigni�-
cant. All existing uncertainty-bearing arithmetics are re viewed below.

1.3 Interval Arithmetic

Interval arithmetic [11, 32, 28, 12, 29, 27] is currently a standard method to track
calculation uncertainty. It ensures that the value x is abso lutely bounded within its
bounding range [x] � [x; �x], in which x and �x are lower and upper bounds for x,
respectively. In this paper, interval arithmetic is simpli �ed and tested as the following
arithmetic formulas 4 [12]:

[x1 ] + [ x2 ] = [x 1 + x 2 ; �x1 + �x2 ] ; (1.3)

[x1 ] � [x2 ] = [x 1 � �x2 ; �x1 � x2 ] ; (1.4)

[x1 ] � [x2 ] = [ min (x1x2 ; x1 �x2 ; �x1x2 ; �x1 �x2); max (x1x2 ; x1 �x2 ; �x1x2 ; �x1 �x2)] ; (1.5)

0 =2 [x2 ] : [x1 ] =[x2 ] = [ x1 ] � [1=�x2 ; 1=x2 ] ; (1.6)

If interval arithmetic is implemented using a oating-poin t representation with
limited resolution, its resulting bounding range is widene d further [28].

3A classic example is the contrast of the uncertainty propaga tion in the solutions for the
2nd-order linear di�erential equation vs. in those of Du�ng equation (which has a x3 term
in addition to the x term in a corresponding 2nd-order linear di�erential equat ion).

4For the mathematical de�nition of interval arithmetic, ple ase see [27].
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A basic problem is that the bounding range used by interval ar ithmetic is not
compatible with usual scienti�c and engineering measurements, which instead use the
statistical mean and deviations to characterize uncertain ty [18, 42]. Most measured
values are well approximated by a Gaussian distribution [18 , 42, 19], which has no
limited bounding range. Let bounding leakagebe de�ned as the possibility of the true
value to be outside a bounding range. If a bounding range is de�ned using a statistical
rule on bounding leakage, such as the 6� � 10� 9 rule for Gaussian distribution [19]
(which says that the bounding leakage is about 10� 9 for a bounding range of mean
� 6-fold of standard deviations), there is no guarantee that t he calculation result will
also obey the 6� � 10� 9 rule using interval arithmetic, since interval arithmetic has
no statistical foundation 5 .

Another problem is that interval arithmetic only provides t he worst case of un-
certainty propagation, so that it tends to over-estimate un certainty in reality. For
instance, in addition and subtraction, it gives the result w hen the two operands are
+1 and -1 correlated respectively [41]. However, if the two o perands are -1 and +1
correlated respectively instead, the actual bounding range after addition and subtrac-
tion reduces, which is called the best case in random interval arithmetic [13]. The
vast overestimation of bounding ranges in these two worst cases prompts the develop-
ment of a�ne arithmetic [41, 40], which traces error sources using a �rst-order model.
Being expensive in execution and depending on approximate modeling even for such
basic operations as multiplication and division, a�ne arit hmetic has not been widely
used. In another approach, random interval arithmetic [13] reduces the uncertainty
over-estimation of standard interval arithmetic by random ly choosing between the
best-case and the worst-case intervals.

A third problem is that the results of interval arithmetic ma y depend strongly
on the actual expression of an analytic function f (x). For example, Formula (1.7),
Formula (1.8) and Formula (1.9) are di�erent expressions of the same f (x); however,
the correct result is obtained only through Formula (1.7), a nd uncertainty may be
exaggerated in the other two forms, e.g., by 67-fold and 33-fold at input range [0.49,
0.51] using Formula (1.8) and Formula (1.9), respectively. This is called the dependence
problem of interval arithmetic [29].

f (x) = ( x � 1=2)2 � 1=4; (1.7)

f (x) = x2 � x; (1.8)

f (x) = ( x � 1)x; (1.9)

Interval arithmetic has very coarse and algorithm-speci�c precision but constant
zero bounding leakage. It represents the other extreme from conventional oating-
point arithmetic. To meet practical needs, a better uncerta inty-bearing arithmetic
should be based on statistical propagation of the rounding error, while also allowing
reasonable bounding leakage for normal usages.

5There is some attempt [43] to connect intervals in interval a rithmetic to con�dence interval
or the equivalent so called p-box in statistics. Because thi s attempt seems to rely heavily on
1) speci�c properties of the uncertainty distribution with in the interval and/or 2) speci�c
properties of the functions upon which the interval arithme tic is used, this attempt does not
seem to be generic. Anyway, this attempt seems to be outside t he main course of interval
arithmetic, which has no statistics in mind.
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1.4 Statistical Propagation of Uncertainty
If each operand is regarded as a random variable, and the statistical correlation be-
tween the two operands is known, the resulting uncertainty i s given by the statistical
propagation of uncertainty [9, 36], with the following arithmetic equations, in which
� is the deviation of a measured value x, P is its precision, and  is the correlation
between the two operands x1 and x2 :

(x1 � � 1) + ( x2 � � 2) = ( x1 + x2) �
q

� 2
1 + � 2

2 + 2 � 1 � 2  ; (1.10)

(x1 � � 1) � (x2 � � 2) = ( x1 � x2) �
q

� 2
1 + � 2

2 � 2� 1 � 2  ; (1.11)

(x1 � � 1) � (x2 � � 2) = ( x1 � x2) �j x1 � x2 j
q

P 2
1 + P 2

2 + 2 P1P2  ; (1.12)

(x1 � � 1)=(x2 � � 2) = ( x1=x2) �j x1=x2 j
q

P 2
1 + P 2

2 � 2P1P2  ; (1.13)

Tracking uncertainty propagation statistically seems an i deal solution. However,
in practice, the correlation between two operands is generally not precisely known,
so the direct use of statistical propagation of uncertainty is very limited. In this
paper, as a proxy for statistical propagation of uncertaint y, an independence arithmetic
always assumes that no correlation exists between any two operands, whose arithmetic
equations are Formula (1.10), Formula (1.11), Formula (1.1 2) and Formula (1.13),
where  = 0. Independence arithmetic is actually de facto arithmeti c in engineering
data processing, such as in the common belief that uncertainty after averaging reduces
by the square root of number of measurements [18, 42], or the ubiquitous Monte Carlo
method6 [8, 37], or calculating the mean and variance of a Taylor expansion [39].

1.5 Signi�cance Arithmetic
Signi�cance arithmetic [10] tries to track reliable bits in an imprecise value durin g
the calculation. Except for two early attempts [22, 14], sig ni�cance arithmetic has
not yet been implemented digitally. In these two attempts, t he implementations of
signi�cance arithmetic are based on simple operating rules upon reliable bit counts,
rather than on formal statistical approaches. They both tre at the reliable bit counts
as integers when applying their rules, while in reality a rel iable bit count could be a
fractional number, so they both can cause arti�cial quantum reduction of signi�cance.
Signi�cance arithmetic is not widely practiced in scienti� c and engineering calculations
[10].

Stochastic arithmetic [44, 38], which can also be categorized as signi�cance arith-
metic, randomizes the least signi�cant bits (LSB) of each of input oating-point values,
repeats the same calculation multiple times, and then uses statistics to seek invariant
digits among the calculation results as signi�cant digits. This approach may require
too much calculation since the number of necessary repeats for each input is speci�c
to each algorithm, especially when the algorithm contains b ranches. Its sampling
approach may be more time-consuming and less accurate than direct statistical char-
acterization [19], such as directly calculating the mean and deviation of the underlying
distribution. It is based on modeling rounding errors in con ventional oating-point

6Most but not all applications of Monte Carlo methods assume i ndependence between any
two random variables. In a minority of applications, a Monte Carlo method can be used to
construct speci�ed correlation between two random variabl es [37].
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arithmetic, which is quite complicated. A better approach m ay be to de�ne arithmetic
rules that make error tracking by probability easier.

As the mathematical foundation to signi�cance arithmetic, when a uncertainty-
bearing value is multiplied by a constant, the signi�cance o r relative precision still
holds, while the absolute precision [18, 42] scales with theconstant. In this respect,
�xed-point arithmetic [5], which assumes a �xed absolute pr ecision, does not have a
sounding mathematical foundation.

1.6 An Overview of This Paper
In this paper, a new oating-point arithmetic called precision arithmetic [45] is de-
veloped to track uncertainty during oating-point calcula tions, as described in Sec-
tion 2. Generic standards and systematic methods for validating uncertainty-bearing
arithmetics are discussed in Section 3. Precision arithmetic is compared with other
uncertainty-bearing arithmetics in Section 4 to Section 7. A brief discussion is provided
in Section 8.

2 Precision Arithmetic

2.1 Assumptions for Precision Arithmetic
As stated previously, the precision P is de�ned as the (relative) precision of a mea-
surement in this paper. Precision arithmetic tracks uncert ainty distribution during
calculations using specially designed arithmetic rules. It has the independent uncer-
tainty assumption as its basic assumption, presuming that the uncertainties of any two
di�erent values can be regarded as independent of each other. This assumption can be
turned into a realistic statistical requirement for input d ata for precision arithmetic.

Because it is not realistic to track the actual uncertainty d istributions, which may
vary according to each speci�c algorithm, the objectives of precision arithmetic are to
enclose the actual uncertainty distribution with a bounding distribution :

1. The bounding distribution is symmetric around an expecte d value which is the
value given by mathematics when there is no uncertainty.

2. The bounding distribution is Gaussian, with deviations c alculated by precision
arithmetic.

As shown later in this paper, the objectives of precision ari thmetic are extended from
the central limit theorem [19].

In addition, precision arithmetic uses heavily the scaling principle which says that
the result precision should not change when an imprecise value is either multiplied
or divided with a non-zero constant. The scaling principle c an be concluded from
Formula (1.12) and Formula (1.13) for statistical propagat ion of uncertainty. It is also
the foundation for signi�cance arithmetic.

2.2 The Independent Uncertainty Assumption
When there is a good estimation of the sources of uncertainty, the independent un-
certainty assumption can be judged directly, e.g., if noise [18, 42] is the major source
of uncertainty, the independent uncertainty assumption is probably true. This crite-
rion is necessary to ascertain repeated measurements of thesame signal. Otherwise,
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the independent uncertainty assumption can be judged by the correlation and the
respectively precisions of two measurements.

Let X , Y , and Z denote three mutually independent random variables [19] wi th
variance � 2(X ), � 2(Y ) and � 2(Z ), respectively. Let � denote a constant. Let Cov()
denote the covariance function. Let  denote the correlation between (X + Y ) and
(�X + Z ). And let:

� 2
1 �

� 2(Y )
� 2(X )

; � 2
2 �

� 2(Z )
� 2(�X )

=
� 2(Z )

� 2 � 2(X )
; (2.1)

 =
Cov(X + Y; �X + Z )

p
� 2(X + Y )

p
� 2(�X + Z )

=
�= j� j

p
1 + � 2

1

p
1 + � 2

2

�
�= j� j
1 + � 2

; (2.2)

Formula (2.2) gives the correlation  between two random variables, each of which
contains a completely uncorrelated part and a completely correlated part, with � being
the average ratio between these two parts. Formula (2.2) can also be interpreted
reversely: if two random variables are correlated by  , each of them can be viewed as
containing a completely uncorrelated part and a completely correlated part, with �
being the average ratio between these two parts.

One special application of Formula (2.2) is the correlation between a measured
signal and its true signal, in which noise is the uncorrelated part between the two.
Figure 1 shows the e�ect of noise on the most signi�cant two bi ts of a 4-bit measured
signal when � = 1 =4. Its top chart shows a triangular waveform between 0 and 16 as
a black line, and a white noise between -2 and +2, using the grey area. The measured
signal is the sum of the triangle waveform and the noise. The middle chart of Figure
1 shows the values of the 3rd digit of the true signal as a black line, and the mean
values of the 3rd bit of the measurement as a grey line. The 3rd bit is a�ected by the
noise during its transition between 0 and 1. For example, when the signal is slightly
below 8, only a small positive noise can turn the 3rd digit fro m 0 to 1. The bottom
chart of Figure 1 shows the values of the 2nd digit of the signal and the measurement
as a black line and a grey line, respectively. Figure 1 clearly shows that the correlation
between the measurement and the true signal is less at the 2nddigit than at the 3rd
digit. Quantitatively, according to Formula (2.2):

1. The 3rd digit of the measurement is 94% correlated to the signal with � = 1 =4;

2. The 2nd digit of the measurement is 80% correlated to the signal with � = 1 =2;

3. The 1st digit of the measurement is 50% correlated to the signal with � = 1;

4. The 0th digit of the measurement is 20% correlated to the signal with � = 2.

The above conclusion agrees with the common experiences that, below the noise level
of measured signals, noises rather than true signals dominate each digit.

