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Robust algorithms that locate local extrema of
a function of one variable from interval
measurement results:

A remark

Curistrors Bick and KAREN VILLAVERDE

The problem of locating local maxima and minima of a function from approximate measurement results
is vital for many physical applications: in spectral annlyis, chemical species are identified by locating local
maxima of the spectra; in radicastronomy, sources of celestial radio emission, and their subcomponents, are
identified by locating local maxima of the measured brightness of the radio sky; eementary particles are
identified hy locating local maxima of the experimental curves. Since measurements are never absolutely
precise, as a result of the measurements, we have a dass of possible functions. If we measure f (:r,) with
interval uncertainty, this class consists of all functions f for which f(z;) € [y; — €, y; + €], where y; are
the results of measuring f(z;), and € is the measurement accuracy. For this dass, in [2} a linear-time
algorithm was described.

In real life, a measuring instrument can sometimes malfunction, leading to the so-called vutliers, ie,
measurements 3; that can be way off f(z;) (and thus do not restrice the actual values f(z;) at all).

In this paper, we describe robust algorithms, te, algorithms that find the number of local extrema
in the presence of possible outliers. These algorithms solve an important practical problem, but they are
not based on any new mathematical results: they simply use algorithms from [2] and [3].

PobacTHEIC aATOPUTMBL AAST HAXOXACHI
AOKAABHBIX 3KCTPEMYMOB (DYHKIIMM OAHOM
TIepeMEHHOM Ha OCHOBE MHTEPBAABHBIX
pe3yAbTATOB M3MEPEHMIL: 3aMedaHMe

K. Bk, K. Buanaserse

Janaua HAXOKNEHHS JOKAIBLHBIX MAKCHMYMOB H MHHUMYMOB (bYHKIHH Ha OCHOBE PE3yaLTaToB Upnim-
KEHHBIX HIMEPEHMM BAXKHA AT MHOIHMX (PUIHYECKHX HPHIOKCHU B CHEKUMLIBNUM ANLULIE XHMUYECKHE
KOMIOHEHTHL HAEHTH(DHIBIPYOTCH NYTEM NOHMCKA JOKAILHLIX MAKCHMYMOB B CHEKTPE; B pudunacmponoain
HCTOUHHKH  KOCMHMECKOTO DAAMOMZAYHCHMA H HX KOMUOHEHTH MACHTHOHIBIDYIOTCH Hepe3 OTLICKAHHE
JOKQABHBIX  MAKCHMYMOB HM3MEPCHHOR APROCTH HeGa B PAAHORHALAIOHE; J 7 K fot OBHA-
PYKHBRIOTCSH YEPE3 HAXOXKACHHE JOKAJLHBIX MaKCHMYMOB 3KCTEPHMEHTAILHMX KpubbiX., [lockoaexy
H3MEPEHHA HHKOTAR He GBIBAT aBCoMOTHO TOYHLIMK, B PE3YJILTATE 3THX H3MEPEHMA MLl HMEeM HeKMi
Kiace Bo3voKEbx ynxwont. Eomt f(Z;) HaMepsieTcs ¢ HHTEPBANBHOM HEOUPEAENEHRUCTBIO, STOT XAACC
sxawuaet B cebsa aee pynkmm f, ans xotopux f{z;) € [y — €,y + €], rre y; ecrs pesyavraTa usve-
penutit f(z;), a € ects ux norpenmocts. M Takorw xnacca (yskuma 8 patore [2] oimcan aavopury
C JIMHEAHBIM BPEMEHEM,

Ha npakTHKE MIMEPHTENLHLIE MHCTPYMEHTB MOIYT MHOTAA BEIXOAHTBL H3 CTPOS, YTO HPHBOANT K
MOABJCHNK) B PE3YABTATAX 800.1ck08, T. €. TAKMX 3HAMEHI Vi, KOTupble OMEHDb jaieko otcrost ot f(r;)
M, TaKUM 00pazoM, BooBHIE HE OrPAHHMHEANT peanbHute sHavenus f(z;).
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B nansoR paBoTte OINCHIBAIOTCH pofachitsie alfOPHTMDBL, T. €. TAKHE WIOPHTME, KOTOPLIE HAXOMAT
HHCO AOKAIBHBIX JKCTPEMYMOB HPH BOZMOXHOM HPHCYTCTBIH B DESYABTATAX BCIIECKOB. OTH ANTOPHT-
MH IO3BOAAKIT PERITH BAKHYK HPAKTHYECKYK) JAUAMY, HO OCHOBBLIBAIOTCHA HE Ha HOBIIX MAaTEMATHUECKHX
PE3YALTATAX, & HA naseCTHRX wiopurvax #3 [2] e [3)

