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Enclosures for Solutions of
Parameter-Dependent Nonlinear
- Elliptic Boundary Value Problems:
Theory and Implementation on a
Parallel Computer

Michael Plum

We consider a method for proving the existence and computing enclosures for
solutions of parameter-dependent nonlinear elliptic boundary value problems,
which is applicable also in (neighborhoods of) simple turning points. This
goal is achieved by a combination of earlier existence and enclosure results
with the technique of change of parameters. Significant parts of our numerical

. algorithm possess a high degree of parallelism and have been implemented on
a T 800 Transputer System.
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5KCTPEMasbHBIX ToYeK. JTa HElb JOCTHraeTcA 3a cdeT KOMOMHAIMY paHee u3-

BECTHBIX Pe3yIIbTaTOB,KACAIOMIMXCA CyIIECTBOBAHYA i BKITIOYEHNS, C TEXHUKOM

A3MeHEeHH’s HapaMeTPOB. JHAUNTENbHas IacTh Halllero YHCIIEHHOTO AJITOPHTMA,

Of AMeeT BBICOKYIO CTENeHb Tapallleliu3Ma ¥ Pealln3oBaHa Ha TPAHCIbIOTEPHOM
cucreme T 800.

inear
slems: . ,
1 Introduction
on a
Consider the parameter-dependent nonlinear boundary value problem
—AU + F(z,UX\)=00nQ, U =0on 0 (1)
»sures for where Q@ C R” (with n € {2,3}) is a bounded domain with sufficiently
roblerns, regular boundary 02, and F' : ) x R x R — R is continuous, together
bs. T}llis with its derivatives OF /0U and 0F/0\.
P ;
Lunrleeililca? In previous articles (e. g. [17-19]) the author derived existence and en-

ented on closure results for solutions of problem (1) with fixed parameter A, provided
that an approximate solution

w € Hyp(R) = closurey,q) {u € Cy(Q) : “Iaﬂ e O}

with sufficiently (Ls-)small defect —Aw + F(-,w, A) can be computed such

I X that the inverse of the operator L : Hy () — Lo(§2) given by

X Lu] .= —Au+c-u, g 1= ((9F/8U> (z,w(z), ) (2)
1 can be bounded suitably. ,

'OM Considering problem (1) as a bifurcation problem with parameter A,

we therefore find that this existence and enclosure method is not appli-
cable in (neighborhoods of) turning or bifurcation points (w, A), since the
operator L is not invertible in such points.

To overcome this difficulty for simple turning points, we change the

ICTIeHU S parametrization of the problem: we choose some suitable C}-smooth func-
ZIHHTH‘ tion @ : & x R x R — IR and adjoin the scalar equation
CTBIX

{[<I><x,U(x),/\> dz = p (3)
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to problem (1). The augmented problem (1), (3), with # € R as new
(input-)parameter and with A now being a part of the solution, is (locally)
turning-point-free, if ® has been chosen appropriately.

This technique of parameter change is well known to be a powerful
tool in the treatment of turning point problems, both from the theoretical
and the numerical point of view (e. g., [1, 9, 10, 21, 22, 24]). Here, we will
combine this technique with existence and enclosure methods for nonlinear
boundary value problems, which we believe is new. In [20], we worked
out the corresponding theory for boundary value problems with ordinary
differential equations. Most of the results and proofs can be carried over
to elliptic problems without any significant changes. Therefore, we omit
some proofs here and refer the reader to [20] for more theoretical details.
That paper also contains references to other relevant enclosure methods
for boundary value problems (e. g., [5, 8, 12-15, 23]).

More differences between ordinary and elliptic problems are present in
the numerical procedures needed for our method. In [20], we proposed a
collocation method with polynomial basis functions for ordinary differen-
tial equations, while for elliptic problems a finite-element method appears
to be more appropriate for several reasons, one of them being the possi-
bility of parallelization: many time-consuming parts of our algorithm are
carried out independently on each element, which allows a highly parallel
implementation. We used a T 800 Transputer System with 32 transputers
to test the parallel aspects of our existence and enclosure method.