Similarly, while the correlated portion between two values has exactly the same
value at each bit of the two values, the ratio of the uncorrela ted portion to the cor-
related portion increases by 2-fold for each bit down from MS B of the two values,
regardless of the nature of the uncorrelated portion. Quant itatively, let P denote the
larger precision of the two values, and let � P denote the ratio of the uncorrelated por-
tion to the correlated portion at level of uncertainty; then � P increases with decreased
P according to Formula (2.3). According to Formula (2.2), if t wo signi�cant values
are overall correlated with  , at the level of uncertainty the correlation between the
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Figure 1: E�ect of noise on bit values of a measured value. The triangular
wave signal and the added white noise are shown at top using the thinblack
line and the grey area, respectively. The values are measured by a theoretical
4-bit Digital-to-Analog Converter in ideal condition, assuming LSB is the 0th
bit. The measured 3rd and 2nd bits without the added noise are shown using
thin black lines, while the mean values of the measured 3rd and 2nd bitswith
the added noise are shown using thin grey lines.

Figure 2: Allowed maximal correlation between two values vs. input precisions
and independence standard (as shown in legend) for the independence uncer-
tainty assumption of precision arithmetic to be true.
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two values decreases to P according to Formula (2.4).

� P =
�
P

; P < 1; (2.3)

1
 P

� 1 =
�

1


� 1
�

1
P 2

; P < 1; (2.4)

Figure 2 plots the relation of  vs. P for each given  P in Formula (2.4). When
 P is less than a prede�ned maximal threshold (e.g., 2%, 5% or 10%), the two values
can be deemed virtually independent of each other at the level of uncertainty. If the
two values are independent of each other at their uncertaint y levels, their uncertainties
are independent of each other. Thus for each independence standard  P , there is a
maximal allowed correlation between two values below which the independent uncer-
tainty assumption of precision arithmetic holds. The maxim al allowed correlation is
a function of the larger precision of the two values according to Formula (2.4). Fig-
ure 2 shows that for two precisely measured values, their correlation  is allowed to
be quite high. To be acceptable in precision arithmetic, each of the low-resolution
values should contain enough noise in its uncertainty, so that they do not have much
correction through the systematic error [18, 42]. Thus, the independence uncertainty
assumption has much weaker statistical requirement than th e assumption for indepen-
dence arithmetic, which requires the two values to be independent of each other.

It is tempting to add noise to otherwise unquali�ed values to make their uncer-
tainties independent of each other. As an extreme case of this approach, if two values
are constructed by adding noise to the same signal, they are 50% correlated at the
uncertainty level so that they will not satisfy the independ ent uncertainty assumption 7 .

2.3 Precision Representation and Precision Round Up
Rule

Let the content of a oating-point number be denoted as S@E , in which S is the
signi�cand 8 and E is the exponent of 2 of the oating-point number. In addition ,
the precision representation S� @E contains a carry � to indicate its rounding error,
which can be:

� +: The rounding error is positive;

� -: The rounding error is negative;

� ?: The sign of the rounding error is unknown;

� #: The precision value contains an error code. Each error code is generated due
to a speci�c illegal arithmetic operation such as dividing b y zero. An operand
error code is directly transferred to the operation result. In this way, illegal
operations can be traced back to the source.

A round up proceeds according to the following round up rule:

7The 50% curve in Figure 2 thus de�nes the maximal possible cor relations between any
two measured signals. This other conclusion of Formula (2.4 ) makes sense because the mea-
surable correlation between two measurements should be lim ited by the precisions of their
measurements.

8While \signi�cand" is the o�cial word [26] to describe \The c omponent of a binary
oating-point number that consists of an explicit or implic it leading bit to the left of its
implied binary point and a fraction �eld to the right", \mant issa" is often uno�cially used
instead.
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� A value of (2S)� @E is rounded up to S� @(E + 1).

� A value of (2S + 1)+@E is rounded up to ( S + 1) � @(E + 1).

� A value of (2S + 1) � @E is rounded up to S+@(E + 1).

� A value of (2S + 1)?@E is rounded up to (S + 1) � @(E + 1).

Let the value before any rounding up be the original value, th e round-up rule ensures
that S@E is always the closest value with exponent E to the original va lue. After
each round up, the original rounding error is reduced by half for the new signi�cand.
If the original signi�cand is odd, the round up generates a ne w rounding error of 1/2,
which is added to the existing rounding error. Since the newl y generated rounding
error always cancels the existing rounding error, the round ing error range is limited to
half bit of the signi�cand, or the bounding range for the roun ding error is [-1/2,+1/2].
The precision arithmetic also tracks the rounding error bou nding range R so that the
precision representation becomesS� R@E .

If the initial � is wrong, it will be corrected by the �rst round up when S is odd,
or R will be reduced to half after each round up when S is even. Hence, the precision
round up process is stable and self-correcting.

2.4 Precise, Imprecise and Insigni�cant Values
When R is zero, the precision value S� R@E has no uncertainty, so it is de�ned as
precise; otherwise, it is de�ned as imprecise. If S is less than R, the imprecise value
becomesinsigni�cant . After a precise value with odd signi�cand is rounded up once ,
it becomes an imprecise value ofS?1=2@E .

An imprecise value can be decomposed as a precise value plus an imprecise zero:

S� R@E = S@E + 0� R@E ; (2.5)

In Formula (2.5), S@E carries mathematically expected value, while 0� R@E carries
uncertainty.

2.5 Probability Distribution of Rounding Errors
An ideal oating-point calculation is carried out conceptu ally to in�nitesimal preci-
sion before it is rounded up to representation precision [26, 11, 44]. Thus, rounding
up should be a process independent of any calculation, and it should be evaluated
separately. To estimate the rounding error distribution wi thin its bounding range [-
1/2, +1/2], a large number 9 of positive random integers are converted into precision
values and then rounded up once at a step time until each of them has a signi�cand
smaller than a prede�ned minimal signi�cand threshold. The precision value at each
step is compared with the original value for the rounding err or. Figure 3 shows the
result histogram of rounding errors for the minimal signi�c and thresholds 0, 1, 4 and
16, respectively. When each signi�cand bit has an equal chance to be either 0 or 1,
the result distribution of the rounding errors is expected t o be uniformly distributed
within the range [-1/2, +1/2] [20]. However, the precision r ound up rule changes this
equal chance for a few lowest digits of a signi�cand. So when the minimal signi�cand

9For each minimal signi�cand threshold, 64K random integers are used. The actual number
of random integers is not important as far as 1) it gives a stab le empirical histogram, and 2)
the random integers are uniformly distributed without repe at in values.
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threshold is smaller, the bias in rounding error distributi on is larger, as shown in Fig-
ure 3, and the result distribution is close to uniform only wh en the minimal signi�cand
threshold is 4 and above.

2.6 Result Uncertainty For Addition and Subtraction

In oating-point arithmetic, rounding errors are uncertai nties [26, 11, 44]. The preci-
sion round-up rule incorporates all randomness of an imprecise value into its carry and
bounding range so that it preserves the independent uncertainty assumption between
any two values. The independent uncertainty assumption suggests that the result
rounding error distribution of addition is the convolution of the two operand rounding
error distributions, while the result rounding error distr ibution of subtraction is the
convolution of the �rst operand rounding error distributio n and the mirror image of
the second operand rounding error distribution [19]. Thus, when the exponents of two
operands are equal, the results of addition and subtraction are:

S1� 1R1@E � S2� 2R2@E = ( S1 � S2)� (R1 + R2)@E ; (2.6)

Table 1 shows the result � for addition, while Table 2 shows the result � for subtraction.
It will be shown that the � immediately after a calculation is actually not important
because the precision round up rule frequently is applied after each calculation in
precision arithmetic as its normalization process.

Table 1: Result � in S1� 1R1@E + S2� 2R2@E = ( S1 + S2)� (R1 + R2)@E
� 1 vs. � 2 � 1 = � 2 � 1 6= � 2

� 1 = ? � 2 = ? R1 > R 2 R1 < R 2 R1 = R2

� � 1 � 2 � 1 � 1 � 2 ?

Table 2: Result � in S1� 1R1@E � S2� 2R2@E = ( S1 � S2)� (R1 + R2)@E.
� 1 vs. � 2 � 1 = � 2 � 1 6= � 2

� 1 = ? R1 > R 2 R1 < R 2 R1 = R2 � 1 = ? � 1 6= ?
� ? � 1 �� 2 ? �� 2 � 1

Let P 1
2

(x) be the rounding error distribution after rounding up, whic h is uniformly
distributed between [-1/2, +1/2] according to Formula (2.7 ). Let P n

2
(x) be the con-

volution of P 1
2

(x) according to Formula (2.8):

P 1
2

(x) � 1; � 1=2 � x � +1 =2; (2.7)

P n
2

(x) �
Z + 1

�1
P 1

2
(y)P n � 1

2
(x � y)dy =

Z +1 =2

� 1=2
P n � 1

2
(x � y)dy; n = 2 ; 3; 4 : : : ; (2.8)

Formula (2.8) shows that P n
2

(x) has a bounding range of R � n
2 , in which case it is

easy to prove that the deviation � of P n
2

(x) is determined by its bounding range R:

� 2 = R=6; (2.9)
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Figure 3: Measured probability distribution of rounding errors of precision
round-up rule for the minimal signi�cand thresholds 0, 1, 2, 4, and 8 respec-
tively. Mathematically the probability is usually de�ned either in range ( -1/2,
+1/2] or in range [-1/2, +1/2), but not in range [-1/2, +1/2]. Becau se -1/2
and +1/2 in bounding range have di�erent meaning in precision representation,
the probability range is de�ned as [-1/2, +1/2], which introduces the arti�cially
smaller count of histogram in sections containing either -1/2 or +1/2.

Figure 4: Measured probability distribution of the rounding error af ter addition
and subtraction. In the legend, \1" for measured rounding error distribution
for the minimal signi�cand thresholds 0, \1+1" for addition once and \1-1" for
subtraction once using the rounding error distribution of \1", while \1+1+1"
for addition twice, \1-1-1" for subtraction twice, \1+1-1" for ad dition once then
subtraction once, and \1-1+1" for subtraction once then addition once.
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Also, the same bounding range can be reached in any combination:

P m + n
2

(x) =
Z + 1

�1
P m

2
(y)P n

2
(x � y)dy; (2.10)

In reality, P 1
2

(x) is not strictly uniformly distributed in its bounding rang e [-1/2,
+1/2]. As the worst case, let P1=2(x) be the rounding error distribution with the
minimal signi�cand threshold of 0 in Figure 3. Figure 4 shows the rounding error
distribution after addition and subtraction, in which:

� R=1/2: \1" for no addition or subtraction.

� R=2/2: \1+1" for addition once, and \1-1" for subtraction on ce.

� R=3/2: \1+1+1" for addition twice, \1-1-1" for subtraction twice, \1+1-1"
for addition once then subtraction once, and \1-1+1" for sub traction once then
addition once.

Figure 4 shows that the rounding error distributions for the same bounding range
largely repeat each other, con�rming Formula (2.10). Addit ion and subtraction have a
slightly di�erent result distribution due to uneven P 1

2
(x). In all cases, the distributions

quickly approach Gaussian with the increase of bounding ranges.
Even for the worst-case P 1

2
(x), the deviation � relates to the bounding range R

empirically as � = 0 :423005R0:50000 with a reliable factor of 0 :9999999, con�rming
Formula (2.9) empirically.

The probability density function D y (y) after linear transformation ( y = �x + � )
of a generic probability density function D x (x) is [19]:

D y (y) = D x (( y � � )=� )=� ; (2.11)

According to the central limit theorem [19], Pn= 2(x) converges in distribution to a
Gaussian distribution of mean 0 and deviation � with an increased n:

Pn= 2(y) d�! N (y=� )=�; y 2 [� R; + R]; (2.12)

In Formula (2.12), N (x) is the density function of a normal distribution. Figure 4
shows that such convergence is very fast.

2.7 Result Uncertainty for Rounding Up
According to Formula (2.11), when an imprecise value is roun ded up once, both its
original bounding range R and its original deviation � are reduced to half for the new
signi�cand. According to Formula (2.9), there are two ways t o carry out rounding up:

� By range: When R is reduced to 1/2-fold, � is reduced to 1=
p

2-fold.

� By deviation: When � is reduced to 1/2-fold, R is reduced to 1/4-fold.

Figure 5 compares these two ways of rounding up when the original rounding error
range is R=8, in which R=4 is rounded up by range, while R=2 is r ounded up by devia-
tion. It clearly shows that rounding up by deviation results in a more similar rounding
error distribution. After rounded up, the stable distribut ion in Formula (2.12) becomes
N (y= �

2 )= �
2 ; y 2 [� R

2 ; + R
2 ], which is better approximated as N (y= �

2 )= �
2 ; y 2 [� R

4 ; + R
4 ]

than as N (y= �p
2
)= �p

2
; y 2 [� R

2 ; + R
2 ]. Rounding up by deviation is also required by

the scaling principle, so it is used universally in precision arithmetic. During round
up by deviation, the precision of the value in precision repr esentation is preserved.
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Rounding up by deviation also introduces bounding leakage called round-up leak-
age. In Figure 5, the 8/2 distribution of the rounding error outs ide the range [-2, +2]
contributes to a round-up leakage of 0.05%. Empirically, Fo rmula (2.13) shows that
the round-up leakage ' decreases exponentially with the increased bounding rangeR.
Smaller round-up ' leakage means that the actual rounding error distribution b ecomes
more similar to the rounding error distribution with increa sed bounding rangeR.

