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A parallel complex zero 
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finder 

A recent paper [7] describes a variable precision interval arithmetic algorithm for the computation of the 
zeros of an analytic function inside a given rectangle and to a user-specified accuracy. The algorithm 
is based on the argument principle in the set of complex numbers C and carries much potential for 
parallelization at various levels of granularity. Here we explain how to modify the sequential algorithm 
to take advantage of parallelism at four levels ranging from coarse to medium grain. The algorithm 
is tested in a distributed environment consisting of eight SPARe workstations. The underlying software 
environment is also discussed. 
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B Heaaanefl pa6oxe [7] onucaH nxTepaaabno-apnqbMerHqecxu~ aaropnTu rlepeMeltnofl paap~umocrH mls 
a~q~IC.lleHH~ HyJlefl aHaymTH~ecKO~t dlaynKtmn aHyTpH aaaanHoro np~rMoyro~bHHxa c TOqHOCn,~O, ortpe~e- 
.'I~eMOfl rtoJlbaOBaTe~eM. ~3rroT a.~ropnTM OCHoaan na ntpHHuHne apryMeura Ha MHO,V~.ecTBr XOMH;IeKC..HUX 
qHceJI C H o6ma~aer 60~mnM rtoxeHu~a.rmM napanaeaHaauHH Ha pa3Hbrx ypoaH~X rpaHy~npomauHocrx. 
B Hacro~ttte~t pa6oTe npe/l.~araeTc~ MO.aHOpHXaHHst nor~e/logaTe.~bHoro a~ropHTMa s Mt~O.~,3OBaHHeM 
napa.ntae~naauHH Ha ,~exupex ypoBHnX rpanya~pomaHnoc'm: OT rpy6oro ~o cpeaHeaepnHcroro. Aaro- 
pHTM TCCTHPOBaa'ICR B pacnpeaeaeHHO~ BlalqHC.rlHTeJIbHOI~ cffrH, COCTO~efl 143 aOCI~MH pa6oqnx craHRH~ 
SPARC. Onepeae~eHHoe BnnMan~e yaeaeHo nporpaMMHOMy o6ecneqeHmo Hm~Hero ypoaHs. 

1. Introduction 

T h e  verif icat ion of  zeros o f  analytic functions in the complex  plane  is "commonly based on the 

a r g u m e n t  pr inciple  and  computa t ion  o f  winding  numbers  (see [6], Remarks  to Chapte r  5). T h e  

winding  n u m b e r  o f  an analytic funct ion f with respect to a s imple closed contour  S in the 

complex  plane  is the n u m b e r  o f  t imes the poin t  f(z) winds a round  the or ig in  in the  image  

plane  as z traces S once in the positive direct ion.  T h e  a r g u m e n t  pr inc ip le  appl ied to analytic 

functions states that,  in the  absence of  zeros o f  f on S,  the  winding  n u m b e r  equals the  n u m b e r  

of  zeros o f  f in ter ior  to S,  count ing  multiplicities. It is clear that  g iven an initial rec tangle  

R in the  complex  p lane  whose sides contain- no zeros of  f ,  a s imple bisection strategy coupled  

with an a lgor i thm for  comput ing  winding numbers  can serve as a basis for  locat ing zeros o f  f 

inside R.  

T h e  a lgor i thm in [7], hereaf te r  re fe r red  to as the sequential algorithm, is a hybrid  method:  

g iven a star t ing rec tangle  and a suitable e lementa ry  funct ion,  the first phase of  the p r o g r a m  

serves to isolate a funct ion 's  zeros within individual  subrectangles. This  is accomplished th rough  

the computa t ion  of  winding  numbers  using interval  me thods  and  rec tangu la r  bisection. T h e  

(~) M. Schaefer, T Bubeck, 1995 
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second phase employs Newton's iteration to locate individual zeros rapidly and is only applied 
to first order zeros. The  first phase is needed to ensure that no zeros are missed and to 
provide, for each first order zero, a reasonable starting location and bounded search area for 
Newton's method. Higher order  zeros are handled correctly by the program but their presence 
can increase execution times significantly because convergence to them is only linear. 

When interval methods are used to compute the winding number  of  an analytic function 
f with respect to some rectangle R, three outcomes are possible: R is found not to contain 
any zeros, R is found to contain one or more zeros, or else the winding number  could not be 
computed and the test for zeros was inconclusive. The  third case can occur either because a 
zero lies directly on the boundary of  R or else because a zero lies close to the boundary and 
the current  precision of computation is insufficient to resolve the behavior of f(OR), where OR 
denotes the boundary of  R (more details are given in [7]). The  sequential algorithm monitors 
the number  of rectangles encountered for which the winding number  could not be computed 
and periodically adjusts the precision of computation to keep this number  in check. 

