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Abstract

A regular paving is a finite succession of bisections that partition a root
box x in Rd into sub-boxes using a binary tree-based data structure. We
extend regular pavings to mapped regular pavings which map sub-boxes
in a regular paving of x to elements in some set Y. Arithmetic operations
defined on Y can be extended point-wise over x and carried out in a com-
putationally efficient manner using Y-mapped regular pavings of x. The
efficiency of this arithmetic is due to recursive algorithms on the algebraic
structure of finite rooted binary trees that are closed under union oper-
ations. Our arithmetic has many applications in function approximation
using tree based inclusion algebras and statistical set-processing.
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1 Introduction

Hierarchical data structures, such as trees, are commonly used to represent and organ-
ise multi-dimensional data. A wide range of such data structures has been developed
including, for example, binary search trees, quadtrees and octrees, k-d trees and other
binary space partitioning trees. These specialisations have been developed to suit par-
ticular types of data and to meet the needs of different applications or uses of that
data — search and retrieval, range queries, the relationships between 3-d objects for
computer graphics, etc [11].
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A regular paving [10, 3, 2] is a finite succession of bisections that partition a
box x in Rd into sub-boxes using a tree-based data structure. In this article we
present mapped regular pavings, an extension of regular pavings designed to facilitate
arithmetical operations on the data structure itself. In a mapped regular paving the
sub-boxes in a regular paving of a box x are mapped to elements in some set Y so that
arithmetic operations defined on Y can be extended point-wise to Y-mapped regular
pavings of x, and the paving itself is constructed so that these operations can be
carried out in a computationally efficient manner.

Figure 1 illustrates some of the many operations that can be carried out using
regular mapped pavings.

(a) Arithmetic with coloured spaces.

(b) Intersection of enclosures of two hollow spheres.

(c) Histogram averaging.

Figure 1: Examples of operations with various mapped regular pavings.

In this article we show how the mapped regular pavings allow any arithmetic
defined over elements in a general set Y to be extended to Y-mapped regular pavings.
We demonstrate the very wide applicability of this concept by extending and explaining
the examples shown in Figure 1.

An interesting set of examples involves the use of mapped regular pavings to rep-
resent functions. In this article we explore this in detail, including:

• Arithmetic on piecewise constant functions and interval-valued functions;

• Exploiting the tree-based structure to calculate interval enclosures of real-valued
functions efficiently, and hence to find piecewise constant approximations for
these functions within required levels of tolerance;
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• Obtaining the marginal of a piecewise constant function on a multi-dimensional
domain by integrating along any subset of its coordinates, and also for obtain-
ing the conditional function by fixing the values in the domain on a subset
of coordinates, and for producing the highest coverage regions of the function
domain.

Mapped regular pavings can also be used to extend existing methods of organ-
ising and analysing data. An example of this is a computationally efficient repre-
sentation, endowed with arithmetic for pattern-recognition, of radar-observed flight
co-trajectories over a busy airport [14]. In this article we briefly describe how mapped
regular pavings can be used in multi-dimensional nonparametric density estimation
problems by representing histograms as mapped regular pavings and then applying
basic arithmetical operations in order to obtain average histograms as well being able
to use the marginalisation and conditional function operations described above.

This article is organized as follows: In Section 2 we give a brief overview of tree-
based data structures and their advantages for representing multi-dimensional objects
and organising multi-dimensional data. Section 3 describes regular pavings. Section 4
describes mapped regular pavings and operations over them; various algorithms are
introduced with illustrative examples. We conclude in Section 5.

2 Tree Structures

Partitions of multi-dimensional space are usually represented using hierarchical data
structures such as trees. The main advantages are:

• Operations on the data structures are often well suited to spatial divide and
conquer methods and hence to hierarchical data structures.

• A tree provides O (logm) access time to any sub-box in a collection of m sub-
boxes, regardless of the number of dimensions, without the need to impose a
uniform grid partition on the space.

• Trees provide low-cost (constant time) insertion and deletion of sub-boxes, with-
out the need to reallocate existing partitions in memory.

• Algorithms operating on trees can be expressed naturally and succinctly in a
recursive form, allowing a simpler and more understandable programming im-
plementation [4].

A review of the use of trees to represent spatial data structures that discusses most
of these points, and more, can be found in [12].

A tree-based structure is particularly suitable for mapped regular pavings because
an arithmetic operation on two pavings (for example, addition) requires finding ‘match-
ing’ of pairs of sub-boxes, each pair having one sub-box from each operand paving. If a
tree structure is used then the algorithm can easily be expressed and implemented very
efficiently in a form that recurses simultaneously on both structures and automatically
matches the appropriate boxes.

For these reasons we only discuss mapped regular pavings implemented using a
binary tree, and the algorithms given assume the use of such a structure. Other
underlying structures for implementing the pavings are possible but we are not aware
of any alternative that offers a better combination of simplicity and computational
efficiency than a tree.
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3 Regular Pavings

Let x := [x, x] be a compact real interval with lower bound x and upper bound x where
x ≤ x. Let the space of such intervals be IR. We can define the width, midpoint and
radius of an interval x as wid (x) := x − x, mid (x) := x+x

2
and rad (x) := x−x

2
,

respectively. We can also define a box of dimension d with coordinates in ∆ :=
{1, 2, . . . , d} as an interval vector

x := [x1, x1]× . . .× [xd, xd] =: �
j∈∆

[xj , xj ] .

Let IRd be the set of all such boxes. Consider a box x in IRd. Let the index ι be the
first coordinate of maximum width, i.e.

ι = min

(
argmax

i
(wid (xi))

)
.

A bisection or split of x perpendicularly at the mid-point along this first widest coor-
dinate ι gives us the left and right child boxes of x as follows:

xL := [x1, x1]× . . .× [xι,mid (xι))× [xι+1, xι+1]× . . .× [xd, xd] ,

xR := [x1, x1]× . . .× [mid (xι), xι]× [xι+1, xι+1]× . . .× [xd, xd] .

Such a bisection is said to be regular.
Note that this bisection gives the right child box a half-open interval [xι,mid (xι))

on coordinate ι so that the intersection of the left and right child boxes is empty.
This refinement is a necessary condition for some of the operations described in

Section 4 and causes no complications for those operations that do not require it. If
x is not a closed box in IRd then we can make it closed again, if necessary, by taking
its interval or box hull �x. For example, we can bisect a half-open interval x with the
mid-point of its interval hull given by mid (�x).

A recursive sequence of selective regular bisections of boxes, with possibly open
boundaries, along the first widest coordinate, starting from the root box x in IRd is
known as a regular paving (RP) [3, 2] or n-tree [10] of x.

An RP of x can also be seen as a binary tree formed by recursively bisecting the
box x at the root node. Each node in the binary tree has either no children or two
children. These trees are known as plane binary trees in enumerative combinatorics
[13, Ex. 6.19(d), p. 220] and as finite, rooted binary trees (frb-trees) in geometric group
theory [5, Ch. 10]. When the root box x is clear from the context we refer to an RP
of x as merely an RP. Each node of an RP is associated with a sub-box of the root
box that can be attained by a sequence of selective regular bisections.

Each node in an RP is distinctly labeled by the sequence of child node selections
from the root node. We label these nodes and the associated boxes with strings
composed of L and R for left and right, respectively.

We illustrate the relationship of trees, labels and partitions in Figure 2 with a
simple 1-dimensional example. The root node associated with a 1-dimensional root
interval xρ is labeled ρ. First, we split ρ into two child nodes and denote it by`

(ρ) = {ρL, ρR}. These left child and right child nodes are labeled by ρL and ρR,
respectively. The left half of xρ that is now associated with node ρL is denoted by
xρL. Similarly, the right half of xρ that is associated with the right child node ρR is
denoted by xρR. We say ρL and ρR are a pair of sibling nodes since they share the same
parent node ρ. A node with no child nodes is called a leaf node. A cherry node is a



256 Harlow, Sainudiin and Tucker, Mapped Regular Pavings

~
ρ

xρ

~
ρ

~
ρL

~
ρR

�
�

�
�

��

@
@
@
@
@@

xρL xρR

~ρ
�

�
�

�
��~

�
�
�

�
��~

ρLL

@
@
@
@
@@~
ρLR

@
@
@
@
@@~
ρR

xρLRxρLL xρR

Figure 2: A sequence of selective bisections of boxes (nodes) along the first
widest coordinate, starting from the root box (root node), produces an RP.

sub-terminal node with a pair of child nodes that are both leaves. This pair of sibling
nodes can be reunited or merged to its parent cherry node ρ, thereby turning the cherry
node into a leaf node. Such a merging operation is denoted by

a
(ρL, ρR) = ρ.

