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Abstract

We propose a hybrid algorithm for solving global optimization prob-
lems that is based on the coupling of the Simultaneous Perturbation
Stochastic Approximation (SPSA) and Newton-Krylov Interior-Point
(NKIP) methods via a surrogate model. There exist verified algorithms for
finding approximate global solutions, but our technique will further guar-
antee that such solutions satisfy physical bounds of the problem. First,
the SPSA algorithm conjectures regions where a global solution may exist.
Next, some data points from the regions are selected to generate a con-
tinuously differentiable surrogate model that approximates the original
function. Finally, the NKIP algorithm is applied to the surrogate model
subject to bound constraints for obtaining a feasible approximate global
solution. We present some numerical results on a set of five small problems
and two medium to large-scale applications from reservoir simulations.
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1 Introduction

Finding a global optimal solution is a challenging task in many applications due to the
fact that data and models are usually nonlinear and subject to different sources of er-
ror. As an example, major state environmental problems include obtaining subsurface
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properties from pressure head and saturation observations in contaminant remedia-
tion sites, estimating temporal and spatial coefficients for shallow water models from
observed bathymetry data, and fish behavior prediction. Many of these problems are
computationally demanding, and have motivated the necessity for developing novel
optimization approaches. Moreover, in many cases the number of these parameters
may be significantly large since they generally depend on a prescribed level of spatial
and temporal resolution. Most successful approaches in global optimization use some
stochastic or heuristic strategies that do not depend on derivative information, e.g.,
genetic algorithms, tabu searches, neural networks, and simulated annealing, among
others [1]. Despite inherent costs, their success resides in making a broad and system-
atic exploration of the search domain, although this may vary with the nature of the
problem. Therefore, it is useful to obtain several local optimal solutions and compare
them before selecting a global one. However, the performance of these algorithms de-
pends significantly on the choice of parameters and this task tends to be less obvious
on large scale since the number of function evaluations grows dramatically with the
number of parameters. On the other hand, the availability of derivative information,
such as gradient, and Jacobian or Hessian operators, allows for achieving higher rates
of convergence towards a local optimum. Among several derivative-dependent meth-
ods, Newton’s method has been proven to be the most effective. However, the use of
derivatives can be prohibitively expensive and even unfeasible to compute. In that
sense, nonlinear methods such as Broyden’s and Levenberg-Marquardt’s have been
found to be very effective [2]. In any case, the inclusion of physical bound constraints
is a powerful means to reduce the search space and speed up the computation. In this
setting, interior-point methods are perhaps the methods of choice to generate iterates
in the feasible region.

The focus of this paper is to extend the capabilities of two of these approaches by
combining global stochastic and local deterministic optimization methods. The former
allows for a better exploration of the parameter space without relying on derivatives.
Also, it yields to conjecture the regions where the global solution may be located.
Then, a local method is used to obtain a feasible optimal solution in the regions to
speed up the process. The global stochastic optimization is performed by means of
the simultaneous-perturbation-stochastic approximation (SPSA) algorithm [3]. This
algorithm is efficient in high-dimensional problems in providing a good approximate
solution while using few function values. The philosophy of this algorithm is to per-
form random simultaneous perturbations of all model parameters to generate a descent
direction at each iteration. This algorithm has been successfully used in several appli-
cation areas [1, 4, 3]. We use SPSA to explore the parameter space, i.e., the domain
of the function. The result of this exploration consists of target regionsq where the
function values are low and the global minimum may be located. Using the data
in this target regions, we create a surrogate model that approximates the function
in this neighborhoods. Since first-order information can be calculated from the sur-
rogate model, then we are able to apply a local optimization algorithm that we call
Newton-Krylov Interior-Point(NKIP) to find the minimum of the surrogate model and
incorporate some additional inequality constraints. We test the hybrid approach on a
set of small, medium and large scale problems.
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2 Problem Formulation

We consider the global optimization problem in the form:

minimize f(x) (1)

where the objective function f : R
n → R, x ∈ R

n, and the global solution x∗ is such
that

f(x∗) ≤ f(x) for all x. (2)

In particular, we are interested in problem (1) that has many local minima.

A general parameter estimation problem can be written as a nonlinear least squares
problem:

minimize ||G(x) − d||2 (3)

where G : R
n → R

m is a nonlinear function that may involve the discrete solution of
a set of ordinary or partial differential equations, x ∈ R

n is the vector of parameters
to be characterized, and d ∈ R

m is a set of discrete data observations. The variables
n and m represent the number of parameters and data observations with n ≪ m,
respectively. This problem is ill-posed since there are infinitely solutions x that satisfy
problem (3).