2 Existence and enclosure for the
augmented problem

Throughout this paper, we will assume that the domain € is regular in the
sense that 0(2 is Lipschitz, and the Laplacian maps the space H, 0(Q) onto
Ly(2). This condition is satisfied, for instance, for C'1,1-smooth boundaries
0Q, for convex polygonal domains © C R? and their C| 1-diffeomorphic
images, and for many more cases (see [17, Section 5]); it fails for domains
with reentrant corners (such as L-shaped domains).

We wish to derive an existence and enclosure result for problem (1)
which, in particular, is applicable in some neighborhood of some (conjec-
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tured) simple turning point, where the linearized operator L defined in (2()1
is not invertible, so that a direct application of our former enclosure metho
is impossible. . _ |

For this purpose, we choose some C}-smooth function @ : @ x RXR —
R such that the expression

(e, Us(z),\) da:

is (expected to be) strictly monotonic along the conjectured s(;)lut;(gl
branch (U,) containing the turning poinl;. Then, the augmelltebtpl‘ b
lem (1), (3) is locally turning-point-free, since the branch (U,) is obtain
by monotone variation of the new parameter pu. Pl
We will restrict ourselves to choices where 0®/0U = 0F /0], Wthll is
sufficient for many practical cases and facilitates our theory and numerics.

Suppose that, for some given p, an approzimate solution

(w, )\) - HQ)@(Q) x R

of problem (1), (3) has been computed, as well as bounds 61,6, for its
defects:

< 6.

(4)

Q

Furthermore, let constants X and Kj be known such that

lullo < K[£L[(x,0)]|

T (5)
lo| < Kollﬁl(ua U)l”

VY(u,0) € Hyo(Q) x R

where £ is the linearization of the augmented problem (1), (3) at (w, ),

1. e.,

.[,[(u, 0)] = (L[u] + - o,({ Y(z)u(z)de + 7 - 0') € Ly(2) xR

with L given by (2) (with X in place of A), and

V() a—F—(:n,w(a:),:\) = —g—g(x,w(m)}),
(x,w(x),

/?(x) dx," (o= =

2\

T o

)
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and with ||(v, 0)|| := [||v[|3+ ¢?] "2 The constants K and K required in (5)
constitute bounds for the inverse operator £7!, which replace the bourds

for L= in our former “direct” approach, and Wthh may be expected to be
moderate, due to our considerations made above.

Finally, let functions Gy, Gj : [0,00) x [0, 00) — [0, 00) be chosen which

are monotonically nondecreasing with respect to both arguments and sa-
tisfy

\/meas (Q)’F(m,w(m) 4, A+ z) — F(z,w(z), *) —c(x)y — zb(:c)z.

< Ga(lul <1, 5
meas () {@ z,w(z) +y, X + z) — (I’(J:,w(.c), A) = ¥(z)y — 7“'(:1:)2’
< Ga(lyl, |2])

forallz € Q,y,z € R, and

Gi(t,s) =o(t + s) (t,s =0, i=1,2) (7)

which is possible due to the smoothness assumptions on F and &. Usually,
such functions G; can easily be computed directly if constant upper and
lower bounds for w are at hand.

Theorem. Suppose that some o > 0 exists such that

o? > [51 -+ GI(I(CY, I(-()CY)]2 -+ [52 4= GQ(K(X, Kga’)]Q. (8)

Then, there exists a solution (U, \) € HQI,O(Q) X R of problem (1), (3) (for
the given u) such that

U - w|loo £ Ka, A — 5\| < Kja.

Due to the growth property (7), our crucial assumption (8) is satisfied if
the defect bounds 6, and &, are sufficiently small, i. e., if the approximate
solution (w )\) has been computed with sufficient accuracy.