' = 0 :31942� 0:45775R ; (2.13)

Figure 5: The result rounding error distribution R = 8 =2 after the original error
distribution R = 8 is rounded up once. TheR = 8 =2 distribution is compared
with the R = 4 distribution and the R = 2 distribution, which have the same
bounding range and deviation, respectively.

2.8 Normalization

When R is above a threshold Rmax , round-up leakage is small enough so that round-
ing up by deviation can be applied repeatedly. This is the normalization process in
precision arithmetic, with the maximal round-up leakage de �ned as the normalization
leakagefor Rmax . An imprecise value S� R@E is in normalized format if its R is in the
range of [Rmax =4; Rmax ). Otherwise, it is called a nearly precise value. According to
Formula (2.13), when Rmax = 16, the maximal normalization leakage is 10 � 6 , which
is small enough for most applications. One function of normalization is to enforce the
correctness of carry sign � in precision representation S � R@E . Another reason is
to keep the magnitudes of both S and R manageable, e.g., within a CPU word [23].

Because of normalization, P n
2

(x) is extended to PR (x) for 2's fractional R 2
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(1=6; Rmax ) so that the deviation �x and bounding range � x of S� R@E is:

�x = � � 2E ; � <
p

Rmax =6; (2.14)

� x = R � 2E ; R < R max ; (2.15)

� x=�x = R=� =
p

6R; (2.16)

The stable probability density function in Formula (2.12) b ecomes the probability
density function � (ey) in Formula (2.17):

� (ey) = N (ey=�x )=�x; ey 2 [� � x; +� x]; (2.17)

All characteristics of a distribution are decided by its mom ents [19]. A Gaussian
distribution decreases very fast at its two tails so that its tails do not contribute
signi�cantly to moment calculation [19, 7]. Thus, accordin g to Formula (2.16), when R
is su�ciently large, � (ey) has moments identical to those of the corresponding Gaussian
distribution, and it is truly the Gaussian distribution but with truncated range at � R.
For example, in Formula (2.13), the bounding leakage actual ly indicates the di�erence
of 0th moment from 1 with increased R. It is assumed that when R � Rmax =4,
R is su�ciently large for obtaining at least the 0th, 1st and 2n d moments of the
corresponding unbounded Gaussian distribution. Formula ( 2.5) can be reinterpreted
as Formula (2.18), in which x is the mathematically expected value, and y is a � -
distributed random variable measuring uncertainty of x.

x � �x = x + ey; ey 2 � (ey); (2.18)

2.9 Precision Round Down Rule
As an inverse operation to rounding up by deviation, a precis ion round-down rule
is de�ned using the scaling principle. After rounding down o nce, S� R@E becomes
(2S)� (4R)@(E � 1). Round down reduces bounding leakage.

To add or subtract two operands with di�erent exponents, the operand with a
larger exponent is �rst rounded down to the other exponent, a nd the result of addition
or subtraction using Formula (2.6) is normalized afterward s.

2.10 Uncertainty Distribution
The Lyapunov form of the central limit theorem [19] states th at if X i is a random vari-
able with mean � i and variance � 2

i for each i among a series ofn mutually independent

random variables, then with increased n, the sum
nP

i
X i converges in distribution to

the Gaussian distribution with mean
nP

i
� i and variance

nP

i
� 2

i . Applying the central

limit theorem to precision arithmetic:

� Because multiplication is implemented as a series of addition and rounding,
while division is implemented as a series of subtraction and rounding [23], the
stable rounding error distribution after arithmetic opera tions is Gaussian.

� Because the stable rounding error distribution is independent of any initial
rounding error distribution of X i , the rounding error distribution character-
ized by Formula (2.17) can be extended e�ectively to describ e the uncertainty
distribution in general.
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� For addition, the mean value for the sum is the sum of the operand mean
values, while the variance of the sum is the sum of the operand variances. This
relation is extended to all arithmetic operations, to concl ude the two objectives
of precision arithmetic.

2.11 Uncertainty Initiation
An integer S is initialized as a precise value S@0.

A conventional 64-bit oating-point value S@E is usually in itialized as a nearly
precise value S?1=2@E because the IEEE oating-point standard [26] guarantees ac-
curacy to half bit of a signi�cand.

A mean-deviation pair ( x � �x ) of 64-bit conventional oating-point values is ini-
tialized as an imprecise value S� R@E by:

1. rounding up �x until Formula (2.14) is satis�ed;

2. obtaining R and E from �nal �x ;

3. rounding up x to E ; and

4. obtaining S and � from �nal x.

If the precision of the measured value is worse than 10� 16 , the result value is normal-
ized. Practically all measured values are normalized.

2.12 Calculation Inside Uncertainty
Table 3 shows the characteristic of di�erent Rmax . Although a larger Rmax has smaller
normalization leakage, it achieves this by having a larger b ounding range, thus it
greatly increases the chance for a value to be insigni�cant. According to Table 3,
only when Rmax = 16, the precision arithmetic has a comparable bounding ran ge as
the de facto 6� � 10� 9 rule for negligible bounding leakages in statistics. Therefore,
Rmax = 16 is used in this paper.

Table 3: Characterization of precision arithmetic with di�erent Rmax for preci-
sion representationS� R@E.

Rmax 16 64 256
Bounding range � x
in term of deviation
�x

[4.9 �x , 9.8 �x ) [9.8 �x , 19.6 �x ) [19.6 �x , 39.2 �x )

Maximal normaliza-
tion leakage

10� 6 10� 22 10� 85

Bit calculated inside
uncertainty

0 1 2

0.5� 0.001 = 512?6.29@-10 1024?25.16@-11 2048?100.64@-12
1� 0.001 = 1024?6.29@-10 2048?25.16@-11 4096?100.64@-12
1� 0.002 = 512?6.29@-9 1024?25.16@-10 2048?100.64@-11

The examples in Table 3 suggest that precision arithmetic do es not calculate inside
uncertainty, e.g., precision arithmetic represents the ex pected value of 1:000 � 0:001
as 210 =210 ; in contrast, all other arithmetic represents the value as 2 53 =253 . While



324 CP Wang, A New Uncertainty-Bearing Floating-Point Arithmetic

Table 4: Examples of precision arithmetic with di�erent � for Rmax = 16, in
which � stands for bits calculated inside uncertainty.

� 0 1 2
0.5� 0.001 = 512?6.29@-10 1024?12.58@-11 2048?25.16@-12
1� 0.001 = 1024?6.29@-10 2048?12.58@-11 4096?25.16@-12
1� 0.002 = 512?6.29@-9 1024?12.58@-10 2048?25.16@-11

calculating many bits inside uncertainty does not seem meaningful according to signif-
icance arithmetic [10], not calculating at all inside uncer tainty may not be an optimal
approach either. Thus, Formula (2.14) is modi�ed as Formula (2.19), in which � is a
small constant positive integer, to introduce the � -bit calculation inside uncertainty
by providing an altered interpretation of the precision for S� R@E .

�x =
p

R=6 � 2� � 2E + � ; (2.19)

Table 4 shows examples of precision arithmetic with di�eren t � for Rmax = 16, e.g.,
with � = 2, precision arithmetic represents the expected value of 1:000 � 0:001 as
212 =212 . � will be set to 4 empirically later in this paper.

The limited calculation inside uncertainty does not necessarily mean that preci-
sion arithmetic has a larger calculation error. The followi ng example shows that the
symmetry of precision representation cancels out rounding errors:

(1=3 � 0:001) + (2 =3 � 0:001) = (341 + 6 :29@� 10) + (683 � 6:29@� 10)

= (1024?12:6@� 10) = 1 � 0:001
p

2; (2.20)

In the above equation, the mathematically expected value fo r the result is precisely 1,
even though the mathematically expected values of the two operands for addition are
not precisely 1/3 and 2/3 after the uncertainty initiation, respectively.

2.13 Function Evaluation
The uncertainty of the function f (x) at ( x � �x ) is evaluated by the set f f (x+ ey)� f (x)g,
in which ey is a random variable de�ned by Formula (2.17). Because the bounding goal
of precision arithmetic centers on the mathematically expe cted value, the mean of the
set is assumed to be zero, and the variance (�f )2 of the set is calculated as:

(�f )2 �
Z

(f (x + ey) � f (x)) 2 � (ey) dey; (2.21)

Let M (n) be the nth moment of ey. If ey is symmetrically distributed around ey = 0,
then all the odd moments of ey are zero, as described by Formula (2.22), in which j is
a natural number. If y is normal-distributed, then its non-z ero moments are given by
Formula (2.23).

M (2j + 1) = 0; (2.22)

M (2j + 2) =
jY

k =0

(2k + 1); (2.23)
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If the function f (x) is Taylor expandable at x, f (x+ ey)� f (x) is calculated according
to Formula (2.25), in which f ( n ) denotes the nth derivatives of f (x) at x. (�f )2 is
given by Formula (2.25).

f (x + ey) � f (x) =
1X

n =1

f ( n ) (x)
n!

eyn ; (2.24)

(�f )2 =
1X

n =0

1X

j =0

f ( n ) (x)
n!

f ( j ) (x)
j !

(�x )n + j M (n + j ) � f (x)2 ; (2.25)

Let P (f (x)) � �f (x)=jf (x)j be de�ned as the precision for f (x); and let � be a
constant. According to Formula (2.25):

P (�x ) = P (x); (2.26)

jxj � �x : P (1=x) � P (x); (2.27)

P (x2) =
p

4P(x)2 + 3 P(x)4 ; (2.28)

jxj � �x : P (
p

x) � P (x)=2; (2.29)

Formula (2.26) and Formula (2.27) con�rm the scaling princi ple.
The Taylor expansion can also be used to �nd the result ( �f )2 of the function

f (x1 ; x2), in which f ( m;n ) denotes the mth and nth partial derivatives of x1 and x2 ,
respectively; and the independent uncertainty assumption between x1 and x2 leads to
independence between the random variablesey1 and ey2 in Formula (2.31):

f (x1 + ey1 ; x2 + ey2) � f (x1 ; x2) =
1X

m =0

1X

n =0

f ( m;n )

m!n!
eym

1 eyn
2 � f (x1 ; x2); (2.30)

(�f )2 =
1X

m =0

1X

n =0

1X

i =0

1X

j =0

f ( m;n )

m!n!
f ( i;j )

i !j !
(�x 1)m + i (�x 2)n + j M (m + i )M (n + j ) � f (x1 ; x2)2 ;

(2.31)

Such an approach can be extended to a function of an arbitrary number of input
variables. Formula (2.31) shows that an input contributes t o the result uncertainty
in more than one way, in the same way as � x appears in more than one term in the
Taylor expansion of � f (x; y; z ).

According to Formula (2.31):

� (x1 � x2)2 = ( �x 1)2 + ( �x 2)2 ; (2.32)

P (x1 x2) =
p

P(x1)2 + P(x2)2 + P(x1)2P(x2)2=6; (2.33)

jxj � �x : P (x1=x2) �
p

P (x1)2 + P(x2)2 + P(x1)2P(x2)2=6; (2.34)

Formula (2.32) con�rms Formula (2.6). Due to Formula (2.27) , Formula (2.33) is
identical to Formula (2.34), both of which can be concluded i ndependently from the
scaling principle.

If f (x) is a black-box function, because the normal distribution N (x) is well known,
standard methods exist to divide the range [x � � x; x + � x] into equal-probability
quantiles [19], and �f can be found numerically by sampling. For example, a � -point
monotonic sampling requires that 1) each numerically monot onic region contains at
least � consecutive sampling points; and 2) the whole range [x � � x; x + � x] has
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been divided into monotonic regions only. When � is su�ciently large, the chance of
missing a peak or a valley is small enough so that the sampling is fair enough. The
range [x � � x; x + � x] is �rst divided into � equal-probability quantiles, and at each
additional step, each quantile is further divided into an eq ual number of sub quantiles
until both sampling requirements are met. Then �f 2 is calculated as the sum of 1)
the sample variance and 2) the square of the sample mean.

2.14 Dependence Problem
Formula (2.25) and its multi-dimension extensions such as Formula (2.31) accurately
account for all contribution to the result uncertainty with in f (x), providing a clean
and deterministic solution for ( �f )2 , e.g., it gives the same result for Formula (1.7),
Formula (1.8) and Formula (1.9). Therefore, precision arit hmetic has no expression-
based dependence problem.