In the next section, we describe a hybrid approach for obtaining feasible global
solutions.

3 Hybrid Approach

Our interest is to combine a global and local strategies for solving problem (1). We
use SPSA as a global method to explore the domain of the function by starting with
different initial guesses. This increases the chances for finding regions where a global
optimal solution may exist, and allows a rich sampling of the parameter space. We
select the regions with the lowest function values and filter the data by eliminating
points outside such regions. This filtering is done by using a predefined radius. Using
the selected data inside the target region, we create a surrogate model that approx-
imates the function in this neighborhood. In our particular case, we are interested
in finding an analytical representation of the original function of quadratic or cubic
order. The surrogate model created provides us with a smooth approximation of the
objective function within the region of the most promising optimal regions explored
by SPSA.

Once the surrogate model is constructed, we can apply our local strategy NKIP.
The derivatives necessary to apply this strategy are available from the analytical repre-
sentation of the surrogate model. The NKIP approach allows for further refinement of
the solution yield by SPSA. Moreover, the solution points obtained by NKIP algorithm
are validated against the original model.

Figure 1 shows our hybrid optimization scheme. The next subsections describe the
major optimization components used in the hybrid approach.
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Figure 1: Hybrid algorithm scheme.

3.1 Simultaneous Perturbation Stochastic Approximation

Simultaneous Perturbation Stochastic Approximation (SPSA) is a stochastic steepest
descent direction algorithm introduced by Spall [3], where a current point is improved
by moving randomly in the direction of the negative gradient of the objective func-
tion. The algorithm does not depend explicitly on derivative information. A major
advantage of SPSA is that it uses only two objective function evaluations at each iter-
ation to obtain the update of the parameters. The disadvantage is that the algorithm
has a slow rate of convergence and it cannot incorporate, in general, the constraints
associated with the problem.

The essential feature of SPSA, which provides its power and relative ease of use in
difficult multivariate optimization problems, is the underlying gradient approximation
that requires only two objective function evaluations per iteration independent of the
dimension of the optimization problem. Such evaluations are made by simultaneously
varying all of the variables in the problem (the simultaneous perturbation), in contrast
with the classical finite-difference method where the variables are varied one at a
time. If the number of parameters being optimized is n, then the finite-difference
method takes 2n evaluations of the objective function at each iteration to obtain a
gradient approximation. Klie et al. [4] have used SPSA to solve large scale reservoir
simulation problems obtaining encouraging results, but such results can be improved
by the inclusion of constraints.

Next, we present a pseudocode of the standard SPSA algorithm. The user initial-
izes the starting point x, the number of parameters being optimized n, the maximum
number of iterations kmax, and the SPSA parameters a, A, c, α, and γ. The algorithm
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calls an external function f to evaluate the objective function.

Algorithm 1 SPSA

Input: x,n, kmax, a, A, c, α, γ
Output: x
1: For k = 1 : kmax

2: Set ak = a/(k + A)α and ck = c/kγ

3: Set the random perturbation vector ∆k = 2(round(rand(n, 1)) − 1)
4: Simultaneous perturbation x+ = x + ck∆k and x− = x − ck∆k

5: Function evaluation y+ = f(x+) and y− = f(x−)
6: Set step ∆x = (y+ − y−)./(2ck∆k)
7: Update x = x − ak∆x
8: Check upper and lower constraints on x
9: end

The choice of the input values a, A, c, α, γ plays a fundamental role for the per-
formance of SPSA. In our numerical experimentation, we set the values of α and γ
to 0.602 and 1.101, respectively. Typically in a high-noise setting (i.e., poor quality
measurements), it is necessary to pick a smaller a and larger c than in a low-noise
setting.

3.2 Surrogate Model

Most problems require experiments and/or simulations to evaluate objective and con-
straint functions in terms of design variables. Frequently, optimization strategies re-
quire thousands or even millions of evaluations, and often the associated high cost and
time requirements render this infeasible.

We can overcome the computational cost of the optimization by constructing ana-
lytical expressions, known as surrogate models, which locally approximate the original
simulation or forward model with a limited amount of data. These approaches are
very appealing when the simulation or forward model is based on the solution of a set
of differential equations consisting of hundreds of thousands to millions of elements
and with a significant number of time steps. The accuracy of the surrogate model
depends strongly on the number and location of samples.