The proof of the Theorem is based on Schauder’s Fixed-Point-Theorem
and can be carried over almost word by word from the ordinary differential

case (see [20]). The only part which changes signiﬁgantly is the proof of
the following

Enclosures for

Lemma
Proof. The
regularity as
value proble

Now let
problem

L|u]

has a solutic
1S one-to-on
(9a) is solve
into (9b), we

for 0. The
thus, that t
is (uniquely

Now suj
linearly ind
nullspace of
vanish ident

and thus,

Since this is

for g := ¢.
only if r —



:quired in (5)
2 the bournds
pected to be

hosen which
ents and sa-

x)z‘ (6)

(7)

®. Usually,
upper and

(8)
1), (3) (for

satisfied if
proximate

-Theorem
lifferential
e proof of

fnclosures for Solutions of Parameter-dependent . .. 111

Lemma 1. £: Hyp(R2) x R — Ly(2) x R is one-to-one and onto.
proof. The first assertion follows immediately from (5). Due to our general
regularity assumption on (), Fredholm’s alternative holds for the boundary
value problem u € Hyo(12), L{u] = r on 2, with given r € Ly(2).

Now let 7 € Ly(2) and ¢ € IR be given. In order to prove that the
problem :

Llu| 4+ -0 =7 on Q, /¢(m)u(x)dx+r-a:g (9a, b)
Q
has a solution (u,0) € Hyo(Q2) x R, suppose first that L : Hy o(Q) — Ly()
is one-to-one (and thus, due to Fredholm’s alternative, also onto). Then,
(9a) is solved by u := L~ ![r] — ¢ L[], for arbitrary o € R. Inserting u
into (9b), we are left with the equation

(7= [ 2Wldz) o == [0-L7de (10)
Q Q

for 0. The second estimate in (5) shows that L[(L‘Wﬁ],—l)] % 0 and
thus, that the term in parantheses in (10) is not zero. Consequently, (10)
is (uniquely) solvable for o. .

Now suppose that L : Hyo(2) — Lo(2) is not one-to-one, so that
linearly independent functions ¢i,...,9; € Hyo(€2) exist which span the
nullspace of L. For each (ay,...,a;) € R°\{(0,...,0)}, ©i_; a;g; does not
vanish identically, so that the first estimate in (5) implies

[(gon)

and thus, ‘
Zai/w’gida: £ 0
=l Q
Since this is true for each nontrivial (@, ..., a;), it follows that s =1 and
Jw-gdu#0 (11)
Q

for g := g1. Due to Fredholm’s alternative, equation (9a) is solvable if and
only if r — o¢ is orthogonal to g in Ly(2), which provides a unique value
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for o, according to (11). The general solution of (9a) then is u = w+x - ¢
(k € R), with w € Hy((Q) denoting some particular solution. Inserting
into (9b) and using (11), we obtain a unique value for x. O

3 Computation of K and K,

In this section, we show how constants K and K bounding £! via (5) can
be computed. Since £ is symmetric on Hyo(Q)x Rand £~ : Ly(Q) xR —
Hp(2) xR — Lo() x R is compact, £ possesses a complete orthonormal
system of eigenelements, and one easily finds by series expansion that

“(u, 0)“»3 Kg“ﬁ[(u,a)]” for (u,0) € Hyp(R2) x R (12)

with '
Ko := [min{|A| : X eigenvalue of £ on Hy((Q) x ]R}]_l. (13)

Obviously, (12) implies the second estimate in (5). The calculation of Kj
via (13) requires the computation of bounds for the ergenvalues of £ neigh-
boring 0. Numerical methods concerned with eigenvalue bounds may be
found, for .instance, in [2, 6, 11, 16]. In [16], a homotopy method isspre-
sented for eigenvalue problems with purely differential operators, which
however can easily be transferred to augmented problems of the type oc-
curring here; see [20] for more details.