Returning to Figure 2, let us further split the left node ρL to get its left and right
child nodes ρLL and ρLR with associated sub-intervals xρLL and xρLR respectively,
formed by the bisection of interval xρL. Because the root interval xρ is 1-dimensional,
each bisection is always on that single coordinate.

Figure 3 shows a sequence of bisections of a square (2-dimensional) root box. We
start with the same sequence as in Figure 2, so the first three trees are identical to
those in Figure 2 but in Figure 3 we can see the effect of always bisecting on the first
widest coordinate. The first bisection, forming sub-boxes xρL and xρR, takes place
on the first widest coordinate of xρ, which is the first coordinate because the box is
square. The next bisection, of box xρL to form xρLL and xρLR, takes place on the
second coordinate because this is the first widest coordinate of xρL.

We then extend the sequence with two further bisections. First we split the right
child node ρR into its child nodes ρRL and ρRR, respectively (again bisecting on the
second coordinate of xρR). Then we select ρLR to do a final split and obtain its child
nodes ρLRL and ρLRR. xρLR is square and is bisected on its first coordinate to form
the sub-boxes xρLRL and xρLRR.

Figures 2 and 3 also illustrate an important point about these regular pavings.
Because of our restricted bisection rule (splitting a box only at the mid-point along
its first widest coordinate) a tree and its associated root box xρ will uniquely describe
the partition of xρ into sub-boxes. In Figure 2 there is one and only one partition of
the root box corresponding to each tree, and similarly in Figure 3. The same would
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Figure 3: A sequence of selective bisections of boxes (nodes) along the first
widest coordinate, starting from the root box (root node), produces an RP.

apply for a root box of any dimension. For the same reason, if we have two RPs with
the same root box and two nodes at exactly the same positions in their respective
trees (i.e., nodes that would have the same name-label in our visual presentations),
then both of these nodes will have exactly the same box and can be considered to be
‘equivalent’.

It is this restriction that allows us efficiently to carry out operations on two regular
pavings that will result in another regular paving and to extend this to arithmetic on
mapped regular pavings. We will discuss this further as we describe operations using
regular pavings and mapped regular pavings. We consider the disadvantages of this
restriction in Section 5. We now return to a general description of regular pavings.

Let the j-th interval of a box xρv be [xρv,j , xρv,j ]. Then the volume of a d-
dimensional box xρv associated with the node ρv of an RP of xρ is the product of
the side-lengths of the box, i.e.

vol (xρv) =

d∏
j=1

(xρv,j − xρv,j) .

The volume may also be associated with the depth of a node. A node has depth k if it
can be reached by k splits from the root node. Then, the volume of any d-dimensional
box xρv associated with node ρv having depth k is vol (xρv) = 2−kvol (xρ). This is
because we will always split a box exactly in half.

We use the nodes of the final RP in Figure 3 for illustration purposes. Assume that
the root box xρ is a unit hypercube. Then the root node ρ has depth 0 and vol (xρ) = 1,
the nodes ρL and ρR have depth 1 and volume 2−1, the nodes ρLL, ρLR, ρRL, ρRR have
depth 2 and volume 2−2, and finally the nodes ρLRL, ρLRR have depth 3 and volume
2−3.

We can now label each leaf node of a tree by its depth. The leaf nodes of the final
RP in Figure 3, listed in left-right order, are [ρLL, ρLRL, ρLRR, ρRL, ρRR]. We can then
also uniquely identify or label an RP with its ordered leaf-depth string. The final RP
in Figure 3 has 23322 as its ordered leaf-depth string. Thus this RP can be denoted
by s23322.
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Figure 4: Transition diagram over S0:3 with split/reunion transitions from one
RP state to another.

We denote the label set of all nodes of a regular paving by V := ρ∪{ρ{L,R}j : j ∈
N} and the set of all leaf nodes of a regular paving by L. For the final regular paving
in the sequence represented in Figure 3, L(s23322) = {ρLL, ρRL, ρRR, ρLRL, ρLRR}
and V(s23322) = {ρ, ρL, ρR, ρLL, ρLR, ρRL, ρRR, ρLRL, ρLRR}. The list of cherry nodes
of s23322 is c(s23322) := [ρLR, ρR] and xc(s23322) = {xρLR,xρR} is the set of boxes
associated with them.

Having seen a particular RP s23322 let us study the space of all RPs. Let Sk be the
set of all RPs of xρ made of k splits. Note that |L(s)| = k + 1 if s ∈ Sk. The number
of distinct binary trees with k splits is equal to the Catalan number

Ck =
1

k + 1

(
2k

k

)
=

(2k)!

(k + 1)!(k!)
. (1)

For i, j ∈ Z+, where Z+ := {0, 1, 2, . . .} and i ≤ j, let Si:j be the set of RPs with k
splits where k ∈ {i, i + 1, . . . , j}. The space of all RPs is then S0:∞ := limj→∞ S0:j .
Figure 4 displays the transition diagram over S0:3 where the gray arrows represent the
transition from one RP state to another through a split or reunion. Each sequence of
splits and merges of an RP s with root node ρ returns a partition of its root box xρ
given by the set of its leaf boxes xL(s).

There may be more than one path from the root node to a particular RP in Sk,
i.e. more than one distinct sequence of k splits may result in the same RP in Sk. In
Figure 4, for example, there are two paths to s2222.

Randomised algorithms of interest here are Markov chains on S0:∞. In Section 4 we
shall describe two such algorithms that use a randomised priority queue to rigorously
approximate a real-valued function that has an interval inclusion function.
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The union of two RPs s(1) and s(2) in S0:∞ with the same root box xρ is denoted
by s(1) ∪ s(2). Intuitively, the leaf boxes of the union of two RPs can be seen as being
obtained from overlaying or superimposing the partitions of the operand RPs as shown
in Figure 5.

(a) s(1) (b) s(2) (c) s(1) ∪ s(2)

Figure 5: Union of two regular pavings of a root box in R2.

Let ρv be a node of an RP s and let the Boolean function IsLeaf(ρv) return true
if ρv is a leaf node and false otherwise. Let Copy(ρv) return a copy of the RP tree
rooted at node ρv. If ρv is not a leaf node then let ρvL and ρvR be the left and right
child nodes of ρv, respectively. Consider two RPs s(1) and s(2) with root nodes ρ(1)

and ρ(2) respectively and the same root box xρ. Then, RPUnion(ρ(1), ρ(2)) given by
Algorithm 1 returns the union of the two RP trees. Figure 6 shows two RPs of the
same box xρ ∈ IR2 and their union.
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Figure 6: Union on the RPs s(1) and s(2).

Observe that the union operation ∪ is subject only to the restriction that the two
operand RPs have the same root box. Remarkably, RPs are closed under such unions,
i.e., if s(1), s(2) ∈ S0:∞ then s(1)∪s(2) =: s ∈ S0:∞. This can be easily seen as a process
of overhead transparencies: take two transparencies, one with the RP tree s(1) drawn
on it and the other with the tree s(2); lay one transparency over the other, aligning
the roots, and you have produced s := s(1) ∪ s(2). Thus, since each s(i) ∈ {s(1), s(2)}
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is a subtree of the union, each s(i) can be expanded to s by adding splits. For more
details on the above argument and connections with Thompson’s group see proof of
[5, Prop. 10.3].

Note that the tree structure is exploited to give an algorithm that recurses si-
multaneously on pairs of nodes, first left-child pairs and then right-child pairs. The
structure thus provides a very simple way of matching up sub-boxes of the RPs ‘layer
by layer’ in the tree hierarchies in order to find the finest partitioning of any part of
the shared root box and copy it into the result of the union operation.

Note also that the reason why the union operation can be carried out on any
two RPs s(1), s(2) ∈ S0:∞ provided only that they have the same root box is that we
restrict the bisection of a box to bisection perpendicularly at the mid-point along the
first widest coordinate. This restriction means that if some equivalent node ρ∗ exists in
both s(1) and s(2) (for example, ρ(1)L and ρ(2)L in Figure 6) then the boxes associated
with these nodes (xρ(1)L and xρ(2)L in Figure 6) will be identical. Similarly, if some

part of s(1), for instance, is ‘more partitioned’ than that part of s(2) (as the left half
of s(1) is in Figure 6), then that same partition can be exactly replicated in s(2) or a
copy of s(2) by simply following this general bisection rule.

If we did not restrict bisections of a box in this way we might record, in each node
that has been split, the split coordinate and split point on that coordinate used to
divide the box. This would not be enough, however, to give us such a general union
operation: we would only be able to guarantee being able to carry out the union of
two pavings and obtain another such paving where both pavings had identical split
dimensions and split points in each pair of equivalent nodes in their respective trees.
The restriction on the method of bisection for RPs so that each tree shape can represent
just one partition of the root box means that the union of the trees is equivalent to
the overlay of the partitions and the result will be another RP.