It is tempting to de�ne basic arithmetic operations as Formu la (2.32), Formula
(2.33) and Formula (2.34), and apply them progressively to c alculate f (x), similar to
how basic arithmetic operations are used in conventional o ating arithmetic. However,
such an approach may apply the independent uncertainty assumption wrongly between
a value and its mathematical expression, such as betweenx and x2 , so that it may result
in the dependence problem similar to that of interval arithm etic [29]. For example, for
such a use of precision arithmetic, only Formula (1.7) gives the correct result 4( x �
1
2 )2(�x )2+3( �x )4 , while Formula (1.8) over-estimates the result uncertaint y by 4x(�x )2,
which has the largest fold of over-estimation at x = 1

2 when �x < 1. Let x, y and z
be three values satisfying the independent uncertainty assumption. Functions f (x; y )
and g(x; z) are correlated through x, and they need to be tested for the independent
uncertainty assumption before they can be used to calculate h(f; g ) using precision
arithmetic. For example, using precision arithmetic, the c orrelation  between (x � �x )
and (x � �x )2 is calculated by Formula (2.35), which shows that  increases with
decreased precisionP � �x= jxj of x, in contrast with how the independent uncertainty
assumption favors �ner precision P in Formula (2.4). After applying Formula (2.4), the
correlation on the uncertainty level  P is no less than 16

19 , so that precision arithmetic
rejects calculating Formula (1.8) progressively using the basic arithmetic operations.

 =

R �
(x + ey)2 � x2

�
(( x + ey) � x) � (ey) dey

q R
((x + ey)2 � x2)2 � (ey) dey

q R
((x + ey) � x)2 � (ey) dey

=
1

q
1 + 3

4 P 2
(2.35)

In other words, converting a numerical algorithm from using conventional oating-
point arithmetic to using precision arithmetic may be more c omplicated than directly
replacing the variable types and the arithmetic being used. To avoid the dependence
problem, the safest approach is to obtain an analytic form of the �nal expression of an
algorithm before applying Formula (2.25) and its multi-dim ension extensions, similar
to how symbolic calculations are currently used in a�ne arit hmetic [33].

2.15 Conditional Execution
Conditional execution based on the comparison relation between two values is fre-
quently used in practical algorithms [34]. When each value has associated uncertainty,
the comparison relation between two values becomes quite di�erent. This is particu-
larly true for interval arithmetic, in which a value can be an ywhere inside its bounding
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range [32]. In precision arithmetic, each value has a mathematically expected value
plus a well-de�ned bounding distribution for uncertainty. The comparison relation
between two imprecise values in precision representation can be de�ned either by their
mathematically expected values, or by their statistical co mparison relations based on
con�dence [19].

However, the usage of condition execution in a traditional a lgorithm needs to
be re-evaluated conceptually with uncertainty statistics in mind when upgrading an
algorithm to use precision arithmetic, because most condit ional executions are created
to optimize implementation. For example, LU decomposition [34] carefully chooses
the sequence of execution to minimize rounding errors, so that it introduces additional
dependence problem due to conditional execution, e.g., small value change of a matrix
item can result in di�erent conditional execution path and l arge result di�erence. In
other words, to solve the linear equation Ax = b, in which A is a matrix, x and b are
two vectors, with the uncertainty of A � 1 analytically solvable using Taylor expansion
(as demonstrated in Section 5), precision arithmetic prefers to solve it as x = A � 1b
than to use the LU decomposition method.

2.16 Implementation
The conventional 64-bit oating-point standard IEEE-754 [ 21, 26] has:

� 11 bits for storing exponent E ;

� 53 bits for storing signi�cand S (with a hidden MSB).

� 1 bit for storing sign;

To be a super set of the conventional 64-bit oating-point st andard, an 80-bit
implementation of precision arithmetic has:

� 11 bits for storing exponent E ;

� 53 bits for storing signi�cand S (without using the hidden MSB);

� 1 bit for storing sign;

� 2 bits for storing carry � ;

� 13 bits to store the bounding range R as a �xed-point value.

Precision arithmetic is implemented in C++. With heavy addi tional codes to
count for statistics and to detect implementation errors, i t runs about seven times
slower than the implementation of interval arithmetic usin g Formula (1.3), (1.4), (1.5)
and (1.6). It is probably faster in speed than the implementa tion of interval arithmetic
without the dependence problem [29]. With code weight trimm ing and optimization,
its speed is expected to be improved at least threefold. Unlike conventional oating-
point arithmetic, it only calculates a limited number of sig ni�cand bits, e.g., 12 bits
instead of all the 53 bits when the precision is 10� 3 and � is 2. Its slowest but very
frequent operation is to �nd the position of the highest non- zero signi�cand digit,
which can be found instantly with a decoder [25]. Thus, futur e hardware optimization
can also improve the speed of precision arithmetic by another estimated tenfold.

2.17 Alternative Form of Precision Arithmetic
Because the independent uncertainty assumption can lead directly to 1) the Gaussian
distribution as the underlying distribution for rounding e rrors, and 2) Formula (2.25)



328 CP Wang, A New Uncertainty-Bearing Floating-Point Arithmetic

and its multi-dimension extensions such as Formula (2.31) for generic Taylor expansion,
an alternative form of precision arithmetic is to represent each uncertainty-bearing
value as x � �x in Formula (2.18). The bounding range is then calculated fro m �x as
the con�dence interval [19] for any required upper limit on b ounding leakage, e.g., if the
required bounding leakage is 10� 9 or less, the bounding interval is [x � 6�x; x + 6 �x ].
This alternative form of precision arithmetic is not adopted in this paper for the
following reasons:

� For the actual numerical calculation, if conventional oat ing-point arithmetic is
used separately forx and �x , then x and �x will be contaminated by unspeci�ed
amount of rounding errors. Because the calculation for �x is more complex
than that for x, �x probably contains more rounding error than x. Thus, the
current form of precision arithmetic de�nes its own oating -point representation
for x � �x as S� R@E .

� Another e�ect of using conventional oating-point arithme tic for x and �x is
to calculate many bits inside uncertainty, whose validity i s not clear at this
moment. In contrast, as demonstrated by Table 3 and Table 4, t he current form
of precision arithmetic controls the number of bits calcula ted inside uncertainty.

However, the alternative form could be valuable in theoreti cal discussions of precision
arithmetic.

2.18 Types of Uncertainties Included in Precision Arith-
metic

There are four sources of result uncertainty after a calculation [18, 34]:

� input uncertainties

� rounding errors

� truncation errors

� modeling errors

As described previously, both input uncertainties and roun ding errors are included
in the uncertainty speci�cation of precision arithmetic.

In many cases, because a numerical algorithm approaches itsanalytic counterpart
only after in�nitive execution, a good numerical algorithm should have an estimator
of the truncation error toward its analytic counterpart, such as the Cauchy reminde r
estimator for Taylor expansion [34], or the residual error f or numerical integration
[34]. Using conventional oating-point arithmetic, a subj ective upper limit is chosen
for the truncation error, to stop the numerical algorithm at limited execution [34].
However, such arbitrary upper limit may not be achievable wi th the amount of round-
ing errors accumulated during calculation, so that such upp er limit may actually give
a falsely small result precision. Because precision arithmetic tracks rounding errors of
a calculation e�ciently, it can be used to search for the opti mal execution termination
point for the numerical algorithm when the truncation error is no longer signi�cant,
which is named as the truncation rule in this paper. In other words, using precision
arithmetic, the result precision of a calculation is determ ined by the inputs and the
calculation itself. Section 7 will provide such a case of applying truncation rule to
numerical integration.

Modeling errors arise when an approximate analytic solutio n is used, or when a
real problem is simpli�ed to obtain the solution. For exampl e, Section 4 demonstrates
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that the discrete Fourier transformation is only an approxi mation for the mathemat-
ically de�ned Fourier transformation. Conceptually, mode ling errors originate from
mathematics, so they are outside the domain for precision arithmetic.

3 Standards and Methods for Comparing Un-
certainty-Bearing Arithmetic

3.1 Comparing Standards and Methods
Algorithms each with a known analytic result are used to char acterize uncertainty-
bearing arithmetic. The di�erence between the arithmetic r esult and the analytic
result is de�ned as the value error. The question is whether the uncertainty bound-
ing range or the uncertainty deviation is enough to cover the value error with an
increased amount of calculation for any input. Correspondi ng to two di�erent goals
for uncertainty-bearing, there are actually two di�erent s ets of measurements to char-
acterize an uncertainty-bearing arithmetic:

� The ratio of the absolute value error to the uncertainty devi ation is de�ned as the
tracking ratio for each output value. An ideal uncertainty-tracking arith metic
should have an average tracking ratio close to 1.

� The ratio of the absolute value error to the uncertainty boun ding range is de�ned
as the bounding ratio for each output value. An ideal uncertainty-bounding
arithmetic should have a maximal bounding ratio either 1 or l ess than but close
to 1. If the maximal bounding ratio is larger than 1, bounding leakagemeasures
the probability for errors to be outside uncertainty boundi ng range.

In both cases, all measurements should be stable for an algorithm so that they
should not change signi�cantly for di�erent input deviatio n, input data, or the amount
of calculation. For example, if di�erent branches of condit ional executions contain
very di�erent amounts of calculations, such stability is cr ucial for obtaining a valid
estimation of result precision.

3.2 Comparing Uncertainty-Bearing Arithmetics
Precision arithmetic tracks both the uncertainty bounding range and the uncertainty
deviation, so it can be evaluated for both goals. Independence arithmetic has no
uncertainty bounding range, while interval arithmetic has no uncertainty deviation.
To be able to compare all the three arithmetics, [ x � 6�x; x + 6 �x ] is used arti�cially
as the bounding range for an average valuex with deviation �x for independence
arithmetic, and vice versa for interval arithmetic.

As stated previously:

� Independence arithmetic assumes that any two operands are independent of
each other, which may not be true in most cases.

� Precision arithmetic assumes that the uncertainties of any two operands are
independent of each other, but allows the two operands themselves to be corre-
lated.

� Interval arithmetic has the worst-case assumption because it needs to have zero
bounding leakage unconditionally.
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The statistical assumption of precision arithmetic is weak er than that of independence
arithmetic but stronger than that of interval arithmetic, s o after executing the same
algorithm on the same input data, the output deviation and th e bounding range of
precision arithmetic are expected to be larger than those of independence arithmetic
but smaller than those of interval arithmetic.

� According to Formula (2.6) and Formula (2.9), the result dev iation of addition
and subtraction by precision arithmetic propagates in the s ame way as that
of independence arithmetic, while the result bounding rang e propagates in the
same way as that of interval arithmetic. Hence addition and s ubtraction cannot
di�erentiate the three arithmetics.

� According to Formula (2.33) and Formula (2.34), the result p recision of mul-
tiplication and division by precision arithmetic is always larger than that by
independence arithmetic. However, if both operands have precisions much less
than 1, the result precision of multiplication and division is very close to that
of independence arithmetic. Thus, the result of precision arithmetic should be
much closer to that of independence arithmetic.

� The uncertainty distribution of precision arithmetic is a t runcated Gaussian dis-
tribution according to Formula (2.17). When an imprecise va lue is multiplied by
a constant, because its uncertainty bounding range and its uncertainty distri-
bution deviation cannot be scaled linearly simultaneously according to Formula
(2.14) and Formula (2.15), precision arithmetic chooses to preserve the distri-
bution deviation rather than the bounding range, thus intro ducing bounding
leakages. Figure 5 suggests that the bounding range of precision arithmetic
should be much narrower than that of interval arithmetic, wh ile Formula (2.13)
shows that such introduced bounding leakage should be small, e.g., less than
10� 6 for the chosen normalization method.

� Formula (2.25) and its multi-dimensional expansions such as Formula (2.31) are
mathematically strict so that precision arithmetic has no d ependence problem
on expression di�erences. In contrast, there seems no similar solution for generic
Taylor expansion using interval arithmetic, because there seems no general an-
alytic solution to �nd maxima and minima for generic polynom ial at any range
[34]. In this respect, precision arithmetic is mathematica lly simpler than interval
arithmetic.

3.3 Comparing Algorithms for Tests
Algorithms of completely di�erent nature with each represe ntative for its category are
needed to test the generic applicability of uncertainty-be aring arithmetic.

An algorithm can be categorized by comparing the amount of it s input and output
data:

� Transforming : A transforming algorithm has about equal amounts of input a nd
output data. The information contained in the data remains a bout the same af-
ter transforming. The Discrete Fourier Transformation is a typical transforming
algorithm, which contains exactly the same amount of input a nd output data,
and its output data can be transformed back to the input data u sing essentially
the same algorithm. Matrix inversion is another such revers ible algorithm. For
reversible transformations, a unique requirement for uncertainty-bearing arith-
metic is to introduce the least amount of additional uncerta inty after forward
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and reverse transformation, which provides an objective testing standard for
a uncertainty-bearing arithmetic. A test of uncertainty-b earing arithmetic us-
ing FFT algorithms is provided in Section 4, and a test of matr ix inversion is
provided in Section 5.