During its first phase, the sequential algorithm manipulates one or several lists of  rectangles 
known or suspected to cover zeros of  the problem function f .  (Initially, there is only one list 
containing one rectangle, the starting rectangle supplied by the user.) Occasionally, a list is 
found to consist of  a number  of mutually disjoint sets of  rectangles. If  each such set can 
be enclosed in its own rectangular region, disjoint f rom other regions containing other sets, 
then the list is split into a number  of  independent sublists, each of  which is processed in turn. 
Within each list, each rectangle is first removed from the list, bisected, and its two halves 
checked for zeros (the starting rectangle is first processed as a whole to determine the number  
of zeros it contains before it is bisected). Those halves that are found not to contain any zeros 
are discarded while the others are appended to the end of the list. The  number  of  zeros 
contained in a rectangle is found by obtaining the winding amount (see [7]) of f for each side 
of that rectangle. A rectangle side s typically requires several recursive bisections to resolve 
the location of f(s) relative to the origin in the image plane, which then translates into the 
winding amount.  

The  first phase of  the sequential algorithm is by far the most time consuming but offers 
good opportunities for parallel computations. We use a form of domain decomposition where 
the input to each job consists of a list of  rectangles, a single rectangle, a side of  a rectangle 
or just one half of  a side. None of these inputs are known a priori but rather are determined 
dynamically, except for the four sides of the starting rectangle initially provided by the user. 
This is to be expected since the computations will tend to concentrate near the zeros, and since 
there is no advance knowledge of their distribution in the rectangle supplied. 

Currently, our hardware  platform i s made up of eight SPARC ELC stations coupled loosely 
by a network bus. The  software basis consists of the Range Arithmetic package [1] coupled with 
the Distributed Thread  System (DTS) [2]. The  latter makes possible the distributed computation 
of individual functions in a C or C + +  program. Using this system, one generates only a 
single executable program,  an image of which resides on each machine that participates in the 
computations. A more complete introduction to DTS appears in Section 4. Section 2 provides 
a detailed description of the parallel version of the algorithm and Section 3 gives numerical 
results for an example problem. 
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2. Four levels of parallelism 
This section describes the modifications to the sequential algorithm that were made in the 
parallel version. Perhaps the most obvious opportunity for distributing the computation occurs 
when a list of rectangles is split into a number of  independent sublists. A thread of  execution 
causing such a split retains one of the new lists but sends the others off for remote processing. 
it then continues execution, processing the list it retained for itself. An exception to this 
scheme occurs when a new list's rectangles are known to cover only a single (first order) zero. 
i'ypically, this kind of  zero is found and verified rapidly using Newton's method, in which case 

it does not pay to send off the list for remote processing, lnstead~ the local thread attempts 
to find the zero itself using Newton's method. Only when this falls will the list be shipped 
out to another machine. The importance of  this level of parallelization clearly depends on the 
rmmber and geographical distribution of  zeros in the starting rectangle. 

Next we consider the simultaneous processing of rectangles in a single list. The two halves 
of a newly bisected rectangle should not be processed in parallel since they share a new side 
that has not previously been processed and must be processed now. The  rectangles on a list 
currently awaiting their turn should, however, be processed in parallel. If' more than one 
rectangle is available, all but one are broadcast to other machines for remote processing. This 
level of  parallelism usually kicks in Shortly before a list is split into several sublists or before 
the precision of  computation is increased. Recall that a low precision setting can result in 
rectangles for which the number of  zeros covered is unknown and which cannot be discarded. 

The third level of parallelism occurs when several sides of the same rectangle are processed 
simultaneously. For reasons given below, however, most rectangles require processing only one 
of  their sides, and this level is not as important as may first appear. A notable exception is of  
course the starting rectangle. When this rectangle is processed, neither of  the earlier two levels 
of  parallelism are active, and processing all four sides in parallel is clearly beneficial. 

The final level o~" parallelism implemented consists of  the simultaneous processing of  the 
two halves of a subinterval, in case that subinterval requires bisection. The  data in [7] shows that 
the average depth of  bisection varies considerably for different problems, but that the potential 
degree of parallelism at this level can often be expected to exceed eight. Unfortunately, as 
the depth of  bisection increases the individual jobs quickly become too light to warrant export 
to other machines. Therefore, in our program this level of  parallelism is only employed for 
sides of  rectangles and not for any subintervals of  these Sides. Nevertheless, on a more tightly 
coupled multicomputer this level could well be the most rewarding as the number of  processors 
available increases beyond just a few. 