We emphasise these points here because the union operation is fundamental to
many of the arithmetic operations on mapped regular pavings described in the next
section.

4 Mapped Regular Pavings

Let s ∈ S0:∞ be an RP with root node ρ and root box xρ ∈ IRd and let Y be a
non-empty set. Let V(s) and L(s) denote the set of all nodes and leaf nodes of s,
respectively. Let f : V(s)→ Y map each node of s to an element in Y as follows:

{ρv 7→ fρv : ρv ∈ V(s), fρv ∈ Y} .

Such a map f is called a Y-mapped regular paving (Y-MRP). Thus, a Y-MRP f is
obtained by augmenting each node ρv of the RP tree s with an additional data member
fρv.

Let η(x) be the node label of the unique leaf box xη(x) in xL(s) that contains the
point x ∈ xρ ∈ IRd.

Due to the recursive partitioning structure of Y-MRP trees it is computationally
efficient to find η(x) for a given x ∈ xρ and then look up its image fη(x) according to
Algorithm 2.

Recall that in Section 3 we carefully defined the bisection of a box in a RP s so
that the intersection between sibling child boxes is empty. Algorithm 2 relies on this,
i.e. we know that x can never be in both xρvL and xρvR of any node ρv ∈ V(s).
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Algorithm 1: RPUnion(ρ(1), ρ(2))

input : Root nodes ρ(1) and ρ(2) of RPs s(1) and s(2), respectively,
with root box xρ(1) = xρ(2) .

output : Root node ρ of RP s = s(1) ∪ s(2).

if IsLeaf(ρ(1)) & IsLeaf(ρ(2)) then
ρ← Copy(ρ(1))
return ρ

end

else if !IsLeaf(ρ(1)) & IsLeaf(ρ(2)) then
ρ← Copy(ρ(1))
return ρ

end

else if IsLeaf(ρ(1)) & !IsLeaf(ρ(2)) then
ρ← Copy(ρ(2))
return ρ

end

else
!IsLeaf(ρ(1)) & !IsLeaf(ρ(2))

end
Make ρ as a node with xρ ← xρ(1)

Graft onto ρ as left child the node RPUnion(ρ(1)L, ρ(2)L)
Graft onto ρ as right child the node RPUnion(ρ(1)R, ρ(2)R)
return ρ

Algorithm 2: PointWiseImage(ρ, x)

input : ρ with box xρ, the root node of Y-MRP f with RP s, and a
point x ∈ xρ.

output : Return fη(x) at the leaf node η(x) that is associated with the
box xη(x) containing x.

if IsLeaf(ρ) then
return fρ

end
else

if x ∈ xρR then
PointWiseImage(ρR, x)

end
else

PointWiseImage(ρL, x)
end

end
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(a) R-MRP over s221 with xρ = [0, 8] (b) B-MRP over s122 with xρ = [0, 1]2

(c) IR-MRP enclosure of the Rosenbrock
function with xρ = [−1, 1]2

(d) [0, 1]3-MRP over s3321 with xρ = [0, 1]3

Figure 7: Examples of mapped regular pavings.

Then from a given Y-MRP f with root node ρ we can define a pointwise extension
f : xρ → Y from the piecewise constant map x 7→ fη(x) as follows:

f(x) = fη(x) if x ∈ xρ ,

and easily obtain fη(x) from PointWiseImage(ρ, x). Note that f(x) is undefined if
x /∈ xρ.

We give some examples of mapped regular pavings in Figure 7. Figure 7(a) shows
an R-MRP f(x) : [0, 8] → R over RP s221 (R-MRPs are depicted in ‘histogram’ form
to relate the mapped values to the-sub boxes of the partition).

Let B := {True,False} denote the set of Boolean values. Figure 7(b) shows a B-
MRP a(x) : [0, 1]2 → B representing a subset A of the root box x = [0, 1]2 by mapping
the leaf boxes of the RP tree s122 with Boolean values that indicate membership in
A. A True-mapped leaf box is shown as filled space. Figure 7(c) shows an IR-MRP
enclosure of the Rosenbrock function f(x) : R2 → R, f(x) = (1− x1)2 + 100(x2− x2

1)2

on [−1, 1]2. Figure 7(d) shows a [0, 1]3-MRP g(x) : [0, 1]3 → [0, 1]3 over s3321 in RGB
colouring scheme.

As an example of the flexibility of mapped regular pavings, we can use Boolean-
mapped regular pavings B-MRP to represent the regular subpavings of [2]. A regular
subpaving of xρ is formed by a finite succession of selective bisections and deletions,
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whereby some of the sub-boxes (leaf nodes) are deleted. Regular subpavings are used
in interval analysis to approximate compact sets in a guaranteed way (eg. [2]). In
this article we are concerned with pavings, not subpavings: in a paving no sub-box
is deleted — equivalently, each node in the tree either has two children or none. By
mapping Boolean values to the leaves of our regular pavings we can include the regular
subpavings of [2] within our framework. (Strictly speaking, the leaf boxes in the regular
pavings of [2] do not partition xρ due to non-empty intersections between the child
boxes. Thus the elements of xL(s) in our RP are not necessarily elements of IRd ∩xρ.
However, we can always take the closure of each leaf box xρv in our RP that may
be partly open to obtain compact leaf boxes that belong to IRd ∩ xρ as in [2], when
necessary.)

Let the class of Y-mapped regular pavings over the leaf boxes of regular pavings
of a root box xρ ∈ IRd be :

F := {{ρv 7→ fρv : ρv ∈ V(s), fρv ∈ Y} : s ∈ S0:∞} .

Suppose we are interested in representing a constant function over xρ that maps
each x ∈ xρ to the constant c ∈ Y using a Y-MRP in F . Then any Y-MRP f in
{{ρv 7→ c : ρv ∈ V(s)} : s ∈ S0:∞} ⊂ F , an equivalence class in F under pointwise
function equality, may be used to represent our constant function. We make the
canonical choice

h(f) = {ρ 7→ c : ρ ∈ V(s0)} ,
with the smallest possible RP tree s0, to uniquely represent this equivalence class.

More generally, elements of F are piecewise constant functions where the pieces are
the leaf boxes of the RP tree. Once again we use the smallest possible tree to uniquely
represent the equivalence class in F under function equality for each piecewise constant
function. Let IsCherry(ρv) return true if ρv is a sub-terminal (cherry) node and false
otherwise and let Prune(ρv) prune the node ρv and its descendants from the MRP
tree. Let ρ be the root node of a Y-MRP f . We can now obtain a unique minimal
representative h(f) of f by calling MinimiseLeaves(ρ) in Algorithm 3.

Algorithm 3: MinimiseLeaves(ρ)

input : ρ, the root node of Y-MRP f .
output : Modify f into h(f), the unique Y-MRP with fewest leaves.

if !IsLeaf(ρ) then
MinimiseLeaves(ρL)
MinimiseLeaves(ρR)

if IsCherry(ρ) & ( fρL = fρR ) then
fρ ← fρL
Prune(ρL)
Prune(ρR)

end

end

Let f and g be two Y-MRPs with the same root box xρ and let Y be a field. Let
us extend arithmetic from Y to F to obtain a field of functions through pointwise
operations, i.e., (f ? g)(x) = f(x) ? g(x), where ? ∈ {+,−, ·, /}, up to the operation
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? being well-defined in Y. The additive and multiplicative identities, say 0 and 1 in
Y, immediately yield the constant Y-MRPs ρ 7→ 0 and ρ 7→ 1 as the additive and
multiplicative identities in F , respectively.

Before we describe how arithmetic over Y-MRPs is carried out, let us look at two
simple examples. Let 11 A(x) be the indicator function of a set A, i.e., 11 A(x) = 1 if
x ∈ A and 0 otherwise.

Example 1 (R-MRP arithmetic): R-MRP arithmetic can be demonstrated by adding
two real-valued simple functions over the root box xρ = [0, 8]. The arguments f(x) =
2 11 xρLL(x) + 4 11 xρLR(x) + 11 xρR(x) and g(x) = 4 11 xρLL(x) + 2 11 xρLR(x) + 11 xρRLL(x) +
3 11 xρRLR(x)+3 11 xρRRL(x)+2 11 xρRRR(x) over s221 and s223333, are shown in Figures 8(a)
and 8(b), respectively. Their sum and its unique representative with the smallest RP
tree are shown in Figure 8(c) and 8(d), respectively.