1. Locating local extrema: importance and known
results

In many applications, it is important to find the local maxima and/or minima of a function
f(z) of one variable z:

o In spectral analysis, chemical species are identified by locating local maxima of the spectra.

& In radioastronomy, sources of celestial radio emission, and their subcomponents, are identified
by locating local maxima of the measured brightness distribution of the radio sky, ie., the
function y(z) that describes how the intensity ¥ of the signal depends on the position z
of the point from which we receive this signal.

o Elementary particles are identified by locating local maxima of the experimental curves that
describe {crudely speaking) the scattering intensity y as a function of energy z.

In all these cases, we would like to know the number and location of the local extrema.

Measurements are never absolutely precise; as a result, after the measurements, we never
get a unique function f(z); we get a class F of possible functions. In [2, 3], we considered
the case when the only information about f comes from measuring the values of f(z) for
several values £ = z; < «-- < z, with interval uncertainty. If y; are the results of measuring
f(z:), and the manufacturer guarantees that the absolute value |Ay;| of the measurement error
Ay; = y; — f(x:) cannot exceed a given number € > 0, then, as a result of each measurement
of f(z:), we get an interval yi = [y, ¥} = [vi — €, y; + €] of possible values of f(z;). The
resulting class of functions has the form

F={flf(z)€y: foralli=1,...,n} 1)

For this case, in [2], we have described a linear-time algorithm that computes the finite list
of location intervals, ie., pairwise disjoint open intervals Iy,..., I, each of which I; has the
following two properties:

a) Every function f € F attains a local maximum on Ij.
b) No proper subinterval J C I; has property a).

Thus, every function f € F has at least k local maxima. It has also been proven in {2] that
there exist functions f € F that have exactly k local maxima.

So, eg., in radioastronomy, from the measurement results, we can guarantee that the
observed source has at least k components (maybe more).

For the case when we have several processors working in parallel, in [3], two parallel algo-
rithms were developed to compute the intervals I;. These algorithms require, correspondingly:

1. O(log*(n)) time on O(n) processors; and
2. O(log(n)) time on O(n?) processors.
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2. Problem: possibility of outliers

The formula (1) was based on the assumption that the measuring instrument always works
well, and thus, whenever the measured value of f(z;) is %, we can guarantee that f(z;) €
[ — €, 4 +€]. In real life, we often encounter the situation when a measuring instrument
may malfunction and thus, the result 7; of one of the measurements may be “way off”.
Such measurement results are called outliers. The problem of data processing in the presence
of outliers is often considered in mathematical statistics (see, e.g, [1; 4, Chapter 16]. The
corresponding data processing methods are called robust methods.

If it is possible that one of the measurement results is actually an outlier, then the actual
function f may not belong to the class (1). Instead, it belongs to the following class:

Fi={f|flz;)ey: foralli=1,...,n, except, maybe, one i}. (2)

It is also possible that not one, but several values are outliers. If we do not know how
many of them are outliers, then, of course, it can happen that all measurements are outliers,
and, therefore, we cannot say anything about f(z). Meaningful results can happen only if we
know the upper bound b (b < n) on the number of outliers. In this case, the class of functions
is described by the formula

Fo={f|f(z:) €y: for at least n —b different i=1,...,n}. (3)

The problem is: What can we say about the number of local extrema and about their locations in
these robust situations?

In this short paper, we will show that the algorithms from {2, 3] can solve this problem
as well.

3. Solution

31 Computing the possible number of local extrema

Definition 1. We say that an algorithm U finds the number of local extrema in the case of < b
outliers, if, given T1,...,&n,Y1...,Yn, and € as input, this algorithm returns the following two
integers:

e the smallest possible number of local maxima of a function f € Fy;

e the smallest possible number of local minima of a function f € F.