The most popular surrogate models are provided by polynomial response surfaces,
kriging, artificial neural networks and radial basis function (see, e.g., [6]). In particular,
our hybrid optimization approach seems to provide more reliable results when using
radial basis functions to create the surrogate model.

Using the data provided by SPSA (xk, f(xk)), k = 1, ..., p, we find the surrogate
model fs(x) using an interpolation method given by

fs(x) =

m
∑

j=1

wjhj(x), (4)

where the multiquadric basis functions are given by

hj(x) =

√

√

√

√1 +

n
∑

i=1

(xi − cij)2

rij

,
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where cij , rij , wj are determined by the method to create the surrogate model and
i = 1, ..., n, j = 1, ..., m. We also consider the Gaussian basis functions defined by

hj(x) = e
−

∑n
i=1

(xk−cij)2

r2
ij . (5)

A radial basis function (RBF) is typically parameterized by two sets of parame-
ters: the center c, which defines its position, and a second set of parameters r that
determines the shape (width or form) of a RBF.

3.3 Newton-Krylov Interior-Point (NKIP) Algorithm

Interior-point methods have been a successful technique for solving problems that in-
volve inequality constraints. We describe the NKIP algorithm which is a linesearch
Newton-Krylov method for solving general nonlinear programming problems. This
algorithm was developed for obtaining an optimal solution for large scale and/or de-
generate problems by Argáez and Tapia [7]. The most expensive part of the algorithm
is the need for solving iteratively a least squares problem, but the rest of the operations
are just matrix-vector multiplications.

Our strategy is to find an optimal solution of the surrogate model (4) by using
NKIP. Since NKIP can handle inequalities constraints we can solve the following con-
strained optimization problem:

minimize fs(x)
subject to x ≥ 0.

(6)

The Lagrangian function associated with problem (6) is given by

l(x, y, z) = fs(x) − xT z, (7)

where z ≥ 0 ∈ R
n are the Lagrange multipliers associated with the inequality con-

straints.

In order to promote global convergence of the Newton interior-point method and
keep iterates away from the boundary of the feasible region, except at the solution
of the problem, the algorithm is based on the perturbed Karush-Kuhn-Tucker (KKT)
conditions given by

Fµ(x, z) ≡

(

∇xℓ(x, z)
XZe − µe

)

= 0

(x, z) ≥ 0,
(8)

where ∇xℓ(x, z) = ∇fs(x) − z is the gradient of the Lagrangian function, X =
diag(x), Z = diag(z), e = (1, ..., 1)T ∈ R

n, and µ ≥ 0 stands for the perturbation
parameter. For µ = 0, these conditions are the KKT conditions associated with prob-
lem (6).

The methodology of interior-point methods is based on keeping (x, z) > 0 during
the entire procedure except at an optimal solution. A point (x, z) is said to be an
interior point if and only if (x, z) > 0.

For a given µ > 0, the Newton step (∆x, ∆z) at each interior point (x, z) is
obtained as the solution of the following non-symmetric linear system:

(

∇2fs(x) −I
Z X

) (

∆x
∆z

)

=

(

z −∇fs(x)
µe − XZe

)

. (9)
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To guarantee that the updated iterate is an interior point, a step-length α ∈ (0, 1]
is selected such that (x + α∆x, z + α∆z) > 0.

Under this framework, we state a path-following strategy for solving (6).

Path-Following Strategy: For µ > 0, and working from the interior, apply a

linesearch inexact Newton’s method to the perturbed KKT conditions. Then decrease

µ and repeat the process. Under appropriate conditions, an optimal solution will be

obtained as µ approaches zero.

Since our interest is solving large scale problems, we use inexact Newton directions
for solving (9), and coupling it with the globalized strategy. In particular, we present
an algorithm for obtaining a Newton-Krylov direction. In line with this objective, the
above linear system is decoupled in the following manner: Once the direction ∆x is
known, then from the second block of equations we have

∆z = X−1(µe − XZe − Z∆x). (10)

Then substituting ∆z in the first block of equations we have

(∇2fs(x) + X−1Z)∆x = µx−1 −∇fs(x) (11)

where x−1 denotes the vector in R
n whose components are the reciprocals of the

components of x. Then, once ∆x is obtained from (11), ∆z is computed using simple
arithmetic operations in (10).