To calculate a constant K satisfying the first estimate in (5), we com-
pute constants K; and Ky such that, for (u,0) € Hyo(Q) x R,

luelle < K| Cl(u, )|, Itaalle < Kol Ll(u,0)]|  — (14)
(where |Jug||3 = £, (0u/02:)?, |Jues|f = Pi21(0%u/0x;0;)?) and com-

bine (12), (14) with an explicit version of Sobolev’s embedding Hy(Q) —
C(R) derived in [17], which reads

[ullo < Colluflz + Cilluslls + Collugzlla  (u € Ha(82)) (15)
with explicitly known constants Cy, Cy,Cy. From (12), (14), (15), we ob-
viously obtain the first estimate in (5) with K := CKy + C1 K| + Cy K.

The following lemma shows how constants Ky and K, satisfying (14)
can be calculated if the domain  is convex. In other cases, Section 4
in [17] shows how to generalize the results.
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Lemma 2. Let (12) hold for some constant K, and let ¢ and & denote
constant lower and upper bounds for the coefficient function ¢ defined in (2)
(with X in place of \). Moreover, let

1

Cp 1= §(£+ T4 \Ji(g —7)2+ |93

Then (14) holds with
[Ko(l 3 COK())}I/Q if C()KO S %
SN ]
2./%

and, if §) is convex, with

otherwise

Hy UL 1y [(max{%(é Sl —g})2 +.||¢||§] e

Proof. By Schwarz’s inequality and partial integration we obtain, . for
(u,0) € Hyp() x R,

(e, ) - | £l(w, o)

> /u.(—,Au+cu+¢-a)dm+a(/¢udx+l'ra)
Q Q

2 luallz + cllull} — 2la] [z flulls + ro?

2 Juallz + coll (u, 0)|*
Consequently, ||u,||3 < ||(u,0)]|-“I,C[(u,a)]”‘—coH(u,a)l”, and combination
with (12) provides our first assertion.

If © is convex, the inequality ||uz||2 < ||Au/|; holds for all u € Hy,(2)

(see [17], Section 4). Moreover, ||Aully < ||—Au+rulf; for & > 0. Choosing
R = max{%(g—i—ﬁ),ﬂ} we therefore obtain, for (u,0) € Hy () x R,

luszlle < || = Au + ku;
< 18wt cut ol +lle = sl Jull + [ o
1
< [l o)]| + max {5~ o), <] ol + s o]

so that Schwarz’s inequality (in R?) and (12) provide our second assertion.
' O
8 3akaa 3
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4 Computation of (w,\) and §,, §, for
rectangular domains in R?

In our examples, we use a Newton-iteration to calculate an aproximate
solution (w,\) € Hy () x R of the augmented problem (1), (3): Starting
with some rough approximation (wg, A¢) € H;,(2) x R (which we obtain
by a homotopy method), we compute iteratively approximate solutions
(Uk+1, 0k+1) € H0(2) x R of the linear problems

Li[(u,0)] = —(dik, dox) (16)

with £, denoting the linearization of problem (1), (3) at (wk,:\k), and
(dik, dor) € Lo(f2) x R the defect pair of (ka,)\k). The iteration step is
fjompleted by the update wiy1 = wp + Upy1, Aps1 = A + Opy1.

To determine (u,0) := (ugs1,0%41) We use a finite element procedure
with rectangular elements; here, we suppose that € is itself a rectangle.
On each element, u is put up as a biquintic polynomial. The local basis
functions are chosen such that the 36 coefficients determining u coincide
with the values of u, Ou/dz;, Ou/Bzs, and 6%u/dz10xy in 9 knots of the
element, namely the corners, the midpoints of the sides, and the midpoint
of the element. Simple results from Hermite interpolation theory show that

the corresponding global basis functions ¢; (¢ =1,..., N) are C;-functions,
so that
N
U= aip; (17)
=1 o

belongs to Hy(£2). To ensure that u € Hyp(2) (i. e., that u satisfies the
required boundary conditions), several of the coefficients in (17) have to
be set to zero. The remaining coeflicients are determined, together with o,
by the usual Ritz-procedure for the differential equation contained in (16),
and the additional real equation in (16).