Proposition 1. For every b > 1, there exist algorithms Uy, ...,Uy; that find the number of
local extrema in the case of < b outliers, and that require the following computation time:

e O(nb*!) on a single processor (Up);
e O(nb) time on O(n) processors (U);
e O(n®1) time on O(n?) processors (Us);



216 CH.EICK, K.VILLAVERDE
o O(n*1-¥) time on O(n*) processors (Uy);
. ...
o O(n) time on O(n®) processors (Us);
e O(log*(n)) time on O(n*+1) processors (Uys1);

e O(log(n)) time on O(n**?) processors (Up+2).
In particular, for b =1 and for b = 2, we get the following results:

Corollary 1. There exist algorithms U, ...,Us that find the number of local extrema in the
case of <1 outliers, and that require the following computation time:

e O(n?) on a single processor (Uy);

e O(n) time on O(n) processors (U1);

e O(log?(n)) time on O(n?) processors (Us);
e O(log(n)) time on O(n®) processors (Us).

Corollary 2. There exist algorithms Uy, ..., Uy that find the number of local extrema in the
case of < 2 outliers, and that require the following computation time:

e O(n®) on a single processor (U);

o O(n?) time on O(n) processors (Uy);

e O(n) time on O(n?) processors (Us);

e O(log?(n)) time on O(n®) processors (Us);
e O(log(n)) time on O(n*) processors (Uy).

Proof. For simplicity, let us start with the case b = 1, ie, with the case when there exists at
most one outlier. Then, depending on the existence and the location of an outlier, we can
divide the class F; into the following n + 1 subclasses:

o The class }'f of all functions f for which none of the measurements are outliers, ie., for
which f(z;) € y; for all 4.

e 1 classes .7’}", 1 € k < n. Each of these classes consists of all functions f for which the
k—th measurement is an outlier, ie, for which f(z;)€ey; fori=1,...,k~1,k+1,...,n
(i.e, for n— 1 different values of 7).

Because of this division, in order to find the smallest possible number of local maxima of
functions f € Fy, it is sufficient:

e 1o find the smallest possible number of local maxima for f € F¥, k = 0,1,...,n, and
then

s to compute the smallest of these numbers.
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Each of these classes F¥ is of type (1) (with n or n— 1 sets of inputs); therefore, for each
of these classes, we can use either the algorithm described in [2], or one of the algorithms 1.,
2. described in [3]

For b > 1, we can also divide the class F} into the classes that correspond to different
possible subsets of outlier points. Each of these classes is of type (1), and the total number
of these classes is equal to the total number of subsets of size < b in the set {1,...,n} of n
elements. This number is known to be O(n?).

If we sequentially perform computations, corresponding to the algorithm from [2), for these
O(n) classes, then the computation time gets multiplied by O(n®); the resulting computation
time is O(n®*1). This is algorithm .

If we have n* processors, k < b, then we can subdivide O(n?) classes into n* groups
assigned to different processors; each group consists of O(n?~*) classes. Inside each group, we
sequentially perform computations, corresponding to the algorithm from [2], for all O(nb~F)
classes. The resulting time is O(nf+1~*%). This is algorithm Us.

Finally, if we perform instead the computations that correspond to the algorithms from [3]
in parallel for each of the O(n®) classes, we must multiply the number of processors by O(n®);
this idea leads to algorithms Uy.y and Ups. 0

32. Locating local extrema

Location-wise, the best we can do is to present to the user all possible sets of interval locations
for the local extrema that correspond to different possible outliers.

To illustrate the possible complexity of the situation, let is give a simple example: n = 100,
b =1 (e, at most one outlier is possible), y2 = yog = 3¢, and y; = 0 for all other i. In this
case, according to the algorithm from [2], all function f € JF; must have at least one local
maximum:

o If yy is an outlier, then the maximum is located on the interval (zgs, T100)-
e If ygg is an outlier, then the maximum is located on the interval (z1,z3).

o If none of y; are outliers, or if ¥; is an outlier for some ¢ # 2 and i # 99, then there are
two intervals, each of which must contain a local maximum.

As a result, we can conclude that there can be only one local maximum, but the location of
this local maximum depends on which of the measurement results is an outlier.
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