Even though we still require to solve a linear system, this reduced system of equa-
tions has several advantages over system (9). First of all, the size of this system is
half the size of system (9). Second, the error of (11) is equivalent to the total error
for solving (9). And third, the coefficient matrix in system (11) is always symmetric
and by adding a diagonal positive matrix, X−1Z, we increase the likelihood that the
matrix ∇2fs(x) + X−1Z will be positive definite. This fact is of great importance
because it yields the implementation of an iterative procedure such as the conjugate
gradient method for obtaining an approximate solution.

4 Numerical Results

In this section, a numerical study of the hybrid optimization algorithm is conducted
on five small cases and on a set of large scale parameter estimation problems that arise
in reservoir simulations.

4.1 Small Problems

A set of five small test global optimization problems was selected from the literature
where the number of variables ranges from 2 to 100.

Problem 1 (Pinter’s Problem [9]). The function to be minimized is

f(x, y) = −2(sin(x + 4y) − 2cos(2x + 3y) − 3sin(2x − y) + 4cos(x − 2y))

where x, y ∈ (−5, 5). This function has two global solutions (x∗, y∗) at
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(−3.4333, 1.2852) and (2.84988, 1.2852) with f(x∗, y∗) = −1.937.

Problem 2 (Rastringin’s Problem [10]). We minimize the function:

f(x1, x2) = 20 +

2
∑

i=1

(x2
i − 10cos(2πxi))

subject to −5.12 ≤ xi ≤ 5.12 and i = 1, 2. The global minimum is located at x∗ = 0
with f(x∗) = 0.

Problem 3 (The Modified Bratu Problem [13, 14]). This problem is given by

∇2u + α
∂u

∂x
+ λeu = f in Ω, u = 0 on ∂Ω.

This problem plays an important role in combustion modeling and semiconductor de-
sign and processing, representing a simplified model for nonlinear diffusion phenomena.
In the absence of the convection term, this operator is monotone with respect to u and
hence it always has a solution for λ < 0. When λ > 0, there is a threshold value λ∗

for which the equation has no solution for λ > λ∗ and at least one solution for λ ≤ λ∗.

Problem 4-5 (Chandrasekhar H-Equation Problem [11, 12]). The function to be
minimized is

F (u) = H (u) −
1

1 − ĉ
2

∫ 1

0

uH(ξ)
u+ξ

dξ
= 0,

with u ∈ [0, 1] . There are two solutions known for ĉ ∈ (0, 1), and as this value ap-
proaches one, the problem becomes harder to solve. Here, we closely follow the specifi-
cations given in [12]; that is, H (u) ≡ u, u(0) = (0, . . . , 0)T and the composite midpoint
rule to discretize the integral. The two variants of the H-equation are determined by
setting ĉ = .9 and ĉ = .999999. For these two cases we specify 100 unknown variables
obtained from the discretization of the integral equation.

For each problem, we use five different random initial points to start SPSA. Ta-
ble 1 summarizes the setup of SPSA parameters a, c and A for test problems 1-5.
We use the Gaussian RBF to create the surrogate model for Pinter, Rastringin, and
the reservoir problem. The multiquadric RBF is used for Chandrasekhar and Bratu
problems.

Table 1: Setup of the SPSA parameters.

Prob. a c A

1 1.7e-2 3.9 1000

2 1.7e-1 1.9 100

3 1.7e-3 1.9 50

4 1.7 1e-1 50

5 1.7 1e-1 50

Table 2 summarizes the numerical results obtained by the hybrid approach for
solving test problems 1-5. The first four columns give the problem number, the number
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of variables, the value of the objective function at the global solution, and the initial
value of the objective function respectively. The next two columns state the value of
objective function obtained by SPSA and its number of iterations to reach this value.
The last two columns show the ability of NKIP to reduce the objective function and
its number of iterations to reach this value.

Table 2: Performance of the hybrid approach for solving test problems 1-5.
Prob. n f(x∗) f(x0) fSPSA(x) SPSA fNKIP(x) NKIP

iterations Iterations

1 2 -1.937 6.27e-01 -1.409 400 -1.937 17
2 2 0 3.10e+01 1.070e-01 118 3.55e-15 2
3 2 0 7.29e+00 6.42e+00 200 4.88e-01 7
4 100 0 2.03e+01 9.57e+00 200 4.47e-01 6
5 100 0 2.22e+01 7.58e+00 200 5.34e-01 5

Figure 2 shows the results in terms of function values versus the number of it-
erations. The blue and red lines represent the iterations done by SPSA and NKIP,
respectively. Here the blue line represents the best solution found by SPSA from one of
the five initial points. Each iteration of SPSA requires two function evaluations of the
objective function. The red line represents the iterations of NKIP when minimizing
the surrogate model fs(x). Each NKIP iteration requires one function evaluation. If
an optimal solution was not found, such function evaluation is added to update the
surrogate model and NKIP is run again.