� Generating : A generating algorithm has much more output data than input
data. Solving di�erential equations numerically and gener ating a numerical
table of a speci�c function are two typical generating algor ithms. The generating
algorithm codes mathematical knowledge into data, so there is an increase of
information in the output data. In generating algorithms, i nput uncertainty
should also be considered when deciding if the result is goodenough so that the
calculation can stop. Some generating algorithms are theoretical calculations
which involve no imprecise input so that all result uncertai nty is due to rounding
errors. Section 6 demonstrates such an algorithm, which calculates a table
of the sine function using trigonometric relations and two p recise input data,
sin (0) = 0 and sin (�= 2) = 1.

� Reducing: A reducing algorithm has much less output data than input da ta such
as numerical integration and statistical characterizatio n of a data set. Some in-
formation of the data is lost while other information is extr acted during reduc-
ing. Conventional wisdom is that a reducing algorithm gener ally bene�ts from
a larger input data set [19]. Such a notion needs to be re-evaluated when uncer-
tainty accumulates during calculation. A test of uncertain ty-bearing arithmetic
using numerical integration is provided in Section 7.

Other relations between the input and output can also be used to categorize an
algorithm.

� In an expressive algorithm, each output is implemented as an analytic math-
ematical expression of inputs. Formula (2.25) and Formula ( 2.31) of precision
arithmetic are powerful tools to solve expressive algorith ms using precision arith-
metic.

� In a progressive algorithm, each output is based on partial inputs and previ-
ously generated outputs. If an output depends on the state wh ich is de�ned
by previous inputs and outputs, the algorithm is also progre ssive. Most prac-
tical algorithms are progressive. Even if there may be an expected analytic
mathematical expression between its input and output, an al gorithm may not
be expressive due to its progressive implementation. The dependence problem
usually exists in a progressive algorithm.

3.4 Input Data to Use
To test input data of any precision, a precise input value can be cast to any speci�c
input deviation using precision representation. There exi st two ways of implementing
such a casting:

� A clean signal is obtained by directly casting a perfect signal to a speci�c pre-
cision. Such casting may contain systematic rounding errors. For instance, if
a perfect sine signal repeats 2n times in 2n +2 samples, the signal contains only
values 0, � 1 and � 1=

p
2, with each value repeated multiple times in the signal.

The symmetry of the arithmetic may be tested by the output sym metry of clean
input signals, e.g., in the discrete Fourier transformatio n, the frequency space
should be conjugately symmetrical [34] for a clean signal in signal space.
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� A noisy signal is obtained by adding Gaussian noise of the same deviation as the
input deviation to a perfect signal before casting. It repre sents a realistic signal,
and it should be used in validating arithmetic on uncertaint y propagation.

4 Comparison Using FFT

4.1 Frequency Response of DFT (Discrete Fourier Trans-
form)

Each testing algorithm needs to come under careful scrutiny. One important issue
here is whether the digital implementation of the algorithm is faithful for the original
analytic algorithm. For example, the DFT is only faithful fo r continuous Fourier
transformation at certain frequencies, and it has a di�eren t degree of faithfulness for
other frequencies. This is called the frequency response ofthe DFT in this paper.

For each signal sequenceh[k]; k = 0 ; 1 : : : N � 1, in which N is a positive integer,
the DFT H [n]; n = 0 ; 1 : : : N � 1 and its reverse transformation is given by Formula
(4.1) [34], in which k is the index frequency for the DFT:

H [n] =
N � 1X

k =0

h[k] ei 2� k
N n ; h[k] =

1
N

N � 1X

n =0

H [n] e� i 2� n
N k ; (4.1)

The H [n] of a pure sine signalh[k] = sin (2 �fk=N ) is calculated by Formula (4.2),
in which f is the frequency of the sine wave. When f is an index frequency for H [n],
Formula (4.2) becomes Formula (4.3). Otherwise, the general solution for Formula
(4.2) is Formula (4.4), which approaches (4.3) when f approaches its closest integer
F , or Formula (4.5) when f approachesF � 1=2.

H [n] =

P N � 1
k =0 ei 2� ( n + f ) k

N �
P N � 1

k =0 ei 2� ( n � f ) k
N

2i
; (4.2)

H [n] = i� n;F N=2; (4.3)

H [n] =
1
2

sin(2�f � 2� f
N ) + sin(2 � f

N ) � sin(2�f )e� i 2� n
N

cos(2� n
N ) � cos(2� f

N )
; (4.4)

H [n] = N=� ; (4.5)

The DFT H [n] of the signal h[k] is the digital implementation of the continuous
Fourier transformation H (s) of the signal h(t) [34], in which H (s) = i� (s � f ) for
h[k] = sin(2 �f ). From Formula (4.4), when the signal frequency of the origi nal signal
falls between two index frequencies of the transformation, the peak is lower and wider
with a wrong phase, depending on the fractional frequency jf � F j. Thus, the DFT
is only faithful for signal components with exactly one of th e index frequencies of the
transform, and it suppresses and widens unfaithful signal components, each of which
has a phase di�erent from its closest faithful representati on, with the phase of a sine
wave distorted toward that of a cosine wave, and vise visa. Examples of unfaithful
representations of fractional frequency by the DFT are show n in Figure 6.

Due to its width, a frequency component in an unfaithful tran sformation may
interact with other frequency components of the Discrete Fo urier spectrum, thus sab-
otaging the whole idea of using the Fourier Transformation t o decompose a signal
into independent frequency components. Because the reverse DFT mathematically
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Figure 6: Unfaithful representations of perfect sine signals in theDiscrete
Fourier Transformation. The calculation is done on 1024 samples using FFT
on a series of perfect sine signals having amplitude of 1 and slightly di�erent
frequencies as shown in legends. In the drawing, thex-axis shows frequency,
the y-axis shows either intensity or phase (inlet). A faithful representation is
also included for comparison, whose phase is�= 2 at the index frequency, and
undetermined at other frequencies.

restores the original f h[k]g for any f H [n]g, it exaggerates and narrows all unfaithful
signal components correspondingly. This means that the common method of signal
processing in the Fourier space [34, 44, 35] may generate artefacts due to its uniform
treatment of faithful and unfaithful signal components, wh ich probably coexist in re-
ality. Unlike aliasing [25, 34, 35], unfaithful representa tion of the DFT has an equal
presence in the whole frequency range so that it cannot be avoided by sampling the
original signal di�erently.

An unfaithful representation arises from the implied assum ption of the DFT. The
continuous Fourier transformation has an in�nitive signal range so that:

h(t) , H (s) : h(t � � ) , H (s)ei 2�s� ; (4.6)

As an analog, the DFT G[n] of the signal h[k]; k = 1 : : : N can be calculated mathe-
matically from the DFT H [n] of h[k]; k = 0 : : : N � 1:

G[n] = ( H [n] + h[N ] � h[0])ei 2�n=N ; (4.7)

Applying Formula (4.6) to Formula (4.7) results in Formula ( 4.8).

h[N ] = h[0]; (4.8)

Thus, the DFT has an implied assumption that the signal h[k] repeats itself outside
the region of [0; N � 1] [16]. For an unfaithful frequency, h[N � 1] and h[N ] are
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discontinuous in regard to signal periodicity, resulting i n larger peak width, lower
peak height, and the wrong phase.

The most convenient signals to test uncertainty-bearing ar ithmetic are perfect sine
or cosine signals with index frequencies. A linear signal with the slope �; h [k] = �k ,
provides a generic test for input frequencies other than index frequencies, whose Fourier
spectrum is:

H [n] = � �
N
2

�
1 +

i
tan( �n=N )

�
; (4.9)

4.2 FFT (Fast Fourier Transform)
When N = 2 L , in which L is a positive integer, the generalized Danielson-Lanczos
lemma [34] can be applied to the DFT as FFT [34], in which m = L; L � 1; : : : 1; 0
indicates progress of the transformation, and j is the bit-reverse of n:

m = L : H [n;
k

2m
] = h[j ]; k; n = 0 ; 1 : : : N � 1; (4.10)

m = L � 1 : : : 0 : H [n;
k

2m
] = H [n;

k
2m +1

] + H [n;
k

2m +1
] exp (+ i2�

n
2L � m

); (4.11)

m = 0 : H [n] = H [n;
k

2m
]; (4.12)

Thus, each output value is obtained after applying Formula ( 4.11) L times. L is called
FFT order in this paper.

The calculation of the term exp ( i2� n
2L � m ) in Formula (4.11) can be simpli�ed.

Let << denote a bit left-shift operation and let & denote a bitwise A ND operation:

' [n] � exp (i2�
n
2L

) : exp ( i2�
n

2L � m
) = ' [(n << m )&((1 << L ) � 1)]; (4.13)

It is important to have an accurate phase factor array ' [n] when tracking the FFT
calculation error. The accuracy of ' [n] can be checked rigidly within itself by trigono-
metric relations so that no signi�cant error is introduced f rom trigonometric functions.

Formula (4.11) always sums up two mutually independent oper ands, so the error
propagation in a FFT algorithm is precisely tracked by indep endence arithmetic, and
the dependency problem should not be a concern for interval arithmetic and precision
arithmetic.

FFT is one of the most widely used algorithms [34]. By providi ng a balanced
usage of addition, subtraction and multiplication involvi ng trigonometric functions,
it services as one of the most important benchmarks in testing processors for over-
all mathematical performance [4]. Since all three uncertainty-bearing arithmetics are
generic in nature without special optimization for FFT algo rithms, the testing result
using FFT algorithms should be generic for expressive algorithms. FFT algorithms
provide a good linear platform to test any uncertainty-bear ing arithmetic, with 1) a
clearly de�ned value measuring the amount of calculation, 2 ) a known error propaga-
tion mechanism, 3) no conditional execution in the algorith m, and 4) using only basic
arithmetic operations without the dependence problem.

4.3 Evaluating Calculation Inside Uncertainty
Figure 7 shows the output deviations and value errors for a noisy sine signal after for-
ward FFT. It shows that the output deviations using precisio n arithmetic are slightly
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Figure 7: The output deviations and value errors of the forward FFT on a noisy
sine signal of FFT order 4, index frequency 1 and input deviation 10� 2. In the
legend, \Intv" means interval arithmetic, \Indp" means independ ence arith-
metic, \Prec" means precision arithmetic, \Dev" means output unc ertainty
deviations, \Error" means output value errors, \Real" means real part, and
\Imag" means imaginary part. Because both interval arithmetic and indepen-
dence arithmetic using conventional oating arithmetic for underly ing calcula-
tions, they have the same value errors.

Figure 8: The output value errors of the forward FFT on a noisy sinesignal of
index frequency 1 and input deviation 10� 2 using precision arithmetic with dif-
ferent bit inside uncertainty. In the legend, \Prec0" means precision arithmetic
with 0-bit calculated inside uncertainty, \Prec2" means precision arithmetic
with 2-bit calculated inside uncertainty, and \Prec4" means precision arithmetic
with 4-bit calculated inside uncertainty.
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larger than the output deviations using independence arith metic, but much less than
those using interval arithmetic. For a �xed input deviation , the output deviation using
independence arithmetic is a constant for each FFT. Becausethe value and uncertainty
interact with each other through normalization in precisio n arithmetic, output devia-
tions of Formula (4.11) are no longer a constant. One interesting consequence is that
only in precision arithmetic the output deviations for a noi sy input signal are larger
than those for a corresponding clean input signal.

Figure 7 shows that the value errors calculated using precision arithmetic are
comparable to those using conventional oating-point arit hmetic, and they are both
comparable to the output deviations using either precision arithmetic or independence
arithmetic. In other words, the result of calculating 2-bit or 53-bit into uncertainty
are quite comparable so that the limited calculation inside uncertainty is reasonable.

Figure 8 compares the output value errors of precision arith metic calculating dif-
ferent bits inside uncertainty. With no calculation inside uncertainty, the output value
errors exist only on four levels. Such quantum distribution is reduced noticeably by
the 2-bit calculation inside uncertainty, and is further re duced by the 4-bit calculation
inside uncertainty. Compared with Figure 7, Figure 8 shows t hat the result using pre-
cision arithmetic with the 4-bit calculation inside uncert ainty approaches that using
independence arithmetic so that the 4-bit calculation insi de uncertainty seems su�-
cient. Precision arithmetic with the 4-bit calculation ins ide uncertainty is used for
further tests.