The sequential version of  the algorithm uses binary trees for the purpose of retaining 
winding information on each processed subinterval of a rectangle's side. This avoids unnec- 
essary recomputation in case this information is ever needed again. Each side of  a processed 
rectangle points to such a tree, whose structure reflects the bisections that were c.arried out 
before. Rectangles that share sides or even just parts of  sides share a tree or subtree. The 
implementation of  this idea made the program more complicated and less suitable to paral- 
lelization, but it did result in a significant reduction of execution time, sometimes by more than 
a factor of three. 

In the parallel version, it is not assumed that two threads of  execution have any shared 
memory available, and binary trees are no longer shared between rectangles in this version. 
Moreover, the trees used have a fixed maximum depth. This simplifies the programming of  
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functions responsible for broadcasting and receiving such trees to and from other machines. It 
also eliminates the risk of  incurring too much communication overhead from broadcasting deep 
trees. The  trees used are two levels deep, which can be motivated by the following argument.  

Consider the four sides of  a new rectangle Re which has been obtained through bisection 
of a parent rectangle P~. The aim is to find the number of  zeros contained in /~c, but how 
many of Rc's sides need to be processed? We assume here that the sibling of Fgc, the other 
subrectangle emerging from the bisection of  Rp, has not already been processed. If  absolutely 
no winding information about /~ ' s  sides is forwarded from Rp to Re, then it is clear that all 
four sides of  Re need to be processed, which constitutes the worst case. In contrast, the best 
possible scenario requires processing just one side of  Flc, with enough information inherited 
from R E to deal with the other three sides. It is interesting to derive the expected number 
of  sides of Re to be processed as a function of  the maximum depth of inherited binary trees. 
Naturally, this number will lie between one and four, and will decrease with increasing depth, 
because more information can then be inherited by Re from Rp. 

We will not carry out this derivation here but only quote the results for binary trees of 
depths 0, 1, and 2. For simplicity we assume that the computation of  the winding amount  
associated with a given side always succeeds, using as many recursive bisections of  that side as 
necessary. First suppose that the binary trees contain only root nodes, which means that Re 
inherits from R E only information about P,~'s sides, but no information about any subintervals 
of these sides. In this case it is clear that the expected number of  sides of  Re to be be processed 
is three, one less than the worst case but two more than the best case. Next assume the binary 
trees are one level deep: R~ inherits from R E winding information about its sides and possibly 
information about the two halves of  each side. It can be shown that the expected number of  
sides to be processed now equals ~ ~ 1.79. The  derivation assumes that whenever a side is 
processed, it has to be bisected at least once, which means that winding information will then 
be available not only for the side itself but also for its two halves. From the data in [7], it is 
clear that this is a fair assumption in practice. 

Finally, assume the binary trees are two levels deep. The expected number of  sides to 
843 be processed turns out to be r--g6 ~ 3..17, which is optimistically close to the best case. Here 

the derivation assumes that whenever a side is processed, it has to be recursively bisected at 
least twice, which is still a fair assumption to make, at least for the test cases in [7]. For the 
example of  Section 3, the observed average number of  sides processed is 1.43. Contrary to our 
earlier hypothesis, the computation of winding amounts is not always successful, either because 
the precision is too low or because a zero lies on the rectangle's boundary. Therefore, child 
rectangles do not always inherit as much information about their parents' sides as we assumed 
in the derivation of the expected value. 

3Q Numerical experience 
A loosely coupled workstation cluster implies significant communication overhead when used as 
a parallel computer. Moreover, network traffic can vary considerably during the course of  a 
day, and this directly affects the overhead. The data below is based on measurements obtained 
on three separate days and subsequently averaged. These measurements are actual observed 
time intervals that elapsed during program execution and lie in the range of several minutes. 
Although the machines used in the computations are part of a much larger departmental 



A PARALLEL COMPLEX ZERO FINDER 321  

network and subject to remote logins, at least none of them were used by other users at the 
start of program execution. 

The problem solved is to find all zeros of 

f(z) = sin 
z + 7r(2i - 3) 

m the rectangle defined by the corner points - 1 0 -  5i and 10 + 10i. The desired number 
~f guaranteed decimal places is 20. This problem was already solved in [7] where it was seen 
. hat 27 zeros exist in the specified rectangle. About half of these zeros are clustered near the 
lower right corner point. Figure 1 shows the speedup obtained as a function of the number 
of machines used. Clearly, it is far less than ideal but certainly not neglible. We deliberately 
chose a problem that was originally conceived without parallel execution in mind, to avoid the 
cmptation of "discovering" a problem ideally suited to our environment. 

Speedup 

I I I I , I  I I I 

1 2 3 4 5 6 7 8  

Number of  workstations 

Figure 1. 