(a) f (b) g (c) f + g (d) h(f + g)

Figure 8: Addition of two R-MRPs over [0, 8] (see text for description).

Example 2 (B-MRP arithmetic): Figure 9 shows the results of Boolean arithmetic
operations between two B-MRPs A1 and A2 to represent subsets of IR2. As in Fig-
ure 7(b), True-mapped leaf boxes are showed as filled. We can similarly use B-MRPs
of xρ ∈ IR3 to represent and manipulate voxel images (as in Figure 1(b)).

Algorithm 4 is an extension of Algorithm 1 used to perform binary operations over
Y-MRPs.

Note that, like Algorithm 1, Algorithm 4 can be expressed very simply because it
recurses simultaneously on pairs of nodes and the pairs are easily found as a result of
the tree structure of the pavings. Also like Algorithm 1, Algorithm 4 can be used on
any two Y-MRPs subject only to the condition that they have the same root box xρ
because of the restrictive bisection rule used to create a regular paving.

Note also that (again because of the restrictive bisection rule), the boxes of any
two equivalent nodes in the trees rooted at ρ(1) and ρ(2) will be exactly the same,
including having exactly the same closed or partly open interval boundaries. When
Algorithm 4 copies boxes for new nodes to make the new MRP h, they are always
the ‘right’ (only possible) boxes for those nodes, and the possible mixture of closed
or partly open intervals that may make up any box causes no complications in the
algorithm or for its implementation.

Let the function MRPTransform(ρ, τ) apply the unary transformation τ : Y→ Y to
a given Y-MRP f with root node ρ and return the transformed Y-MRP g = τ(f) by
recursively descending through the tree and setting fρ ← τ(fρ) for each node ρ.

At any step during such a process of binary operations and/or unary transforma-
tions over Y-MRPs we can use Algorithm 3 to reduce the Y-MRPs to their unique
minimal representatives and use Algorithm 2 to find the point-wise image of any point
in the root box. These Algorithms on Y-MRPs and their compositions enable us to
computationally conduct arithmetical expressions directly over Y-MRPs.
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Algorithm 4: MRPOperate(ρ(1), ρ(2), ?)

input : two root nodes ρ(1) and ρ(2) with same root box xρ(1) = xρ(2)

and binary operation ?.
output : the root node ρ of Y-MRP h = f ? g.

Make a new node ρ with box and image
xρ ← xρ(1) ; hρ ← fρ(1) ? gρ(2)

if IsLeaf(ρ(1)) & !IsLeaf(ρ(2)) then
Make temporary nodes L′, R′

xL′ ← xρ(2)L; xR′ ← xρ(2)R

fL′ ← fρ(1) , fR′ ← fρ(1)

Graft onto ρ as left child the node MRPOperate(L′, ρ(2)L, ?)
Graft onto ρ as right child the node MRPOperate(R′, ρ(2)R, ?)

end

else if !IsLeaf(ρ(1)) & IsLeaf(ρ(2)) then
Make temporary nodes L′, R′

xL′ ← xρ(1)L; xR′ ← xρ(1)R

gL′ ← gρ(2) , gR′ ← gρ(2)

Graft onto ρ as left child the node MRPOperate(ρ(1)L, L′, ?)
Graft onto ρ as right child the node MRPOperate(ρ(1)R,R′, ?)

end

else if !IsLeaf(ρ(1)) & !IsLeaf(ρ(2)) then
Graft onto ρ as left child the node MRPOperate(ρ(1)L, ρ(2)L, ?)
Graft onto ρ as right child the node MRPOperate(ρ(1)R, ρ(2)R, ?)

end
return ρ
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(a) A1 (b) A2 (c) A1 +A2

(d) A1 −A2 (e) A1 ×A2 (f) A1 ÷A2

Figure 9: Two Boolean-mapped regular pavings A1 and A2 and Boolean arith-
metic operations with + for set union, − for symmetric set difference, × for set
intersection, and ÷ for set difference.

We give some further examples of arithmetic on mapped regular pavings: the
addition and subtraction of 3-d regular pavings (cubes) mapped to colours and the
multiplication of 2-d regular pavings mapped to vectors.

Example 3 ([0, 1]3-MRPs as coloured cubes): In this example the mapped regular
pavings are on a cube xρ ∈ IR3 and the mapping assigns a colour to each sub-box in
a paving of the cube. A colour-mapped regular paving is a multi-coloured cube.

(a) f (b) g (c) f + g (d) f − g

Figure 10: Two [0, 1]3-MRPs f and g as multicoloured cubes, showing f + g
and f − g.

In this example, colours were implemented as RGB colour tuples (for example
blue is (0, 0, 1)). Black is (0, 0, 0) and is the additive identity, white is (1, 1, 1) and is
the multiplicative identity. In our simple implementation of colour arithmetic, adding
many different colours will eventually result in white while subtracting a colour from
itself will give black. These operations could have been implemented differently which
would cause the equivalent operations on the mapped regular pavings to behave dif-
ferently.
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Example 4 (vector-MRPs): In this example the mapped regular pavings are on a
rectangle xρ ∈ IR2 and the mapping assigns a normalised vector (i.e. a vector of
length 1 or a directional vector) to each sub-box in a paving of the rectangle. A
vector-mapped regular paving shows areas of the rectangle mapped to directional
vectors.

(a) View 1 of f (b) View 2 of f (c) View 1 of g (d) View 2 of g

Figure 11: Two views of vector-MRP f and g.

We defined the × operation for the vectors used for implementing this example
as a computer program to give the cross product of the two operand vectors (the
cross product gives the direction of the surface normal of the unique plane defined
by the two operand vectors). Equipped with this we can perform the × operation on
vector-mapped regular pavings and get the cross product mapped onto each box in
the mapped regular union of the pavings of the two operand vector-mapped regular
pavings. In Figure 12 we show the operand vectors (in blue and green) as well as the
surface normal vector, in red, resulting from the cross-product operation ×.

(a) View 1 (b) View 2

Figure 12: f × g.

Arithmetic over vector-MRPs can be useful when working with empirical vector
fields (coarse-grained observations of a dynamical system). For instance, adding several
such vector-MRPs of the same system with multiple initial conditions can produce a
vector-MRP of the global (or average) dynamics.

Let us consider arithmetic and algebra of R-MRPs. Given any two R-MRPs f (1)

and f (2) with the same root box xρ and with root nodes ρ(1) and ρ(2), respectively, and
a binary operation ? ∈ {+,−, ·, /}, we can obtain the resultant R-MRP f = f (1) ? f (2)

via MRPOperate(ρ(1), ρ(2), ?) of Algorithm 4. We can also transform an R-MRP f
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with root node ρ using any standard function τ ∈ S := {exp, sin, cos, tan, . . .} and
obtain the resultant R-MRP τ(f) using MRPTransform(ρ, τ). Finally, we can obtain
an R-MRP arithmetical expression that is specified by finitely many sub-expressions
involving constant R-MRP, binary arithmetic operations over two R-MRPs, standard
transformations of R-MRPs by elements of S and their compositions. Thus we can
obtain R-MRPs as arithmetical expressions of other R-MRPs.

Next we state a useful theorem about R-MRPs and use it to obtain a simple recipe
for approximating continuous functions.

Theorem 4.1. Let F be the class of R-MRPs with the same root box xρ. Then F is
dense in C(xρ,R), the algebra of real-valued continuous functions on xρ.

Proof. Since xρ ∈ IRd is a compact Hausdorff space, by the Stone-Weierstrass theorem
we can establish that F is dense in C(xρ,R) with the topology of uniform convergence,
provided that F is a sub-algebra of C(xρ,R) that separates points in xρ and which
contains a non-zero constant function.

Constructively by Algorithm 4, with ? = +, F is closed under function addition
and using MRPTransform with τ(y) = r × y, for any given r ∈ R, F is closed under
scalar multiplication and therefore F is a sub-algebra of C(xρ,R). F contains non-
zero constant functions, for e.g.

(
11 xρ(x)r

)
∈ F for any given r ∈ R. Finally, RPs

can clearly separate distinct points x, x′ ∈ xρ into distinct leaf boxes by splitting
deeply enough. Therefore we have satisfied all the conditions of the Stone-Weierstrass
theorem and have proved that F is dense in C(xρ,R).

Let xρ ∈ IRd and g : xρ → R be a continuous function that is known point-
wise for any x ∈ xρ, i.e., we have a procedure that returns g(x) for a given x ∈
xρ. Our objective is to obtain an R-MRP f with RP s in order to approximate
a simple function g : xρ → R, xρ ∈ IRd. Theorem 4.1 guarantees that a simple
function f(x) =

∑
ρv∈L(s) 11 xρv(x)fρv obtained from an R-MRP f with RP s based on

fρv = mid (g(xρv)) over a partition formed by the leaf boxes {xρv : ρv ∈ L(s)} can
uniformly approximate g provided mesh (s) := maxρv∈L(s) max (wid (xρv)), the mesh
of the partition, goes to zero.

