
Robust algorithms 
a function of one 
measurement 
A remark 

Reliable Computing 2 (3) (1996), pp. 213-218 

that locate local extrema of 
variable from interval 

results: 

CHRISTOPH E~CK and KAREN VILLAVERDE 

The problent of h~cating local maxima and minmm of a time|ion from approximate measurement re.~ults 
is viud for many physical applications: in speartd mud z'i~, chemical species are klentified by IoGtting local 
maxima ~f the spectra; in rtuti~vatromnny, sources of celestial ~tdio emission, and their subcom|xments, are 
identified hy hmating hg2al nmxima of  the measured brightne~ of the radio sky; ele~nenlary ]xlrtit;lea are 
identified hy hmating local maxima of the experimental curves. Since measurements are never absolutely 
precise, as a result of the measurements, we have a eJta~ ~f I.x)ssible flmctions. If we measure f ( z l )  with 
interval uncertainty, this class omsists tff all flmctkms f fiw which f ( ~ i )  ~ [Yi - G Vl + ~], where Vl are 
the results tff measuring f ( z l ) ,  and ¢ is the measurement accuracy. For this class, ill [2], a linear-time 
algorithm was described. 

In real life, a measuring instrument can ~m|etimes malftmction, leading n) the so-Galled outliers, i.e., 
measurements Yi that can be way off f (a:i)  (and thus do not restrict |he actual values f ( z i )  at all). 

In this paper, we describe robttst algorithms, i.e., algorithms that find the nttmber of kraal extrema 
in the presence *ff ~ s i b l e  *attliers. These algorithms re,lye an imt~)rtant pra~iGll problem, but they ;|re 
not based on any new nmthematiGd resuhs: they simply u ~  algorithms fnm~ [9] and [3]. 

P06aCTHHe aAr0pHTMI~I AA~I Hax0xAeHI4~I 
AOKaAbHt~IX 3KCTpeMyMOB  yHKImH OAHO~ 
nepeMet oH Ha OCttoge tlI~epBaAbHbIX 
pe3y  ,TaTOB mMepeH  : 3aMe aH e 
K. D ~ ,  K. BI~AAABEPAE 

~a/ laqa  Haxo2,KBeHH~I /IoKaJlbHblX MaKCHMyMOB H MHHHMyMOB (10yHKIIHll Ha ~:HOBe I~'Jy:lbTaTOB IIpII~JIH- 

.,XKeHHblX ||3Mep~H||l~ tK.I~KHa .rlJII'I MHOYHX ~II3Hv/CCKItX IlptUIO.XKCHIIt'I: B OIl¢lOIlpt~lb?tOAg fgl|IL~lLIg XHMIItleCK|IC 

KOMIIOHeHTbl }UleHTIICl~ttItHpylOTOt IIyTeM IlOHcKa dlOKitdllaHla/X MaKCIIMyMI)B B C[leKTpe; B ~l/~alYlCltlpOlUl~tlll 
IICTOMHHKH K|ICMHt~eCKIII'[} paAtlOH3Jly~leHH$.I H }IX Kt}MIIOHCHTI~I }|/teHTH~HIIllpylOTCH qep~30TL~tCKaHtIe 

.'lOKadlbHLqX MaKCHMyMOB }t3MepeHHOft HpKOCTH He6a B paltttoltHatla3oHC; ;~.te.~UrtOttelpu~¢. ~atrtl~ut~M 06Ha- 
py;,KHBaK)TOI qepe3 HaxoggaeHHe J1OKaJlbHblX MaKOIMyMOB 3KcHepHMCHT~'UIbHblX KpIIBbIX. l-ltlCKo.'IbKy 

H3MepeHrl/.! HHKOrJIa He 61J/BRIOT ;16COalOTHO TOttHI.~IMH, B pe3ydlbTaTe 3THX tt3MepeHHh Ml.q IlMeeM HeglllTI 

mu'tc.,'; BO3.MO2g.HblX qbyHKltltfi. E~/I|| f ( g : i )  uaMepne rcn  c ;In'l'epBa.~tbH(~l netmpelleaenH~m-rbs, ,  3TOT r, a acc  

pemtf| f ( z l ) ,  a ~ ecrh Hx m~rpeluHocrb. 2131a Tam~l~ g.rlacca qbyHKtmh B paFa~Te [2] tmncalt aal'opnxM 
C .qllHeftHh/M BpeMeHeM. 