All occurring integrals are approximated by the composite trapezoidal
quadrature (product-) formula, applied on each element.

The matrix of the resulting linear algebraic system is symmetric and
has band structure, except that its last row and its last column are dense.
(Here, we assume that equations and variables are ordered such that the
additional equation in (16) constitutes the last equation, and o is the last
variable.) This system is solved approximately by a band-Gauss algorithm.

)|
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The Newton-iteration it terminated when, for some k € IN, the coeffi-
cients a; of u = w; in (17), and the value 3, are (in modulus) below some
tolerance. Then, we choose (w )\) = (wk,)\k) w is therefore available in
the form (17), provided that the starting approximation wy has that form.

To compute the defect bounds §; and 6y required in (4) we have to
enclose two integrals. For this purpose, we apply the composite trapezoidal
product formula

SIfl =12 5 5 uf

ufd (9, o9) as)
7=0%k=0

separately on each finite element (2 (to the integrands f occurring in (4)),
and bound the quadrature error according to

(a:)da:—S[f]~ e [w 5|

(9 A2

|82 f

2
h(,93

| a9
00,

(Here, we have to assume that the nonlinearities F' and ® are sufficiently
smooth.) To compute the required bounds for [ f (#) dz we must therefore
Qy

OO,Q),;

i) enclose S[f],
ii) bound 8*f/82? (i = 1,2) roughly.

(Observe that the right-hand side of (19) can be made arbitrarily small by
the choice of sufficiently small quadrature stepsizes h; and hs. )

To enclose S[f] (for the integrands f occuring in (4)) we usc the repre-
sentation (17) for u = w (and the polynomial form of the basis functions ©;
on Q) to compute enclosures for w and Aw at each quadrature point

(az(l] ), a:g )) Supposing that interval-evaluators for ¥ and ® are available,

we can therefore enclose f (:cgj),xgk)) and, via (18), S[f].

To bound *f/0x? (roughly), we first compute bounds for the ;-
derivatives (up to the second order) of w and Aw, using a two-dimensional
version of a theorem in [4] which reduces the calculation of bounds for a
polynomial (on a compact set) to its evaluation at finitely many points.
Next, we calculate all derivatives of F(x1,xs,y,\) and ®(z1,29,y,A) up to
the second order by hand (here, automatic differentiation techniques will

8*
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certainly facilitate the algorithm) and compute rough bounds {01; them on
M % [w,®] x {A}, with [w,®] denoting the enclosure for w on (2 obtained
before. Now it is a simple process to compute rough bounds for 6%f/dz?.

All the computations needed to enclose S[f] and to bound
16%f/022|| .0, (and some more very simple operations needed to obtain
the defect bounds §; and ;) have to be carried out in nterval-arithmetic,
so that rounding errors are taken into account. In our examples, we used
ACRITH-subroutines [7] resp. their analogues implemented on a T 800
- Transputer System.

5 Parallel implementation

The numerical procedure for the computation of (w, 5\) and 6y, 69 described
in the previous section contains essentially the following time-consuming
parts.

1. (Approximate) computation of the integrals determining the matrix
elements and the right-hand side (in each Newton-step).

2. (Approximate) solution of the linear algebraic system (in each New-
ton-step).

3. (Interval) computation of the integrals occurring on the left-hand
sides of (4).

The most efficient way of treating Parts 1 and 3 is to compute the inte-
grals separately on each finite element and then to sum up the results. This
provides a high degree of “natural” parallelism, since the computations on
the single elements may be carried out by separate processors. They all
work on identical tasks, and there is no need for data processing during
the computation of the integrals. Thus, the efficiency of the procedure is
1 in'this part, if the number of the elements is a multiple of the number of
processors available, : {

Furthermore, this parallelization is really relevant: on a serial IBM 4381
machine, Parts 1 and 2 needed approximately the same CPU time; Part 3
was even much more time-consuming since we had to choose many quadra-
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ture points here in order to reduce the bound for the quadrature error

2 (19).