This means that we could try to approximate g using an algorithm that bisects
each sub-box in the partition (splits each node ρ in the tree) until max (wid (xρv)) ≤ ε
where ε is the specified mesh size. For each node, fρ ← g(mid (xρ)).

A serious disadvantage to using the ε-mesh approximation to g is that we do not
know the uniform bound ε (note, not the same as the mesh ε) in the range:

sup
x∈xρ

abs (f(x)− g(x)) ≤ ε .

In practical terms, this means that we cannot guarantee how close the approxima-
tion f is to g. In order to be able to rigorously bound the range we need the notion
of inclusion functions from interval analysis.

Let xρ and y be complete lattices. Typically, xρ ∈ IRd and y ∈ IRc. Let G be the
set of all functions from Ixρ to Iy. Then, (G,≤) is a complete lattice under the order
relation f ≤ g ⇐⇒ ∀x ∈ xρ, f(x) ≤ g(x) and an interval in G is f = [f, f ] such that

f ≤ f . Now suppose we are given a function g : xρ → y. Then an inclusion function
of g is a function g : Ix→ Iy that satisfies:

range enclosure: ∀x ∈ Ixρ, g(x) := {g(x) : x ∈ x} ⊆ g(x) , (2)

inclusion monotone: ∀x,x′ ∈ Ixρ, x ⊂ x′ =⇒ g(x) ⊆ g(x′) . (3)
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We say that g : xρ → R has a well-defined natural interval extension g : Ixρ →
IR if g(x) that is obtained by replacing the sub-expressions in g with their interval
counterparts satisfies g(x) ∈ IRd for each x ∈ Ixρ. Note that by the fundamental
theorem of interval analysis [6] a well-defined interval extension of g is indeed an
inclusion function that satisfies Equations (2) and (3).

Theorem 4.2 (Enclosing range of functions). Let xρ ∈ IRd and g : xρ → R be a
function with a well-defined inclusion function g : Ixρ → IR. Then, for a given ε > 0:
UniformApprox(ρ, g, g, ε) of Algorithm 5 will produce an IR-MRP f that uniformly
encloses g using intervals of radius no larger than ε, i.e.,

∀x ∈ xρ,

f(x) :=
∑

ρv∈L(s)

11 xρv(x)fρv ⊃ g(x)

 and (wid (f(x)) ≤ 2ε) .

Proof. The proof follows from the fundamental theorem of interval analysis by an
induction argument on the sub-expressions of the arithmetical expression defining g
[6].

Algorithm 5: UniformApprox(ρ, g, g, ε)

input : ρ, the root node of IR-MRP f with root box xρ, function g to
be approximated, its inclusion function g , and tolerance ε.

output : IR-MRP f such that for any x ∈ xρ, g(x) ∈ f(x),
rad (f(x)) ≤ ε.

if !IsLeaf(ρ) then
UniformApprox(ρL, g, g, ε)
UniformApprox(ρR, g, g, ε)

end

else
fρ ← g(�(xρ))
if max {sup (g(xρ))− g(mid (xρ)), g(mid (xρ))− inf (g(xρ))} > ε
then

Split ρ:
`

(ρ) = {ρL, ρR}
UniformApprox(ρL, g, g, ε)
UniformApprox(ρR, g, g, ε)

end

end

Using Algorithm 5 and Theorem 4.2 we can get an IR-MRP f approximation of g
such that for any leaf node ρ in the tree, for any x ∈ xρ, g(x) ∈ f(x) and rad (f(x)) ≤ ε
for some specified tolerance ε. This means that we can, in theory, get an IR-MRP f
that encloses g as tightly as we want.

We can also turn this IR-MRP f approximation of g into a R-MRP by setting
fρ ← g(mid (xρ)) for each node ρ in the tree. This will produce an R-MRP f that
is ε-close to g (in the sup norm), i.e., supx∈xρ abs (f(x)− g(x)) ≤ ε, using the same
argument as we use to prove Theorem 4.2.
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A practical disadvantage of Algorithm 5 is that it is ultimately limited by available
machine memory to store the MRP tree used to approximate g : xρ → R, xρ ∈ IRd,
especially for large d. In some cases it may be impossible to run Algorithm 5 for
a specified range tolerance ε because the required tree would be too large (have too
many leaves). One could experimentally increase the tolerance to produce an MRP
approximation that can be held in machine memory. A more sensible strategy is to
produce an MRP approximation that tries to meet the range tolerance condition, or
some other suitable criterion for the tightness of the enclosure, in an optimal manner
for a given maximum number of leaves.

One way to create such a strategy is to specify an appropriate priority function
ψ : L(s)→ R on the set of leaves of the current MRP with RP s and split a leaf node
that is uniformly chosen at random from argmaxρv∈L(s) ψ(ρv), the set of leaf nodes of
s which are equally ‘large’ when measured using ψ.

In Examples 5 and 6 we use ψ(ρv) = vol (ρv)wid (g(xρv)). This priority function
measures the volume of interval enclosure of the leaf node ρv (the product of the
volume of the box xρv and the width of its image interval under g). This ψ prioritises
the splitting of leaf nodes with the largest volume of interval enclosure.

Example 5 (prioritised splitting): Let us illustrates this with a simple example in one
dimension when the function to be enclosed is g : [0, 1] → R where g(x) = x2 + (x +
1) sin(10πx)2 cos(3πx)2 with inclusion function g(x) = x2+(x+1) sin(10πx)2 cos(3πx)2.
We use the priority function ψ(ρv) = vol (ρv)wid (g(xρv)).

We start with a single (root) node and root box [0.0, 1.0]. Since this is the only
node it is trivially the node with the largest ψ(ρv), and so will be split. The leaf nodes
are now ρR and ρL with range enclosures g(xρR) and g(xρL) respectively.

Figure 13 shows the next few steps:

1. Figure13(a) shows interval enclosures of the function on xρL = [0.0, 0.5) and
xρR = [0.5, 1.0]. The volume of the interval enclosure of xρR is the largest, i.e.
ψ(ρR) > ψ(ρL), and so ρR is the next node to be split.

2. Figure 13(b) shows interval enclosures of the function on xρL = [0.0, 0.5), xρRL =
[0.5, 0.75) and xρRR = [0.75, 1.0]. The volume of the interval enclosure of xρL is
the largest (argmaxρv∈L(s) ψ(ρv) = {ρL}) and ρL is the next node to be split.

3. Figure 13(c) shows interval enclosures of the function on xρLL = [0.0, 0.25),
xρLR = [0.25, 0.5), xρRL = [0.5, 0.75) and xρRR = [0.75, 1.0]. argmaxρv∈L(s) ψ(ρv) =
{ρRR} and ρRR would be the next node to be split if we carried the example
further.

In Example 5 we only have a single ‘largest’ node at each step, but it is possible
that there may be more than one such largest node. Once the priority function is
motivated we can implement such a sequential bisection procedure using a randomised
priority queue over the current set of leaf nodes of the MRP. The randomised priority
queue will choose the node to be split uniformly at random from argmaxρv∈L(s) ψ(ρv).

We also need a rule that tells us when to stop splitting (a ‘stopping rule’). A
simple rule is to stop splitting when |L(s)|, the total number of leaf nodes in the MRP,
reaches some maximum limit ¯̀ that is usually imposed by internal machine memory.

Finally, we are equipped with the necessary ingredients to produce a memory-
efficient IR-MRP f with RP s and root box xρ ∈ IRd that encloses the function
g : xρ → R that has an inclusion function g : Ixρ → IR using at most ¯̀= |L(s)| many
leaves, such that vol (xρv) · wid (fρv) for each leaf node ρv ∈ L(s) is made as small as
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Figure 13: Priority split.

possible under a heuristic sequential splitting strategy based on a randomised priority
queue of leaves.