The version run on a single workstation, which constitutes the comparison base for the 
other cases, is identical to that run on multiple machines. By removing all forks, decoupling the 
program from'DTS,  and storing the precision of  computation in a global variable as opposed 
to the thread's system control block (cf. Section 4), the program can be made to run as fast 
on one machine as on two without these changes. The original sequential version (with its full 
binary trees) runs as fast on one machine as the paralle! version using all eight workstations. 
Nevertheless, we believe the parallel algorithm could be sped up significantly beyond what is 
shown here for reasons explained below. 

It is interesting to consider the number of  forks that take place at each of the four levels 
of parallelism. (Here the term fork refers to the creation of a new independent thread of  
execution by an existing thread, which basically means that some particular function call can 
be off-loaded to another processor.) For the problem above, there are six forks at the first 
level, 154 forks at the second level, 88 forks at the third level, and 255 forks at the fourth 
level. Slightly more than half of all forks occur at the fourth level. When the number of  
processors is small (say two or three), the overhead incurred by this level appears to outbalance 
the reduction in execution time gained through added parallelism: preventing these forks then 
reduces the average execution time by about 10%. With eight machines available, however, the 
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average execution time increases by about 20% when fourth level forks are absent. It is hoped 
that in the future, the algorithm can be tested on a more tightly coupled multicomputer. The 
fourth level forks could then be extended deeper into the tree of  recursive bisections. In the 
example problem above, the average depth of  bisection for rectangle sides equals 6.3, and there 
is the potential for keeping dozens of  processors occupied. 

40 Software basis 
Relatively little effort was required in adapting the Range Arithmetic package to the Distributed 
Thread System (DTS). The  most interesting aspect of this conversion concerns the precision 
setting associated with each thread. As more than one thread may be concurrently active on 
the same machine, this information cannot be stored in the global address space shared by the 
threads. It cannot be passed via an additional parameter argument to the functions that most 
frequently access the precision setting, because these functions are overloaded C + +  operators 
which use a predefined number of  arguments. We store a thread's current precision setting 
directly inside its own system control block. 

We conclude this Section with an overview of  DTS, a System which allows a user to 
distribute a program over a network of  loosely coupled workstations. As described above, this 
can lead to significant improvements in program execution time. DTS uses Parallel Virtual 
Machine (PVM) [8] as the underlying message passing system and C Threads [3] for parallel 
execution on a single node. It basically offers the usual thread functions fork and join, here 
extended to distributed computing in a SPMD (single program over multiple data streams) [4] 
programming environment. 

In contrast to the client-server model, there is only one executable program, containing 
all required functions. The programer  does not write separate programs for client and server,. 
as for instance in RPC (Remote Procedure Call) [4] applications. The semantics and syntax 
of DTS correspond to what is typical of many thread packages, such as C Threads or Posix 
Threads. 

Unlike the case of  PVM applications, a user of  DTS does not manually start his program 
on each host but instead starts execution on just one of  the participating machines. The 
program then calls a DTS function which in turn loads and executes the same program image 
on all other machines. The  initiating machine continues execution following this call while 
the others wait for job assignments. When a machine forks to concurrently execute some 
function in the program, DTS chooses the machine on which the execution takes place. There 
is no need to specify the executing machine by hand or in advance. The choice is based on 
the current individual loads of the machines, and an attempt is made to balance the overall 
load as much as possible. After execution of a forked job, the results are sent back to the 
caller's machine and saved in a special buffer until a subsequent call to the corresponding join 
occurs. All sending and receiving of  input parameters and results is done in a non-blocking 
buffered way, in order to establish as much parallelism as possible. This means that a forking 
thread can continue execution without concern about whether outgoing messages have already 
been delivered: Furthermore, DTS automatically recovers whenever a machine goes down 
unexpectedly, because the system remembers which node executed which jobs and reassigns 
crashed jobs to other machines. This can be a very important reliability enhancement in a 
distributed environment that consists of  many independent computers. 
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Under DTS, all participating nodes are allowed to use fork and join. It is not unusual even 
for the initiating host to execute jobs forked from other machines. The entire network, which 
may consist of many heterogeneous machines, can be made to join in the computations. In 
the experiments above we have avoided using heterogeneous computers only for the sake of 
obtaining meaningful speedup data, Apart from the present program, DTS has been successfully 
used to paraIlelize a number of different applications. Among these are a RSA crypto system 
in PARSAC-2 [5], a linear equation solver, and others resulting in system efficiencies topping 
80% (system efficiency is defined as speedup over number of processors). 

To summarize, DTS f~atures (I) automatic load-h~lancing, (2) parallel execution on many 
machines, (3) single sourcecode, and (4) dynamic recovery and reconfiguration of the working 
pool. 
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