Ha IlpaKTHKC ~t3MepltTe.qbHl,le IIHCTpyMeHTM MoryT HHI)FAa BhlXO/UITb 113 ¢71"poR, t.ITO IlpltBO/tllT K 

IIO~IBJICHt|IO B pe3y.'ibTa'rax ectl.w~'oa, T. e. TaKIIX 3HatleHlll:l Yi, xe r rop~e  otleHb /la. ' lego OTCrO~IT OT f ( x i )  
It, TagltM o6pa2R:~M, l~16l t I~ He orpaHlltlltBaIOT pt~a21bHble 3HatteHt|~l f ( ~ i ) -  
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B llaHH(ll;I p}I~NITC |)IIVICL4BalOTCff, I ~(7(u:~totMe a$11'O|)VITMhl, T. g. ~IKIII~ ;I;II'(}|)IITMId, KIITIIpblC H~IXI}/|MT 

tqviC,'IO JIoKadlbFIL~/X 3gcrpeMyMCm Itpvi B~}3MO~KFIt~M tlpttcy'rc'rBtttt B lmayllUTaTax KII/I~K{IB. ~'2~|! a/ lr<~}fr-  

Mbl I I 0 3 B O a ~ } T  pent l t ' rb  Ba2,KHyto IIpaKTHqeCKy~) 3ajl:ltty, Ho OCHOBIdB~IIC)TC)I He Ha H¢:tBbiX MaTeMaTtltleCgitX 

pe3y:lbTa'ntX, a via .3lmcrt-ttc, x am'opwrMax }t3 [2] ~t [3]. 

1D Locating local extrema: importance and known 
results 

In many applications, it is important to find the local maxima and/or minima of a function 
f ( x )  of one variable x: 

• In spectral analysis, chemical species are identified by locating local maxima of the spectra. 

• In radioastronmny, sources of celestial radio emission, and their subcomponents, are identified 
by locating local maxima of the measured brightness diaribution of the radio sky, i.e., the 
function y(x) that describes how the intensity y of the signal depends on the position x 
of the point from which we receive this signal. 

• Elementary particles are identified by locating local maxima of the experimental curves that 
describe (cruddy speaking) the scattering intensity y as a function of energy x. 

In all these cases, we would like to know the number and location of the local extrema. 

Measurements are never absolutely precise; as a result, after the measurements, we never 
get a unique function f (x) ;  we get a dass .T" of possible functions. In [2, 3], we considered 
the case when the only information about f comes from measuring the values of f ( x )  for 
several values x = xl < " -  < xn with interval uncertainty. If Yi are the results of measuring 
f (x i ) ,  and the manufacturer guarantees that the absolute value ]Ayi I of the measurement error 
AYi = Yi - f (x i )  cannot exceed a given number e > 0, then, as a result of each measurement 
of f (xi) ,  we get an interval Yi = [Y;-, Y+] = [Yi - e, Yi + ~] of possible values of f(x~). The 
resulting class of functions has the form 

. T = { f l f ( x , ) E y i  for a l l i = l  . . . . .  n}. (1) 

For this case, in [2], we have described a linear-time algorithm that computes the finite list 
of location intervals, i.e., pairwise disjoint open intervals I1 , . . . , l k ,  each of which Ij has the 
following two properties: 

a) Every function f 6 .T" attains a local maximum on Ij. 

b) No proper subinterval J C Ij has property a). 

Thus, every function f E .T has at least k local maxima. It has also been proven in [2] that 
there exist functions f E .T that have exactly k local maxima. 

So, e.g., in radioastronomy, from the measurement results, we can guarantee that the 
observed source has at least k components (maybe more). 

For the case when we have several processors working in parallel, in [3], two parallel algo- 
rithms were developed to compute the intervals Ij. These algorithms require, correspondingly: 

1. O(log2(n)) time on O(n) processors; and 

2. O(log(n)) time on O(n 2) processors. 
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2. Problem: possibility of 0utliers 
The formula (1) was based on the assumption that the measuring instrument always works 
well, and thus, whenever the measured value of f (x i )  is Yl, we can guarantee that f (x l )  E 
[y~- E, y~ + e]. In real life, we often encounter the situation when a measuring instrument 
may malfunction and thus, the result y+ of  one of the measurements may be "way off". 
Such measurement results are called outl~'s. The problem of data processing in the presence 
of outliers is often considered in mathematical statistics (see, e.g., [1; 4, Chapter 16]). The 
corresponding data processing methods are called robust methods. 

If it is possible that one of the measurement results is actually an outlier, then the actual 
function f may not belong to the class (1). Instead, it belongs to the following class: 

Ovt = ( f  I f (z i )  e Yi for all i = 1 , . . . ,  n, except, maybe, one i}. (2) 

It is also possible that not one, but several values are outliers. If we do not know how 
many of them are oudiers, then, of course, it can happen that all measurements are outliers, 
and, therefore, we cannot say anything about f (x) .  Meaningful results can happen only if we 
know the upper bound b (b < n) on the number of outliers. In this case, the class of functions 
is described by the formula 

5cb = { f l f ( z i )  e y,  for at least n - b different i = 1 , . . . , n } .  

The problem is: WMt can we say about the number of local extrema and about their locations in 
these robust sitmztions? 

In this short paper, we will show that the algorithms from [2, 3] can solve this problem 
as welt. 