Algorithm 6: RPQEnclose
`

(ρ, g, ψ, ¯̀)

input : ρ, the root node of IR-MRP f with RP s, root box xρ and
fρ = g(xρ),
ψ : L(s)→ R such that
ψ(ρv) = vol (xρv) (g(xρv)− 0.5 (g(xρvL) + g(xρvR))),
¯̀ the maximum number of leaves.

output : f with modified RP s such that |L(s)| = ¯̀.

if |L(s)| < ¯̀ then

ρv← random sample

(
argmax
ρv∈L(s)

ψ(ρv)

)
Split ρv:

`
(ρv) = {ρvL, ρvR} ; // split the sampled node

fρvL ← g(�(xρvL))
fρvR ← g(�(xρvL))

RPQEnclose
`

(ρ, ψ, ¯̀)
end

The result of this sequential splitting that is informed by the randomised priority
queue with priority function ψ is an IR-MRP f with RP s ∈ S0:¯̀−1. Note that we
can supply any reasonable priority function ψ to Algorithm 6 in order to find an
enclosure satisfying the desired priority criterion. For instance, ψ(ρv) = wid (g(xρv))
will prioritise the splitting of leaf nodes with the widest range enclosure.

Recall that our aim in developing this procedure was to find a way to make an
IR-MRP f that encloses a target simple function g “in an optimal manner for a
given maximum number of leaves”. The priority function ψ reflects what is meant by
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‘optimal’: ψ(ρv) = wid (g(xρv)) aims for the smallest maximum range enclosures on
any sub-box of the partition; ψ(ρv) = vol (ρv)wid (g(xρv)) aims to minimise the total
volume of the interval enclosures of the sub-boxes

∑
ρv∈L(s)

(
vol (xρv)wid (fρv)

)
.

Unfortunately, the process RPQEnclose
`

of Algorithm 6 has not quite achieved
this. We cannot guarantee that there is no other IR-MRP that would give a better
enclosure. For example, if we use ψ(ρv) = vol (ρv)wid (g(xρv)) we cannot guarantee
that the IR-MRP f produced by Algorithm 6 has RP s that belongs to S∗ψ,¯̀ :=

{argmins∈S0:¯̀−1

∑
ρv∈L(s)

(
vol (xρv)wid (fρv)

)
} (i.e. that s is one of the possible RPs

giving the smallest possible total volume of the interval enclosures of the sub-boxes).
Algorithm 6 makes locally optimal choices based on a current set of leaves and

ψ but these are not necessarily globally optimal decisions. It might seem that we
could make some improvement by ‘looking ahead’ to the actual result of the split,
for example using a priority function that measures the reduction in total volume of
the interval enclosure that would result from splitting a node. This is still only a
local decision: it only takes into account the results of the immediate next split. An
algorithm making globally optimal decisions would have to be able to compare all

possible s ∈ S0:¯̀−1. Recalling that there are
∑¯̀−1
k=0 Ck such s, we can see that this is

computationally infeasible.
In practice we have found that our heuristic splitting strategy for several target

functions g, using ψ(ρv) = vol (ρv)wid (g(xρv)), produces an s that is not too far from
states in S∗ψ,¯̀ in terms of their total volume of the interval enclosures of the sub-boxes.

We now describe a refinement to our heuristic splitting strategy that can be guar-
anteed to give a range enclosure that is at least as good as that achieved by the use
of RPQEnclose

`
alone, and in many cases better.

This refinement is based on the observation that the more we split (the larger ¯̀

is) the smaller the boxes associated with the leaves and (by Equation 3) the tighter
the range enclosures of the inclusion function g over these boxes. This suggests that
we could benefit by splitting to a larger number of leaves than we really want, using
the information from the range enclosures at the leaves to adjust (tighten) the range
enclosures of the internal nodes, and then perform a ‘prioritised prune’ to reduce the
tree to some ultimate target number of leaves.

This is the idea behind Algorithms 7 and 8.
Let x = [x, x] and y = [y, y] be two intervals, then the smallest interval con-

taining the union of x and y is called their interval hull and given by x t y :=
[min(x, y),max(x, y)].

Algorithm 7: HullPropagate(ρ)

input : ρ, the root node of IR-MRP f with RP s.
output : Modify input MRP f .

if !IsLeaf(ρ) then
HullPropagate(ρL)
HullPropagate(ρR)
fρ ← fρL t fρR

end

HullPropagate(ρ) works from the leaves of f upwards to replace the intervals
mapped onto the internal nodes with the interval hull of the intervals mapped onto
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their children. Thus, wid (fρv) ≤ wid (g(xρv)) for each internal node ρv ∈ V(s) \ L(s)

after an f produced by RPQEnclose
`

has been modified by a call to HullPropagate(ρ).
The ‘prioritised prune’ to fewer leaves is achieved by Algorithm 8. When we prune,

we select a cherry node from C(s) the set of cherry nodes IR-MRP f and prune off
both children so that the selected node becomes a leaf node. Algorithm 8 uses some
appropriate priority function ψ : C(s) → R and chooses the next cherry node for
pruning uniformly at random from argminρv∈C(s) ψ(ρv), i.e. from the cherries that are
the smallest measured using ψ.

In Example 6 we again use ψ(ρv) = vol (ρv)wid (g(xρv)), the priority function that
measures the volume of the interval enclosure of a node ρv. This ψ prioritises the
pruning of cherry nodes with the smallest volume of interval enclosure.

A simple stopping-rule is to keep pruning cherries back into leaves until |L(s)|, the
total number of leaf nodes in the MRP, has decreased to some maximum limit ¯̀′.

Algorithm 8: RPQEnclose
a

(ρ, ψ, ¯̀′)

input : ρ, the root node of IR-MRP f with RP s, box xρ,
ψ : C(s)→ R as ψ(ρv) = vol (xρv)

(
fρv − 0.5

(
fρvL + fρvR

))
,

¯̀′ the maximum number of leaves.
output : modified f with RP s such that |L(s)| = ¯̀′ or C(s) = ∅.
if |L(s)| ≥ ¯̀′ & C(s) 6= ∅ then

ρv← random sample
(

argminρv∈C(s) ψ(ρv)
)

; // choose a random

node with smallest ψ
Prune(ρL)
Prune(ρR)
RPQEnclose

a
(ρ, ψ, ¯̀′)

end

Notice that the processes HullPropagate and RPQEnclose
a

can be nicely separated
because of the tree structure. This allows a much clearer, simpler and more flexible
implementation.

We can use Algorithm 6, Algorithm 7 and Algorithm 8 in succession to obtain an
interval-based approximation for the function g : xρ → R that has an inclusion function
g. We start with IR-MRP f consisting of just the root node ρ with an appropriate
root box xρ where fρ = g(xρ). First we use RPQEnclose

`
of Algorithm 6, specifying

some priority function ψ and some maximum number of leaves ¯̀ that is larger than
we want in our final approximation. The result is f with RP s ∈ S0:¯̀−1. Then we
perform HullPropagate(ρ) of Algorithm 7 on the root node ρ of f to tighten the range
enclosures on the internal nodes of f . Finally we reduce the number of leaves to ¯̀′ < ¯̀

using RPQEnclose
a

of Algorithm 8, again specifying some priority function for the
pruning.

Example 6 (split, propagate hull & prune): Let us reconsider the function g : [0, 1]→
R where g(x) = x2 + (x+ 1) sin(10πx)2 cos(3πx)2 with the well-defined inclusion func-
tion g(x) = x2 + (x + 1) sin(10πx)2 cos(3πx)2 of Example 5. Suppose we first try to
approximate g on domain [0.5, 1.0] with IR-MRP f made by RPQEnclose

`
(ρ, g, ψ, ¯̀)

that encloses the range of g with intervals over an RP s with |L(s)| = ¯̀ = 45 leaves
and ψ(ρv) = vol (ρv)wid (g(xρv)). Figure 14(a) displays such an f . We can mea-
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sure the tightness of the range enclosure of this IR-MRP f by finding the volume of
the enclosure over the leaf nodes Ξ(f) :=

∑
ρv∈L(s) wid (fρv)vol (xρv) = 0.1215. Fig-

ure 14(b) displays the IR-MRP f ′ made by RPQEnclose
`

(ρ, g, ψ, ¯̀) with ¯̀= 50 leaves.
With 5 additional leaves the volume of the enclosure over the leaf nodes is smaller,
Ξ(f ′) = 0.1102. For 5 extra leaves we have reduced the total volume of the enclosure
by Ξ(f)− Ξ(f ′) = 0.1215− 0.1102 = 0.0113. However, by calling HullPropagate(ρ′)
upon ρ′, the root node of f ′ (50 leaves), we can propagate the hull of the range
enclosures from the leaf nodes of f ′ up through its internal nodes. Finally, we can
call RPQEnclose

a
(ρ′, ψ, ¯̀′) with ¯̀′ = 45 and ψ(ρv) = vol (ρv)wid (g(xρv)). We ob-

tain a modified IR-MRP f ′ that has only 45 leaves as shown in Figure 14(c) with
Ξ(f ′) = 0.1159. Now f ′ has the same number of leaves as f and a tighter range
enclosure: Ξ(f)− Ξ(f ′) = 0.1215− 0.1159 = 0.0056.