4.2 Two-Phase Flow Parameter Estimation Problem

We experimented with a large scale parameter estimation problem where the goal is
to estimate the permeability field based on pressure data measurements. This analysis
was included to show that, despite having full information of the fluid flow pres-
sure field, the inverse problem is still highly ill-posed and has multiple local minima.
Therefore, strategies to regularize and re-parameterize the inverse problem need to be
employed.

We formulate the parameter estimation as a nonlinear least squares problem:

min f(x) =
1

2
(G(x) − d)T W (G(x)− d),

where x ∈ R
n represents the unknown permeability field, the term G(x)− d measures

the mismatch between the simulated pressure G(x), and the observed pressure d, and
W is a positive diagonal matrix.

We run the hybrid optimization algorithm in conjunction with the simulator
framework Integrated Parallel Accurate Reservoir Simulator (IPARS) [15] using high-
performance computing (HPC). The problem consists of finding a permeability field
that involves 2000 parameters. The field is parameterized by the singular value de-
composition (SVD) [4]. We chose several initial points, adding a percentage of noise to
the true singular values: 5%, 10%, and 15%. Table 3 summarizes the results obtained
by the hybrid approach.

The first row indicates the level of noise used in the experimentation. The second
and third rows indicate the number of initial points used for each level and the range
of the objective function for the initial points. The next three rows indicate the total
number of iterations, the number of function evaluations used by SPSA and the range
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Figure 2: Convergence history for test problems 1-5.
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Table 3: Numerical results for the two-phase parameter estimation problem.

Percentage of noise 5% 10% 15%

Number of initial points x0 30 20 20

Range of f(x0) 8.1 - 10.2 18.72 - 53.9 29.46 - 120.56

SPSA iterations 3645 2248 1647

SPSA total tunction evaluations 7290 4496 3294

Range of fSPSA(x) 0.568 - 2.5 .858 - 6.785 1.541 - 15.89

Data points used to create fs(x) 156 81 57

NKIP iterations 94 67 110

fKNIP 0.478 0.747 1.465

of the objective function reached by SPSA. The next row indicates the number of data
points used to create the surrogate model. The last two rows show the total number
of iterations and the valued reach by NKIP.

5 Conclusions

The proposed hybrid approach exploits the best of SPSA and NKIP methods for
achieving maximum efficiency and robustness in the search of a feasible global so-
lution. It is clear that a broad exploration of the parameter space should be done
to increase the chance of finding a global optimum when using SPSA. On the other
hand, this search has to be performed in a controlled way to keep the number of
function evaluations within reasonable computational cost. In this paper, we showed
how this can be achieved by generating surrogate models and adjusting the degree of
exploration as the iterations proceed.

The hybrid algorithm presented in this paper is a non-verified method since it
cannot necessarily provide the global solution. However, the existing global optimiza-
tion techniques benefit from the use of the hybrid algorithm since it eliminates regions
in which the function value is high. Moreover the solution provided by the hybrid
method is guaranteed to be feasible with respect to physical bound constrained set
by the problem. Also, the multi-start approach of SPSA improves the likelihood of
obtaining the feasible global solution.

We show promising numerical results that illustrate the efficiency of the hybrid
code for solving small test-cases and large scale parameter estimation problems. Fur-
ther experiments should be conducted using high-performance computing to exploit
the hybrid scheme for solving very large scale problems. Further levels of parallelism
may be exploited when computing the SPSA step and function evaluations. This paper
opens new research questions related to the ill-posed associated with parameter esti-
mation problems: regularization, parameterization, preconditioning, and uncertainty
and sensitivity analysis. The regularization term can be added to the objective func-
tion in order to stabilize the ill-conditioning of the problem. The parameterization
schemes seek to reduce the parameter space and, yet, be able to come up with bet-
ter estimations. Preconditioning aims at improving the efficiency of iterative solvers.
The uncertainty and sensitivity assessments can determine reliability bounds of the
solutions. Further, the surrogate model framework offers interesting possibilities for
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developing answers to these open questions.
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