3. Solution 

3.1. Computing the possible number of local extrema 
Definition 1. We say that an algorithm L~ finds the number of local extrema in the case of <_ b 
outliers, t ,  given z t , . . . ,  xn, Y l . . . ,  Yn, and c as input, this algorithm returns the following two 
integers: 

• the smallest possible number of local maxima of a function f E ~b; 

• the smallest possible number of local minima of a function f E Jrb. 

Proposition 1. For every b > 1, there exist algorithms/do,...,Ltb+z that t~nd the number of 
local extrema in the case of  <_ b outliers, and that require the following computation time: 

• O(n b+1) on a single processor (U0); 

• O(n b) time on O(n) processors (/.,Ill); 

• O(n b-l) time on 0(~ 2) processors (U2); 
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• O ( n  ~ x - k )  time on O(n k) processors (L/k); 

• + , .  

• o (n)  ame on O(n processors rub); 

• O(log2(n))  time on O(n b+l) processors (/db+0, 

• O( log(n))  t ime on O(n ~'2) processors (L/b+2). 

In particular, for b = 1 and for b = 2, we get the following results: 

Corol lary  1. There  exist algorithms ldo, . . . ,L t3 that find the number o f  local ext rema in the 
case o f  <. 1 outliers, and that require the £ollowing computation time: 

• O(n 2) on a single processor (L/o); 

• O(n) ame on O(n) processors (ul); 

• O(log2(n)) time on O ( n  2) processors (~..12); 

• O( log(n) )  t ime on O(n s) processors (Us). 

Corol lary 2. There  exist algorithms L/0, . . . ,  l/4 that find the number of  local ext rema in the 
case o f  < 2 outliers, and that require the following computation time: 

• O ( n  3) on a single proce~or (L/O); 

• O(rt 2) time on O(n) processors (U,); 

• O(n) time on O(n 2) processors (U2); 

• O(log2(n))  time on O(n 3) processors (Us); 

• O( log(n) )  time on O(n 4) processors (U4). 

Proof. For simplicity, let us start with the case b = 1, i.e., with the case when there exists at 
most one outlier. Then ,  depending on the existence and the location of an outIier, we can 
divide the class ~1 into the following n + 1 subclasses: 

• T h e  class ~ of  all functions f for which none of the measurements  are outliers, i.e., for 
which f (x , )  6 Yi for all i. 

• n classes .T'~, 1 < k < n. Each of these classes consists of  all functions f for  which the 
k - t h  measurement  is an outlier, i.e., for  which f ( x i )  6 Yi for i = 1 , . . . ,  k -  1, k +  1 , . . . ,  n 
(i.e., for n - 1 different values of  i). 

Because of  this division, in order  to find the smallest possible number  of  local max ima  of  
functions f E .T'r, it is sufficient: 

• to find the smallest possible number  of  local maxima for  f 6 .,~'~, k = 0, 1 , . . . ,  n,  and 
then 

• to compute  the smallest of  these numbers.  
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Each of  these classes 9v~ is of  type (1) (with n or n - 1 sets of  inputs); therefore, for each 
of  these classes, we can use either the algorithm described in [2], or one of the algorithms 1., 
2. described in [3]. 

For b > 1, we can also divide the class .Y'b into the dasses that correspond to different 
possible subsets of outlier points. Each of these classes is of type (1), and the total number  
of  these classes is equal to the total number  of  subsets of  size < b in the set {1 . . . .  , n} of  n 
elements. This number  is known to be O(nb). 

If we sequentially perform computations, corresponding to the algorithm from [2], for these 
O(n b) classes, then the computation time gets multiplied by O(nb); the resulting computation 
time is O(nb+l). This is algorithm/do. 

If  we have n k processors, k < b, then we can subdivide O(n b) classes into n k groups 
assigned to different processors; each group consists of O(n b-k) classes. Inside each group, we 
sequentially perform computations, corresponding to the algorithm from [2], for  all O(n b-t:) 
classes. The  resulting time is O(nb+1-k). This is algorithm/dk. 

Finally, if we perform instead the computations that correspond to the algorithms from [3] 
in paralld for each of  the O(n b) classes, we must multiply the number of  processors by O(nb); 
this idea leads to algorithms/du+x and/db+~- []  

3.2.  Locating local extrema 
Location-wise, the best we can do is to present to the user all possible sets of  interval locations 
for the local extrema that correspond to different possible outliers. 

To  illustrate the possible complexity of  the situation, let is give a simple example: n = 100, 
b = t (i.e., at most one outlier is possible), Y2 = !199 = 3~, and Yi = 0 for all other i. In this 
case, according to the algorithm from [2], all function f E ~'1 must have at least one local 
maximum: 

• If Y2 is an outlier, then the maximum is located on the interval (xgs, xloo). 

• If Yg0 is an outlier, then the maximum is located on the interval (xl,  x3). 

• If none of Yi are outliers, or if Yi is an outlier for some i ~ 2 and i # 99, then there are 
two intervals, each of which must contain a local maximum. 

As a result, we can conclude that there can be only one local maximum, but the location of  
this local maximum depends on which of  the measurement results is an outlier. 
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