(a) (b) (c)

Figure 14: IR-MRPs to enclose the function g of Example 6 us-
ing RPQEnclose

`
(ρ, g, ψ, 45) in (a), RPQEnclose

`
(ρ′, g, ψ, 50) in (b) and

HullPropagate(ρ′) followed by RPQEnclose
a

(ρ′, ψ, 45) in (c).

As with an IR-MRP f approximation of g produced by Algorithm 5, we can
turn f produced by Algorithm 6 alone or by the sequence Algorithm 6, Algorithm 7,
Algorithm 8, into a mid-point approximation R-MRP by setting fρ ← g(mid (xρ)) for
each node ρ in the tree.

Suppose we have an R-MRP f with RP s containing n = |L(s)| leaf nodes with non-
negative image values, i.e., fρv > 0, for each ρv ∈ L(s). In statistical interpretations of
probability density functions we are often interested in the highest coverage region that
gives the smallest possible subset of leaf nodes such that they constitute the highest
image values and integrate at least to a specified fraction α of the integral of f over all
of its leaf nodes. Algorithm 9 gives us a straightforward method to find the coverage
region of a non-negative f for a specified α.

Example 7 (Levy Density): The bivariate Levy density l̇(t1, t2) over T = [−10, 10]2

with normalising constant Nl :=
∫

[−10,10]2
l(t1, t2)dt1dt2 has 700 modes and is given

by:

l̇(t1, t2) =
1

Nl
l(t1, t2), l(t1, t2) = exp (−Υ(t1, t2)) ,

Υ(t1, t2) =

5∑
i=1

i cos ((i− 1)t1 + i)

5∑
j=1

j cos ((j + 1)t2 + j)

+ (t1 + 1.42513)2 + (t2 + 0.80032)2.
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Algorithm 9: CoverageRegion(ρ, α)

input : ρ, root node of R-MRP f with RP s, n leaf nodes in L(s) and
a real number α such that 0 ≤ α ≤ 1.

output : `(s), smallest sub-set of leaf nodes of f that contain the
highest α region, i.e.,

∫
ρv∈`(s) fρvvol (xρv) ≥ α and

minρv∈`(s) fρv > maxρv∈L(s)\`(s) fρv.

initialize: `(s)← ∅; a← 0; i← 1
; // next sort leaves by height

L↓(s) = [ρv1, ρv2, . . . , ρvn], fρv1
≥ fρv2

≥ . . . ≥ fρvn
Nf ←

∑n
i=1 fρvivol (xρvi) ; // normalising constant

while i ≤ n & a < α do
a← a+ (fρvivol (xρvi))/Nf
i← i+ 1
`(s).append(xρvi) ; // insert this node into the set `(s)

end
return `(s)

Figure 15: R-MRP approximation to Levy density l̇ with coverage regions for
α = 0.9 (light gray), α = 0.5 (dark gray) and α = 0.1 (black)
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Figure 15 shows various coverage regions for a mid-point approximation of l̇ with
R-MRP f that is obtained from the leaf nodes of an IR-MRP f made by first splitting
to 2000 leaves via RPQEnclose

`
(ρ, l̇, ψ, ¯̀= 2000), then calling HullPropagate(ρ) and

finally pruning via RPQEnclose
a

(ρ, ψ, ¯̀′ = 1400).

The coverage of f with α = 0.9 is shown in light gray, α = 0.5 in dark gray, and
α = 0.1 in black.

Note that the 1400-leaf R-MRP f obtained as above (first splitting to 2000 leaves,
then calling HullPropagate and finally pruning via back up) has Ξ(f) = 13.81. If we
directly split to 1400 leaves with RPQEnclose

`
(ρ, l̇, ψ, ¯̀ = 1400) then Ξ(f) = 18.21.

Thus, in this example there is a significant gain in the tightness of the range enclosure
by splitting, propagating the hulls and then pruning back.

A particularly useful operation over R-MRPs is to marginalise along a subset of its
coordinates. Let Λ ⊂ ∆ = {1, 2, . . . , d} such that Λ 6= ∅. We introduce some notation
for tuples and subtuples of a point or ∆-tuple:

x = (x1, . . . , xd) =: (xi)i∈∆ ∈ xρ = (xρ,i)i∈∆ = �
i∈∆

[xρ,i, xρ,i] ∈ IRd .

The Λ-subtuple of a ∆-tuple is obtained by retaining the subset of coordinates Λ out
of the d coordinates in ∆ as follows:

(xj)j∈Λ ∈ (xρ,j)j∈Λ = �
j∈Λ

[xρ,j , xρ,j ] ∈ IR|Λ| .

Suppose we have an R-MRP f with RP s, root box xρ = �j∈∆[xρ,j , xρ,j ] ∈ IRd and

we are interested in the marginal function fΛ with RP sΛ and root box xΛ
ρ given by:

fΛ ((xi)i∈Λ) =

∫
�

j∈∆\Λ
[xρ,j ,xρ,j ]

f ((xi)i∈∆) d (xj)j∈∆\Λ ,

∀(xi)i∈Λ ∈ xΛ
ρ = �

i∈Λ
[xρ,i, xρ,i] . (4)

Then we can use Algorithm 10 to obtain the marginal function of f as another R-
MRP. Moreover, if f is non-negative then we can renormalise f as well as the marginal
function of f to obtain a marginal density that integrates to 1. Obtaining marginal
densities over a subset of coordinates of a joint density is a fundamental operation
with multivariate densities in statistical operations.

Example 8 (Levy Marginals): Consider the R-MRP f of Figure 15 that approximates
the Levy density l̇(x1, x2) on [−10, 10]2. Figure 16(a) and 16(b) show the R-MRP
marginal densities f{1}(x1) =

∫ 10

−10
f(x1, x2)dx2 and f{2}(x2) =

∫ 10

−10
f(x1, x2)dx1 over

the first and the second coordinates respectively of the R-MRP f . Thus, if l̇(x1, x2) is
describing the density corresponding to inverse energy of a set of particles distributed
over [−10, 10]2 then f{1}(x1) and f{2}(x2) describe the densities of the same particles
along each one of the two coordinates over [−10, 10].

Suppose we have a Y-MRP f : xρ → Y with subpaving s and root box xρ ∈ IRd.
Another useful operation is to be able to ‘slice’ f orthogonal to one or more of its
coordinates specified by Λ ⊂ ∆ = {1, 2, . . . , d} such that 0 < |Λ| < |∆| = d. A ‘slice’
of the Y-MRP f at a fixed subtuple point x′ = (x′ρ,j)j∈Λ ∈ (xρ,j)j∈Λ is the Y-MRP
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Algorithm 10: Marginalise(ρ,Λ)

input : ρ, the root node of R-MRP f with RP s, root box
xρ = �

j∈∆
[xρ,j , xρ,j ] ∈ IRd, Λ ⊂ ∆ and Λ 6= ∅.

output : Change f into fΛ of (4) with RP sΛ and root box
xΛ
ρ = �

j∈Λ
[xρ,j , xρ,j ].

if !IsLeaf(ρ) then
Marginalise(ρL,Λ)
Marginalise(ρR,Λ)

end

if !IsLeaf(ρ) & ι /∈ Λ then
ρ← MRPOperate(ρL, ρR,+)

end
else

xρ ← xΛ
ρ

fρ ← fΛ
ρ =

fρvol (xρ)
vol (xΛ

ρ )

end

(a) f{1}(x1) =
∫ 10
−10 f(x1, x2)dx2 (b) f{2}(x2) =

∫ 10
−10 f(x1, x2)dx1

Figure 16: Marginal densities f{1}(x1) and f{2}(x2) along each coordinate of
the R-MRP f of Figure 15 that approximates the Levy density l̇(x1, x2) on
[−10, 10]2.
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f |x
′

with RP s|x
′

and root box (xρ,i)i∈∆\Λ := �
i∈∆\Λ

[xρ,i, xρ,i] that satisfies:

f |x
′ (

(xi)i∈∆\Λ

)
= f

(
(xi)i∈∆

)
, ∀ (xi)i∈∆\Λ ∈ (xρ,i)i∈∆\Λ ,

provided, (xρ,j)j∈Λ = (x′ρ,j)j∈Λ . (5)

The box (xρv,i)i∈∆\Λ associated with each node ρv of the RP s|x
′

is such that there is
a unique node ρu in RP s of the Y-MRP f such that (xρu,i)i∈∆\Λ = (xρv,i)i∈∆\Λ and

x′ = (x′ρ,j)j∈Λ ∈ (xρu,j)j∈Λ and thereby f
|x′
ρv = fρu.