4.4 Evaluating Uncertainty Distribution
Precision arithmetic tracks all increases of rounding erro rs, but it cannot track de-
creases of the rounding error due to mutual cancellations during arithmetic opera-
tions. Hence the uncertainty distribution provided by prec ision arithmetic serves as
the bounding distribution for value errors, and the actual d istribution could be nar-
rower than the bounding distribution. FFT provides a good te st for such probability
bounding. Its forward and reverse algorithms are identical except for a constant so
that they result in exactly the same bounding probability di stributions. On the other
hand, the forward FFT condenses a sine signal into only two non-zero imaginary values
by mutual cancellation of signal components, while the reverse FFT spreads only two
non-zero imaginary values to construct a sine signal. Thus, the forward FFT is more
sensitive to calculation errors than the reverse FFT, and sh ould have a broader actual
uncertainty distribution.

Because value errors are only observable as errors of the result signi�cand, while
precision arithmetic has limited bits calculated inside un certainty, theoretical round-
ing error distributions obtained from Formula 2-16 are inte grated around LSB of the
signi�cand, to result in theoretical probability densitie s of the value error signi�cands
for di�erent bounding ranges. The occurrence frequencies of the output value error
signi�cands are counted for di�erent bounding ranges and no rmalized as measured
probability densities. Figure 9 and Figure 10 show theoreti cal and empirical distri-
bution of signi�cand errors for di�erent bounding ranges on noisy sine signals for the
forward and reverse FFT, respectively. They show that the un certainty distribution
of the forward FFT is very close to the bounding distribution , while the uncertainty
distribution of the reverse FFT is indeed narrower. In contr ast, for the linear input
signal, the forward and reverse FFT have almost identical va lue tracking ratios dis-
tribution. Thus, the previous hypothesis on the distributi on width of value tracking
ratios is validated empirically in this case.
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Figure 9: The theoretical and empirical distribution of signi�cand er rors for
di�erent bounding ranges (as shown in legend) using precision arithmetic for
the forward FFT on noisy sine signals.

Figure 10: The theoretical and empirical distribution of signi�cand errors for
di�erent bounding ranges (as shown in legend) using precision arithmetic for
the reverse FFT on noisy sine signals.
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Figure 11: The measured normalized value error distributions using indepen-
dence arithmetic for FFT algorithms (as shown in legend). They are best �tted
by a Gaussian distribution with the mean of 0.06 and deviation of 0.98.

Figure 12: The measured normalized value error distributions using precision
arithmetic for FFT algorithms (as shown in legend). They are best �t ted by a
Gaussian distribution with the mean of 0.06 and deviation of 0.97.
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Another way to measure the empirical probability distribut ion is to normalize the
output value error with the corresponding output uncertain ty deviation according to
Formula 2-11. If output value errors are Gaussian-distribu ted with the deviation given
precisely by the corresponding output uncertainty deviati on, then the normalized his-
togram should be normal-distributed. Figure 11 shows that t he normalized histograms
using independence arithmetic are best �t by a Gaussian dist ribution with the devi-
ation of 0.98 and the mean of 0.06. If there were no rounding errors, all the results
should have zero value errors. Indeed, in Figure 11, the measured histograms have
a much larger population at where the value errors are zero so that the measured
deviation is expected to be less than 1. The reason for the small but non-zero mean
for the measured probability distribution is not clear at th is moment. Figure 12 shows
that the measured normalized histograms using precision arithmetic are very similar
to those using independence arithmetic, and they are all well �tted by a Gaussian
distribution which is very close to a normal distribution.

4.5 Evaluating Uncertainty-Tracking
Figure 13 shows that for the same input deviation, the output deviations of the forward
FFT increase exponentially with the FFT order using all thre e arithmetics. Figure 14
shows that for the same FFT order, the output deviations of th e forward FFT increase
linearly with the input deviation using all three arithmeti cs. The output deviation does
not change with input frequency so that all data of the same in put deviation and the
same FFT order but with di�erent input frequencies can be poo led together during
analysis. The trends in Figure 13 and Figure 14 are modeled by Formula (4.14), in
which L is the FFT order, �x is the input deviation, � y is the average output deviation,
and � and � are empirical �tting constants:

�y = �� L �x ; (4.14)

� measures the propagation speed of the deviation with an increased amount of cal-
culation in Formula (4.14). It is called propagation base rate. Unless � is close to 1, �
dominates � in �tting, thus determining characteristics of Formula (4. 14).

It turns out that Formula (4.14) is a very good �t for both aver age output devi-
ations and value errors for all three arithmetics, such as demonstrated in Figure 15.
Because uncertainty-tracking is a competition between err or propagation and uncer-
tainty propagation, the average output tracking ratio for t he forward FFT is expected
to �t Formula (4.15) and Formula (4.16), in which z is the average output tracking ra-
tio, L is the FFT order, ( � dev ; � dev ) and ( � err ; � err ) are �tting parameters of Formula
(4.14) for average output deviations and value errors, respectively:

z = �� L ; (4.15)

� = � err =� dev ; � = � err =� dev ; (4.16)

The estimated average output tracking ratio can then be comp ared with the mea-
sured ones to evaluate the predictability of the uncertaint y-tracking mechanism. One
example of measured average output tracking ratios is shownin Figure 16, which shows
that the average output tracking ratios using precision ari thmetic are a constant de-
spite that both average output uncertainty deviations and v alue errors increase linearly
with the input deviation and exponentially with the FFT orde r. Formula (4.14) and
Formula (4.15) are found empirically to be a good �t for any FF T algorithm with any
input signal using any arithmetic.
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Figure 13: For the same input deviation of 10� 3, the empirical average output
deviations of the forward FFT increase exponentially with the FFT order for
all uncertainty-bearing arithmetics. In the legend, \Intv" means interval arith-
metic, \Indp" means independence arithmetic, \Prec" means precision arith-
metic, \Real" means real part, and \Imag" means imaginary part.

Figure 14: For the same order of the FFT calculation of 15, the empirical
average output deviations of the forward FFT increases linearly with the input
deviation for all uncertainty-bearing arithmetics. In the legend, \ Intv" means
interval arithmetic, \Indp" means independence arithmetic, \Pre c" means pre-
cision arithmetic, \Real" means real part, and \Imag" means imaginary part.
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Figure 15: The empirical average output value errors using precision arithmetic
increase exponentially with the FFT order and linearly with the input de viation,
respectively.

Figure 16: The empirical average output tracking ratios using precision arith-
metic is a constant when the input deviation is larger than 10� 14 and the FFT
order is more than 5 for forward FFT algorithms. Because the precision of con-
ventional oating-point representation is at 10 � 16, adding Gaussian noises with
the deviation of 10� 17 should have little e�ect on the input data. For the same
reason, the output tracking ratios are stable only when the input deviation is
more than 10� 14. When the FFT order is 2, a FFT calculation actually involves
no arithmetic calculation between input data. For the same reason,when the
FFT order is less than 5, there is not enough arithmetic calculation for the
result tracking ratios to reach equilibrium.
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The Reverse FFT algorithm is identical to the Forward FFT alg orithm, except
when:

� The Reverse FFT algorithm uses constant (-i) instead of (+i) in Formula (4.11).

� The Reverse FFT algorithm divides the result further by 2 L .

Thus, the average output deviations and value errors of the r everse FFT algorithm
are expected to obey Formula (4.14) and Formula (4.17) , in wh ich ( � for , � for ) are
corresponding �tting parameters of Formula (4.14) for the f orward FFT, while the
average output tracking ratios are expected to obey Formula (4.16) with the same �
and � as those of the forward FFT.

� = � for ; � = � for =2; (4.17)

The Round-trip FFT is the forward FFT followed by the reverse FFT, with the
output of the forward FFT as input to the reverse FFT. Thus, bo th its average output
deviations and value errors are expected to �t Formula (4.14 ) and Formula (4.18),
in which ( � for ; � for ) and ( � rev ; � rev ) are corresponding �tting parameters of Formula
(4.14) for the forward FFT and the reverse FFT, respectively . Its tracking ratios are ex-
pected to �t Formula (4.15) and Formula (4.18), in which ( � for ; � for ) and ( � rev ; � rev )
are corresponding �tting parameters of Formula (4.15) for t he forward FFT and the
reverse FFT, respectively.

� = � for � rev ; � = � for � rev ; (4.18)

Figure 17, Figure 18 and Figure 19 show the �tting of � for independent, pre-
cision and interval arithmetic for all the three algorithms , respectively. These three
�gures show that all measured � make no distinction between input signals for any
algorithms using any arithmetic, e.g., there is no di�erenc e between the real part and
the imaginary part for a sine signal. The estimated � for average tracking ratios is
obtained from Formula (4.16). The estimated � for average uncertainty deviations
and value errors for the reverse FFT and the roundtrip FFT are obtained from For-
mula (4.17) and Formula (4.18), respectively. The estimate d � for average uncertainty
deviations for the forward FFT is

p
2, which will be demonstrated later. The mea-

sured � and the estimated � agree well with each other in all cases. This con�rms
that uncertainty-tracking is a simple competition between the error propagation and
uncertainty propagation:

� Figure 17 con�rms that independence arithmetic is ideal for uncertainty-tracking
for FFT algorithms: 1) � for tracking ratios is a constant 1; and 2) � for both
the average output deviations and value errors is both 1 for t he round-trip FFT
because the result signal after the round-trip FFT should be restored as the
original signal. Thus, theoretical � for the forward FFT and the reverse FFT
are

p
2 and 1=

p
2, respectively.

� Precision arithmetic has � for average output deviations slightly larger than
those of value errors, resulting in � for average output tracking ratios to be a
constant slightly less than 1. Its � for average output deviations is slightly larger
than the corresponding � of independence arithmetic, so its average output de-
viations propagate slightly faster with an increased FFT or der than those of
independent arithmetic. Such slightly faster increase wit h the amount calcula-
tion is anticipated by the di�erence between Formula (2.33) and Formula (1.12)
with  = 0.
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Figure 17: Empirical and theoretical � for �tting average output deviations,
value errors and tracking ratios for forward, reverse and roundtrip FFT using
independence arithmetic on noisy sine signals. In the chart, \Real" means real
part, and \Imag" means imaginary part.

Figure 18: Empirical and theoretical � for �tting average output deviations,
value errors and tracking ratios for forward, reverse and roundtrip FFT using
precision arithmetic on noisy sine signals. In the chart, \Real" meansreal part,
and \Imag" means imaginary part.
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Figure 19: Empirical and theoretical � for �tting average output deviations,
value errors and tracking ratios for forward, reverse and roundtrip FFT using
interval arithmetic on noisy sine signals. In the chart, \Real" means real part,
and \Imag" means imaginary part.

� The � for average output deviations using interval arithmetic is always much
larger than � for average output value errors, resulting in � for average out-
put tracking ratios of about 0 :62 for the forward and reverse FFT, and about
0:39 �= 0:622 for the roundtrip FFT. Consequently, using interval arithm etic,
the average output deviations propagate much faster with th e amount of calcu-
lations than the value error does. Such fast propagation of uncertainty ranges
is intrinsic to interval arithmetic due to its worst-case as sumption.

Figure 20 shows that for the forward FFT, the measured averag e output tracking
ratios using either precision arithmetic or independence arithmetic are approximately
constant of 0.8 in both cases, regardless of the FFT order. In contrast, Figure 20 shows
that using interval arithmetic the measured average output tracking ratios decrease
exponentially with the FFT order L. Such trends of average tr acking ratios hold for
all three FFT algorithms and all input signals. Thus, in this case, the direct uncer-
tainty tracking provided by precision arithmetic is better than the indirect uncertainty
tracking provided by interval arithmetic.

Figure 21 shows that using precision arithmetic, each average output uncertainty
deviation equals the corresponding input uncertainty devi ation for all FFT orders after
a round-trip operation. Thus, after each round-trip operat ion, precision arithmetic
restores the original signal and the corresponding uncertainty for FFT. Such behavior
seems ideal for a reversible algorithm. In contrast, Figure 22 shows that using interval
arithmetic, the average output uncertainty deviations inc rease exponentially with FFT
orders, which means the undesirable broadening of uncertainty in the restored signal
after a round-trip operation.
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Figure 20: The empirical output average tracking ratios vs. the FFT order
of the forward FFT for all three arithmetics when the input uncert ainty devi-
ation is 10� 3. In the legend, \Intv" means interval arithmetic, \Indp" means
independence arithmetic, \Prec" means precision arithmetic, \Real" means real
part, and \Imag" means imaginary part.

Figure 21: The empirical average output deviations vs. the FFT order and
input deviations using precision arithmetic for the round-trip FFT alg orithm.
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Figure 22: The empirical average output deviations vs. the FFT order and
input deviations using interval arithmetic for the round-trip FFT alg orithm.