Algorithm 11: Slice(ρ,Λ, x′)

input : ρ, the root node of Y-MRP f with RP s, root box
xρ = (xρ,j)j∈∆ = �

j∈∆
[xj , xj ] ∈ IRd,

Λ ⊂ ∆, such that 0 < |Λ| < |∆| = d,
Point x′ = (x′ρ,j)j∈Λ ∈ (xρ,j)j∈Λ.

output : Change f into f |x
′

that satisfies (5).

if IsLeaf(ρ) Or ι /∈ Λ then
if !IsLeaf(ρ) then

Slice(ρL,Λ, x′)
Slice(ρR,Λ, x′)

end
xρ ← x′

ρ = �
j∈∆\Λ

[xj , xj ]

end
else

if x′ι < mid [xι, xι] then
Slice(ρL,Λ, x′)
ρ← Copy(ρL)

end
else

Slice(ρR,Λ, x′)
ρ← Copy(ρR)

end

end

Algorithm 11 can be used to obtain a slice Y-MRP of a given Y-MRP at a specified
subtuple x′. We refer to the notation developed in Section 3 where the index ι is the
first coordinate of maximum width of a box x and mid [xι, xι] is the mid-point of the
interval [xι, xι]. Examples 9 and 10 illustrate the slice operation on an R-MRP of
[−2, 2]2 and a [0, 1]3-MRP of [0, 1]3, respectively.

Like Algorithm 2, Algorithm 11 relies on our definition of the bisection of a box
that gives the left child a box where the interval on coordinate ι is open at the top.
(Section 3). Thus x′ι can never be in both children (if x′ι < mid [xι, xι], x

′
ι is considered

to be in the left child ρL, otherwise x′ι is considered to be in the right child ρR).
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Example 9 (conditional densities): The non-negative real-valued R-MRP f shown
in Figure 17(a) is defined over [−2, 2]2. Its R-MRP slice orthogonal to the first coor-

dinate at (x′1) = (1) is f |(x
′
1) giving the conditional function f |(x

′
1)(x2) : [−2, 2] → R

shown in Figure 17(b). Similarly, the R-MRP slice of f orthogonal to the second co-

ordinate at (x′2) = (1) giving the conditional function f |(x
′
2)(x1) : [−2, 2]→ R is f |(x

′
2)

(Figure 17(c)).
Subsequent renormalisation of the conditional functions so that they integrate to 1

gives us the conditional R-MRP densities from joint R-MRP densities. Obtaining con-
ditional densities and performing operations with them is fundamental in probability
and statistics.

(a) R-MRP f in 2-d (b) slice of f at (x′1) = (1) (c) slice of f at (x′2) = (1)

Figure 17: The slices of a simple R-MRP in 2-d

(a) [0, 1]3-MRP f (b) f |(x
′
1)=(−2.0) (c) f |(x

′
2)=(−2.0)

(d) f |(x
′
2)=(2.0) (e) f |(x

′
1,x
′
3)=(−2.0,−2.0) (f) f |(x

′
1,x
′
3)=(−2.0,2.0)

Figure 18: Coloured cube f and its slices.

Example 10 (slices of a coloured cube): The [0, 1]3-MRP and its slices in Figure 18
represents a three dimensional unit cube mapped with colour values for red, green and
blue in [0, 1]3 and its slices at different points. Slices can thus be used to systematically
visualize complex or high-dimensional data and subsequently perform visualizable op-
erations with them.
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Mapped regular pavings can also be used to extend existing methods of organ-
ising and analysing data, for example, for multi-dimensional nonparametric density
estimation using histograms [9]. The histogram bins are represented by a data-driven
regular paving of xρ ∈ IRd where xρ is the bounding box of some d-dimensional
sample data. The histogram as a whole is represented as a R-MRP where the real
value mapped to each bin is the histogram height on that bin. The restrictive form
of bisection used for regular pavings does have particular limitations in this context
and is not an ideal data-driven binning rule, but for some purposes this disadvantage
may be outweighed by the additional operations that can then be performed. For
example, we can easily find the difference or error of the histogram against a para-
metric density approximated as a R-MRP. Averaging of histograms (using addition
and then a transformation equivalent to division by a scalar) can be used as a method
of density estimation smoothing, as in [9]. Figure 1(c) shows a simple example of
histogram averaging for 1-dimensional data. We can also obtain marginal density es-
timates and conditional density estimates very simply (as far as we know conditional
density estimates cannot be as easily made using other available data structures for
non-parametric density estimates) using Marginalise and Slice.

5 Discussion

This project has extended regular pavings that partition a box xρ in IRd using a
binary tree structure to mapped regular pavings which allow us to map the nodes of
the regular paving tree to values in a set Y.

By exploiting the algebraic structure formed by regular pavings under union op-
erations we can extend arithmetical expressions over Y in a point-wise manner over
elements of the boxes that partition xρ. Operations on Y-mapped regular pavings can
be carried out very efficiently using recursive algorithms on the finite rooted binary
trees that are closed under union operations.

Regular pavings use a restrictive bisection rule that bisects only the midpoint of
the first widest coordinate to ensure that the paving union operation is closed. This
means that a mapped regular paving may be unsuitable for applications requiring more
flexibility in the partitioning of the domain. The compensation for this restriction is the
ease with which arithmetic operations can be carried out on regular mapped pavings.
The relatively memory-intensive tree structure is used because it also facilitates these
operations. Regular mapped pavings have no benefits when the kind of arithmetical
operations described in this article are not required. We believe, however, that for
some applications the advantages will more than outweigh the disadvantages.

We discuss one such application in detail: the ability to perform arithmetical
operations over piecewise constant functions with regular paving partitions of xρ using
R-mapped regular pavings and even turn it into an inclusion algebra for function ranges
with IR-mapped regular pavings. This inclusion algebra is a specialization of the IR∗
algebra PCk [7, 2.2.2, p. 43] to pieces formed by regular pavings. We have developed
novel randomised algorithms that provide memory-efficient enclosures of a real-valued
function with a well-defined inclusion function by forming IR-mapped regular pavings
using randomised priority queues of their leaf nodes. We show how the range enclosure
for a number of leaf nodes can be tightened by making an initial priority queue split
to some larger number of leaves and then using the tree structure to propagate the
hull of the range enclosures from the leaves up to the root and then using a similar
randomised priority queue to prune the tree to the required final size.
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When we map Boolean values to regular pavings we obtain the regular subpavings
of [2] that can be used to enclose subsets of interest. We also illustrated operations
with vector-mapped regular pavings that have potential applications in vector-field
arithmetic.

Finally, we provide elementary statistical operations that yield the marginal den-
sity, conditional density and highest coverage region of an R-MRP that represents a
probability density function. We illustrate how these operations — and others, such as
averaging — can be applied in multi-dimensional nonparametric density estimation.

We hope that the elementary statistical operations and arithmetic with R-MRPs
will facilitate other statistical applications including nonparametric regression, classi-
fication, data exploration and visualisation. The structures and algorithms described
in this paper are implemented in MRS: a C++ class library for statistical set process-
ing and publicly available under the terms of the GNU General Public License from
http://www.math.canterbury.ac.nz/~r.sainudiin/codes/mrs/.

Although we have focused here on enclosing functions from xρ ∈ IRd to R with well-
defined inclusion functions, we can easily allow for differentiation arithmetic instead
of range arithmetic by making further assumptions on the class of functions being
enclosed. For instance, we can use (IR, IRd, IRd×d)-MRP to obtain an inclusion algebra
for range, gradient and Hessian of twice-differentiable functions from xρ ∈ IRd to
y ∈ IR by using interval extended Hessian differentiation arithmetic. Since the work
for combining regular paving based partitions is already complete in this study, we
can obtain general IT inclusion algebras when Y = IT and T are complete lattices, for
e.g., when we are interested in arithmetical expressions over enclosures of functions
from Rm to Rn.

The notion of regular paving need not be limited to intervals and boxes. The
elementary operation needed to create a regular paving of a set xρ associated with
node ρ is the bisection operation that produces a left child node ρL and a right child
node ρR such that the sets associated with the child nodes given by xρL and xρR form
a bipartition of xρ, the set associated with the parent node, in a manner that only
depends on xρ. By calling these bisections recursively on the child nodes we can obtain
a regular paving. For instance, one could use regular pavings to encode binary triangle
trees [1] obtained by bisecting a triangle xρv associated with each node ρv into two
triangles along the first widest bisector, for instance, and breaking ties at random. In
higher dimensions this would give binary d-simplex trees. It would also be interesting
to define regular pavings of boxes in more exotic tree spaces [8] in order to obtain an
R-MPR histogram of trees over a root box in the tree space.
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