4.6 Evaluating Uncertainty-Bounding
While uncertainty tracking is the result of the propagation competition between av-
erage output deviations and average values errors with increased amount of calcu-
lations, uncertainty bounding is the result of the propagat ion competition between
output bounding ranges and maximal value errors, both of whi ch still �t Formula
(4.14) well using any arithmetic experimentally. Formula ( 4.15) and Formula (4.16)
can be used to estimate the maximal bounding ratio as well. For example, Figure 23
shows that the maximal output bounding ratios using precisi on arithmetic �t Formula
(4.15) well. Unlike average output tracking ratios in Figur e 20, the maximal output
bounding ratios increase slowly with the FFT order using eit her precision arithmetic
or independent arithmetic. In contrast, interval arithmet ic has its maximal bounding
ratios decreasing exponentially with the increased FFT ord er for all algorithms while
keeping its bounding leakages at constant 0. Detailed analysis shows that in interval
arithmetic, � for the maximal uncertainty bounding ranges exceeds � for the maximal
value error, suggesting the source of over-estimating uncertainty range with the in-
creased amount of calculations. De�ning empirical deviation leakage as the frequency
of the value errors to be outside the range of mean� deviation, Figure 24 shows that
the deviation leakages is roughly a constant using precision arithmetic, suggesting the
statistical nature of uncertainty bounding using precisio n arithmetic. Whether preci-
sion arithmetic is better than interval arithmetic in uncer tainty bounding depends on
the statistical requirements for the uncertainty bounding :

� In the situation when absolute bounding is required, interv al arithmetic is the
only choice.

� In the range estimation [18] involving low-resolution meas urements whose sources
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Figure 23: The empirical maximal output bounding ratios vs. the FFT order
of the forward FFT for all three arithmetics. In the legend, \Intv " means inter-
val arithmetic, \Indp" means independence arithmetic, \Prec" me ans precision
arithmetic, \Real" means real part, and \Imag" means imaginary pa rt.

of uncertainty are unclear, interval arithmetic is a better choice because the in-
dependence uncertainty assumption of precision arithmeti c may not be satis�ed.

� Otherwise, precision arithmetic should be more suitable for normal usages.

5 Comparison Using Matrix Inversion

5.1 Uncertainty Propagation in Matrix Determinant

Let vector [ p1 ; p2 : : : pn ]n denote a permutation of the vector (1 ; 2 : : : n) [24]. Let
$[p1 ; p2 : : : pn ]n denote the permutation sign of [p1 ; p2 : : : pn ]n [24]. For a n-by-n square
matrix M with the element x i;j ; i; j = 1 ; 2 : : : n, let its determinant be de�ned as
Formula (5.1) [34] and let the sub-determinant at index ( i; j ) be de�ned as Formula
(5.2) [24]:

jM j �
X

[p1 :::p n ]n

$[p1 : : : pn ]n
Y

k

xk;p k ; (5.1)

jM j i;j �
p i = jX

[p1 :::p n ]n

$[p1 : : : pn ]n
k 6= iY

k

xk;p k ; (5.2)

(� 1)i + j jM ( i;j ) j is the determinant of the ( n � 1)-by-( n � 1) matrix that results from
deleting the row i and column j of M [34]. Formula (5.3) holds for the arbitrary row
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Figure 24: The empirical deviation leakages vs. the FFT order and input
deviations using precision arithmetic for the forward FFT algorithm.

index i or the arbitrary column index j [34]:

jM j =
nX

j =1

jM i;j jx i;j =
nX

i =1

jM i;j jx i;j ; (5.3)

Assuming p1 ; p2 2 f 1; 2:::ng, let [p1 ; p2 ]n denote the length-2 unordered permuta-
tion which satis�es p1 6= p2 , and let < p 1 ; p2 > n denote the length-2 ordered permuta-
tion which satis�es p1 < p 2 . Letting < i 1 ; i 2 > n be an arbitrary ordered permutation,
Formula (5.3) can be applied to M i;j , as:

jM <i 1 ;i 2 > n [ j 1 ;j 2 ]n j �

p i 1 = j 1 ;p i 2 = j 2X

[p1 :::p n ]n

$[p1 : : : pn ]n
k 6= i 1 ;k 6= i 2Y

k

xk;p k ; (5.4)

jM j =
X

j 1

x i 1 ;j 1 jM i 1 ;j 1 j =
X

j 1

i 2 6= i 1 ;j 2 6= j 1X

j 2

x i 1 ;j 1 x i 2 ;j 2 jM <i 1 ;i 2 > n [ j 1 ;j 2 ]n j; (5.5)

BecausejM <i 1 ;i 2 > n [ j 1 ;j 2 ]n j relates to the determinant of the ( n � 2)-by-( n � 2) matrix
that results from deleting the row i 1 and i 2 , and the column j 1 and j 2 of M. This leads
to Formula (5.6).

jjM <i 1 ;i 2 > n [ j 1 ;j 2 ]n jj = jjM j<i 1 ;i 2 > n [ j 2 ;j 1 ]n
jj ; (5.6)

The de�nition of a sub-determinant can be extended to Formul a (5.7), in which m 2
f 1; 2:::ng. Formula (5.5) can be generalized as Formula (5.8), in which m 2 f 1; 2:::ng
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and < i 1 : : : i m > n is an arbitrary ordered permutation. Formula (5.8) can be vi ewed
as the extension for both Formula (5.3) and Formula (5.1).

jM <i 1 :::i m > n [ j 1 :::j m ]n j �

p i k
= j k ;k 2f 1:::m gX

[p1 :::p n ]n

$[p1 : : : pn ]n
k 62fi 1 :::i m gY

k 2f 1:::n g

xk;p k ; (5.7)

jM j =
X

[ j 1 :::j m ]n

jM <i 1 :::i m > n [ j 1 :::j m ]n j
mY

k =1

x i k ;j k ; (5.8)

According to the basic assumption of precision arithmetic, the uncertainty of each
element x i;j is independently and symmetrically distributed. Let eyi;j denote a random
variable at the index ( i; j ) symmetrically distributed with the deviation �x i;j . Let gjM j
denote the determinant of the matrix fM whose element is (x i;j + eyi;j ). Applying Taylor
expansion to Formula (5.8) results in Formula (5.9), which r esults in Formula (5.10)
after applying Formula (2.21) and Formula (2.22):

j fM j � j M j =
nX

m =1

X

<i 1 :::i m > n

X

[ j 1 :::j m ]n

jM <i 1 :::i m > n [ j 1 :::j m ]n
j

mY

k =1

eyi k ;j k ; (5.9)

� jM j2 =
nX

m =1

X

<i 1 :::i m > n

X

[ j 1 :::j m ]n

jM <i 1 :::i m > n [ j 1 :::j m ]n
j2

mY

k =1

�x 2
i k ;j k

; (5.10)

De�ning jM <> n <> n j � j M j, Formula (5.11) is an recursive form of Formula (5.10):

� jM <p 1 :::p k > n <q 1 :::q k > n j2 =
X

p i

X

qj

�x 2
p i ;q j

(jM <p 1 :::p i :::p k > n <q 1 :::q j :::q k > n j2 + � jM <p 1 :::p i :::p k > n <q 1 :::q j :::q k > n j2); (5.11)

The element zi;j at the index ( i; j ) of the inverted matrix M � 1 is calculated as
[24]:

zi;j =
jM j;i j
jM j

; (5.12)

Formula (5.12) shows that the uncertainty of the matrix dete rminant jM j propagates
to every element of the inverted matrix M � 1 . Instead, the matrix which consists of
the element jM j;i j at the index ( i; j ) is de�ned as the adjugate matrix M A [24], whose
elements are not directly a�ected by M � 1 . M A is recommended to replace M � 1

whenever the application allows [34].

5.2 Matrix Testing Algorithm

A matrix cM is constructed using random integers between [-16384, + 16384]. Its
adjugate matrix cM A and its determinant j cM j are calculated precisely using integer
arithmetic. cM , j cM j and cM A are all scaled proportionally as M , jM j and M A so that
the elements of M are 2's fractional numbers randomly distributed between [- 1, +1].
The scaled matrix M is called a clean testing matrix. M � 1 is calculated from jM j
and M A and it is deemed precise10 . Floating-point arithmetic is used to calculate M A

10 Because jM j;i j and jM j are not independent of each other, M � 1 calculated by Formula
(5.12) contains the dependency problem. Only introduced in the last step, this dependency
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and M � 1 from M, and the results are compared with the corresponding p recise results
for value errors. Gaussian noises corresponding to di�erent deviations between 10� 17

and 10� 1 may be added to each clean testing matrix, to result in noisy t esting matrix.
Each combination of matrix size and input deviation is teste d by 32 di�erent noisy
matrices.

5.3 Testing Matrix Stability

Each matrix has a di�erent stability [3], which means how sta ble the inverted matrix is
in regard to small value changes of the original matrix elements. It is well known that
more mutual cancellations in Formula (5.1) mean less stabil ity of the matrix [30, 34],
with the Hilbert matrix [6] being the most famous unstable ma trix. The condition
number has been de�ned to quantify the stability of a matrix [ 3]. Even though the
de�nition of the condition number excludes the e�ects of rou nding errors, in reality
most calculations are done numerically using conventional oating-point arithmetic
so that the combination e�ect of rounding errors and matrix i nstability cannot be
avoided in practice. When a matrix is unstable, the result is more error prone due
to rounding errors of conventional oating-point arithmet ic [30]. Consequently, there
are no general means to avoid the mysterious and nasty \numerical instability" in
numerical applications due to rounding errors [30]. For example, the numerical value
of the calculated condition number of a matrix may have alrea dy been a victim of
\numerical instability", and there is no sure way to judge th is suspicion, so this value
may not be very useful in judging the stability of the matrix i n practice. On the other
hand, the rounding errors of conventional oating-point ar ithmetic can be used to
test the stability of a matrix. Rounding errors e�ectively c hange the item values of a
matrix, so they produce a larger e�ect on a less stable matrix . If the inverted matrix
and the adjugate matrix are calculated using conventional  oating-point arithmetic,
larger value errors indicate that the matrix is less stable.

Precision arithmetic accounts for all rounding error with s table characterization of
result uncertainties. More mutual cancellations in Formul a (5.1) will result in a smaller
absolute value related to the uncertainty deviation of the d eterminant. Thus, the
precision of the determinant jM j of a matrix M calculated using precision arithmetic
measures the amount of mutual cancellations, and it may measure the stability of a
matrix. Particularly, if jM j is of coarser precision, then each element ofM � 1 should
tend to have a larger value error, according to Formula (5.12 ). This hypothesis is
con�rmed by Figure 25, which shows a good linear relation bet ween the precision of
jM j and the average value error of its inverted matrix M � 1 , regardless of the matrix
size. The maximal output values errors are related to the pre cision of jM j in the same
fashion. In contrast, Figure 26 shows that the value errors of the adjugate matrix
M A do not depend noticeably on the precision of jM j. Thus, the precision of the
denominator in Formula (5.12) determines the overall stabi lity in matrix inversion,
con�rming the validity of common advice to avoid matrix inve rsion operations in
general [34].

Such a linear relation between the precision and the value error also extends to
the calculation of the adjugate matrix. Let the relative val ue error be de�ned as the
ratio of the value error divided by the expected value. The re lative error is expected

problem does not a�ect M � 1 severely, but it a�ects ( M � 1 ) � 1 noticeably. For example, the
result error distribution of ( M � 1 ) � 1 is no longer Gaussian according to Figure 30, and the
result average tracking ratios of ( M � 1 ) � 1 increase slowly with the matrix size.
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Figure 25: The empirical average value errors of the inverted matrix using
conventional oating-point arithmetic vs. matrix determinant pre cision using
precision arithmetic for clean matrices of di�erent sizes (as shown inlegend).

Figure 26: The empirical average value errors of the adjugate matrix using
conventional oating-point arithmetic vs. matrix determinant pre cision using
precision arithmetic for clean matrices of di�erent sizes (as shown inlegend).
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Figure 27: Empirical relative value errors of the adjugate matrix using con-
ventional oating-point arithmetic vs. corresponding sub-matrix determinant
precision using precision arithmetic for clean matrices of di�erent sizes (as shown
in legend).

to correspond to the result precision linearly. Figure 27 compares each precision of
the sub-matrix determinant jM j;i j with the corresponding relative error of the element
at the index ( i; j ) of the adjugate matrix M A of the clean matrix of di�erent sizes.
It shows that larger relative errors of adjugate matrix elem ents indeed correspond to
coarser precisions of the sub-matrix determinant.

While each condition number [3] only gives the result sensit ivity to one matrix
element, Formula (5.10) contains the result sensitivity to any matrix element, any
combination of matrix elements, as well as the aggregated result uncertainty devia-
tion. Therefore, Formula (5.10) and Formula (5.11) may be be tter than the condition
numbers for describing matrix stability.

5.4 Testing Uncertainty Propagation in the Adjugate Ma-
trix

When the adjugate matrix is calculated using precision arit hmetic, Figure 28 shows
that the average output deviations for the adjugate matrix i ncrease linearly with the
input deviation, which is in good agreement with Formula (4. 14). Such relation is
also true for maximal and average output values errors. Formula (4.14) is expected
to describe the general value error propagation for linear algorithms in which L is the
amount of calculations [15]. The question is what value L should be when calculating
the adjugate matrix of a square matrix of size N . Figure 28 suggests that L increases
with N 2 for the average output precision and average output error, w hile similar to
Figure 15, L increases with N for the maximal output deviation and maximal output
error. The discrepancy between Figure 28 and Figure 15 may bedue to the fact that
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Figure 28: Using precision arithmetic, the average output deviations of the
adjugate matrix vs. input precision and the matrix size.

Figure 29: Using precision arithmetic, the average output trackingratios of the
adjugate matrix vs. input precision and the matrix size.
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Figure 30: The measured normalized value error distributions using precision
arithmetic for matrix calculations of matrix size 9. They are best �tt ed by
a Gaussian distribution with the mean of 0.06 and deviation of 0.96. In the
legend, \Adj" means calculating adjugate M A , \Inv" means calculating inverted
M � 1, and \Rnd" means calculating double inverted (M � 1)� 1. Please also see
Footnote 9 for additional explanations.

the average calculation involves N 2 array items, while the maximal calculation involves
only N array items11 .

Figure 29 shows that the average output tracking ratio of the adjugate matrix
using precision arithmetic is approximately a constant of 0 .8. Figure 29 is very similar
to Figure 16. Similar to the maximal output bounding ratios o f FFT algorithms, the
maximal output bounding ratios for the adjugate matrix usin g precision also obey
Formula (4.15) well, with � of 1.005, meaning a slow increase with the matrix size.
Added to the similarity is the normalized uncertainty distr ibution shown in Figure 30,
which is very similar to Figure 12. Even though FFT and the cal culating adjugate
matrix are two very di�erent sets of linear transformationa l algorithms, their uncer-
tainty propagation characteristics are remarkably simila r even in quantitative details.
This similarity indicates that precision arithmetic is a ge neric arithmetic for linear
algorithms.

11 The amount of calculation L does not mean the calculation complexity using the Big O
notation [2]. It is just a measurement of how output uncertai nty increases with a dimension
of calculation according to (4.14) [15]. For example, any so rting algorithm will not change the
uncertainty distribution, so that L is always 0 regardless the calculation complexity for the
sorting algorithm. The measured calculation time suggests calculation complexity of O(2N )
for using Formula (5.11) to calculate the matrix determinan t.
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6 Comparison Using Recursive Calculation of
Sine Values

Starting from Formula (6.1), Formula (6.2) and Formula (6.3 ) can be used recursively
to calculate the phase array ' [n] in Formula (4.13).

sin(0) = cos(
�
2

) = 0; sin(
�
2

) = cos(0) = 1; (6.1)

sin
�

� + �
2

�
=

r
1 � cos (� + � )

2
=

r
1 � cos(� ) cos (� ) + sin( � ) sin( � )

2
; (6.2)

cos
�

� + �
2

�
=

r
1 + cos (� + � )

2
=

r
1 + cos(� ) cos(� ) � sin(� ) sin( � )

2
; (6.3)

This algorithm is very di�erent from both FFT and matrix inve rsion in nature
because Formula (6.2) and Formula (6.3) are no longer linear, and the test presents a
pure theoretical calculation without input uncertainty. T he recursion iteration count
L is a good measurement for the amount of calculations. Each repeated use of Formula
(6.2) and Formula (6.3) accumulates calculation errors to t he next usage so that both
value errors and uncertainty are expected to increase with L . Each recursion iteration
L corresponds to 2L � 2 outputs, which enables statistical analysis for large L .

Figure 31 shows that both average output value errors and the corresponding av-
erage output deviation increase exponentially with the rec ursion count for all three
arithmetics, and Figure 32 shows that in response to the increased amount of calcula-
tions:

� The average tracking ratio for precision arithmetic is a con stant about 0.25;

� The maximal output bounding ratio for precision arithmetic increases slowly;

� The average tracking ratio for interval arithmetic decreas es exponentially; and

� The maximal output bounding ratio for interval arithmetic r emains roughly a
constant.

Unlike FFT algorithms, the initial precise sine values part icipate in every stage of the
recursion, which results in few small output deviations at e ach recursion. Detailed
inspection shows that the maximal output bounding ratios fo r interval arithmetic
are all obtained from small output deviations, and bounding ratios using interval
arithmetic in general decrease exponentially with the amou nt of calculations. Thus,
the result uncertainty propagation characteristics of the regressive calculation of sine
values are very similar to those of both FFT and the calculati ng adjugate matrix; even
though all these algorithms are quite di�erent in nature. Th is may indicate again that
the stability of precision arithmetic is generic, regardle ss of the algorithms used.

7 Validation of Precision Arithmetic Using Nu-
merical Integration

In numerical integration over the variable x using conventional oating-point arith-
metic, a �ner sampling of the function to be integrated f (x) is associated with a better
result [34], and it is assumed that f (x) can be sampled at in�nitive �ne intervals of
x. In reality, oating-point arithmetic has limited signi�c ant bits, so that rounding
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Figure 31: The empirical output average value errors and corresponding average
output deviations vs. the recursion iteration count of the regressive calculation
of sine values using interval arithmetic, precision arithmetic and independent
arithmetic. The x-axis indicates the recursion iteration count L, while the y-
axis indicates either the average value errors or average uncertainty deviations.
In the legend, \Intv" means interval arithmetic, \Indp" means ind ependence
arithmetic, and \Prec" means precision arithmetic.

Figure 32: The empirical output maximal bounding ratios and average tracking
ratios vs. the recursion iteration count of the regressive calculation of sine values
using interval and precision arithmetics. In the legend, \Intv" means interval
arithmetic, \Indp" means independence arithmetic, and \Prec" me ans precision
arithmetic.
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errors will increase with �ner sampling of f (x). However, such limitation of numerical
integration due to rounding errors is seldom studied seriously. In this paper:

1. The function to be integrated is treated as a black-box fun ction.

2. The numerical integration is carried out using the rectan gular rule [34].

3. The residual error is estimated locally as the di�erence b etween using the rect-
angular rule and using the trapezoidal rule [34].

4. The sampling is localized using simplest depth-�rst bina ry-tree search algorithm.

5. The sampling stops when the residual error is no longer signi�cant.

Speci�cally, for each integration interval [ xstart ; xend ], de�ne:

xmid � (xstart + xend )=2; (7.1)

f err � (f (xstart ) + f (xend ))=2 � f (xmid ); (7.2)

f � � f (xmid )( xend � xstart ); (7.3)

If f err becomes insigni�cant, the interval [ xstart ; xend ] is considered to be �ne enough,
and f � is added to the total integration. Otherwise, the search con tinues on the
intervals [ xstart ; xmid ] and [xmid ; xend ], which is the next depth for searching. This
searching algorithm is very adaptive, with the local search depth depending only on
how f (x) changes locally. However, such adaptation to the local change of f (x) brings
one weakness to this searching algorithm: when f (0) = f 0(0) = 0, the algorithm
spends the majority of the execution time around x = 0, searching in tiny intervals of
great depth, and adding tiny signi�cant values to the result each time. This weakness
is called zero trap here. It cannot be removed by simply o�set ting f (x) by a constant
because doing so will change the precision of each sampling of f (x), and increase
the output uncertainty deviation. For a proof-of-principl e demonstration, zero trap is
avoided in this paper.

Formula (7.4) provides an example test for the above simple algorithm, in which
n is a positive integer.

4n +1 � 10� 6( n +1)

n + 1
=

Z 4

10 � 6
xn dx; (7.4)

Table 5 shows that the result of numerical integration is ver y comparable to the ex-
pected value. It shows that the above integration algorithm introduces no broadening
of result uncertainty, so the above algorithm always selects optimal integration inter-
vals when calculating the best possible result for a numerical integration. Tests of
integration using di�erent polynomials with di�erent inte gration ranges all con�rm
the above result.

One thing worth noticing in Table 5 is that even though Formul a (7.3) consistently
underestimates integration for each integration interval [xstart ; xend ], the �nal under-
estimation is quite small and comparable to the uncertainty deviation. This example
shows that the bias inside the uncertainty range has insigni �cant contribution to the
�nal result using precision arithmetic.

8 Conclusion and Discussion

8.1 Summary
The starting point of precision arithmetic is the independe nt uncertainty assumption,
which requires that its low-signi�cance input data not be ov erwhelmed by systematic
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Table 5: Uncertainty deviation and value error of numerical integration vs.
expected results using precision arithmetic for di�erent power function. The
search range is deepest near 10� 6.

Power n Search Depth �
� R4

10� 6 xn dx
� R4

10� 6 xn dx � 4n +1 � 10� 6( n +1)

n +1

2 [25, 47] 1.32x10� 14 -0.705x10� 14

3 [25, 47] 2.52x10� 14 -1.42x10� 14

4 [26, 47] 1.16x10� 13 -1.13x10� 13

5 [26, 48] 5.08x10� 13 -6.82x10� 13

6 [26, 48] 1.92x10� 12 -2.72x10� 12

errors, and all of its input data not have confused identitie s. Figure 2 quanti�es the
statistical requirements for input data to precision arith metic.

Due to the independent uncertainty assumption and central l imit theorem, the
rounding errors of precision arithmetic are shown to be bounded by a Gaussian distri-
bution with a truncated range. The rounding error distribut ion is extended to describe
the uncertainty distribution in general, with the uncertai nty deviation of a single pre-
cision value given by Formula (2.17), and the result uncerta inty deviation of a function
given by Formula (2.25) and its multi-dimension extensions such as Formula (2.31).

Formula (4.14) is shown to describe the general uncertainty deviation propagation
in precision arithmetic. The average tracking ratios and th e maximal bounding ratio
using precision arithmetic are shown to be independent of input precision, and stable
for the amount of calculations for a few very di�erent applic ations. In contrast, both
average tracking ratios and the maximal bounding ratio usin g interval arithmetic are
shown to decrease exponentially with the amount of calculat ions in all tests. Such
stability is the major reason why precision arithmetic is be tter than interval arithmetic
in all tests done so far.

Precision arithmetic is quite di�erent from conventional a rithmetic. Due to the
dependence problem when precision arithmetic is applied incorrectly, precision arith-
metic has much less operational freedom than conventional arithmetic and may require
extensive symbolic calculations. Also, the comparison relation in conventional arith-
metic needs to be re-evaluated in precision arithmetic.

8.2 Improving Precision Arithmetic
Figure 2 uses a cut-o� for the test of the independent uncerta inty assumption among
two uncertainty-bearing values. A better approach is to ass ociate the amount of the
dependence problem with the amount of correlation between the uncertainties of the
two values.

There are actually three di�erent ways to round up (2 S + 1)?4R@E :

1. always round up (2S + 1)?4R@E to ( S + 1) � R@(E + 1);

2. always round up (2S + 1)?4R@E to S + R@(E + 1);

3. randomly round up (2 S+1)?4R@E to either ( S+1) � R@(E +1) or S+ R@(E +1).

The �rst method results in slightly slower loss of signi�can d than the second method,
while the third method changes precision arithmetic from de terministic to stochastic.
Because no empirical di�erence has been detected among these three di�erent rounding
up methods, the �rst method is chosen in this paper. Further s tudy is required to
distinguish the di�erent rounding up methods.
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The objectives of precision arithmetic need to be studied fu rther. For example,
Formula (2.21) has rejected the e�ect of uncertainty on the e xpected value by incor-
porating the value shift due to uncertainty as increase of va riance, such as in the case
of calculating f (x) = x2 . The e�ect of such asymmetrical broadening is unclear.

The number of bits to be calculated inside uncertainty also n eeds to be studied
further. For example, when limited bits are calculated insi de uncertainty, adding
insigni�cant higher order term of a Taylor expansion may dec rease the value error
while increasing the uncertainty deviation, which may call for an optimal bits to be
calculated inside uncertainty for the truncation rule.

Some empirical evidences suggest that when an algorithm hasa dependence prob-
lem, its result uncertainty distribution deviates from Gau ssian, such as the uncertainty
distribution of ( M � 1) � 1 in Figure 30. The generality of this connection needs to be
studied further.

The convergence property of Formula (2.25) and Formula (2.3 1) needs to be studied
further theoretically, such as their convergence range in t erms of the input variable x
when calculating f (x) = 1 =x or f (x) =

p
x.

The measured nearly constant values of average tracking ratios of precision arith-
metic for each particular algorithm need to be explained the oretically. Without such
an explanation, precision arithmetic is mostly a pure numer ical approach.

Because precision arithmetic is based on generic concepts,it is targeted to be a
generic arithmetic for both uncertainty-tracking and unce rtainty-bounding. However,
it seems a worthwhile alternative to interval arithmetic an d the de facto independence
arithmetic. Before applying it generally, precision arith metic still needs more ground-
work and testing. It should be tested further in other proble ms such as improper
integrations, solutions to linear equations, and solution s to di�erential equations.
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