We implemented the pafallel algorithm on the T 800 Transputer Sys-

" tem of the Mathematics Institute of the Cologne University. This system

provides 32 transputers which we used in a ring topology. One transputer
serves as a host which distributes and collects date before and after the

computation of the integrals.

. Since in Part 3 we need interval-arithmetic, we use the package T 800
BAR which was developed in joint work of the Universities of Karlsruhe

- and Cologne, and which provides interval-arithmetical routines with the
~ same syntax as in ACRITH [7].

The approximative solution of the linear algebraic systems (Part 2) is
carried out, in our procedure, in the “classical” serial way (on one trans-
puter) even if parallelization would be possible. The same is true for the
computation of the eigenvalue bounds needed to calculate the constant K
via (13). Thus, further parallelization remains to be done. '

6 A numerical example

To test our method we treated the example

—~AU = A’ on Q:=(0,1)%, U =0on0. (20)
It is easy to see that, for A # 0, exact solutions of this problem are not
Cy-smooth in the corners of . Since these corner singularities cannot be
represented by a finite element approximation, we transformed (20) into
a problem with smoother solutions, to which we applied our method. See
[18] for the details of this transformation.

The following figure shows a bifurcation diagram for the original prob-
lem (20) which we obtained from several approximate solutions along the
branch, and interpolation in between. This figure indicates the presence
of a turning point at ‘A\* ~ 6.808, in a neighborhood of which our for-
mer “direct” existence and enclosure method cannot be applied (see [18]).
Moreover, this figure indicates that the expression [ exp(Uy) dz may be._ex_

pected to be monotonic along the conjectured solution branch (U), so that
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ek
wG_\

Figure 1: Bifurcation diagram for problem (20)

we hope to be successful in removing the turning point with the additional
equation (compare (3))

—/eU(z) dz =, ‘ (21)

It should be added that the augmented problem (20), (21) has to be
scaled, in order to equilibrate the “main” part L and the “crossover” part v

of the linear operator £ defined in Section 2. Details of this scaling process
. can be faund in [20].

We applied our existence and enclosure method with 8 x 8 finite elements
to (the transformed and scaled version of) the augmented problem (20),
(21). All practical work connected with the transputer system was done
by H. Becker in the context of his diploma thesis [3].

For several selected values of the independent parameter g, the fol-
lowing table shows the (rescaled and retransformed) computed values for
w (3,%) = |||l and X, the defect bound 6, (see (4); b9 has been omitted
for reasons of space- savmg), the constants K\ and K satisfying (5), and
the error bounds E for ||U —w||o, and Ej for [A— \| provided by our Theo-
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rem. Obviously, there is no particular behaviour of the results close to the
turning point of the original problem (20); the singularity has disappeared.

po @l A

61

Ky

K

Ey

E,

—0.375 0.850 6.155
—0.400 0.985 6.465
—0.425 1.112 6.656
—0.450 1.231 6.761
—0.475 1.344 6.804
—0.500 1.451 6.802
—-0.600 1.831 6.546
--0.700 2.151 6.135
—0.800 2.427 5.705
—0.900 2.670 5.299
—1.000 2.888 4.932

3.084 4.603

—1.100
—1.200 3.262 4.309

0.261E—-02
0.312E—-02
0.356 E—02
0.395E—-02
0.430E—02
0.459E—-02
0.538E—-02
0.581E—-02
0.603E—-02
0.616E—02
0.623E—-02
0.627E-02
0.631E—-02

0.0137
0.0132
0.0130
0.0129
0.0128
0.0129
0.0132
0.0137
0.0143
0.0148
0.0154
0.0159
0.0164

0.359
0.366
0.377
0.390
0.406
0.423
0.505
0.599
0.703
0.814
0.933
1.058
1.189

0.936E—03
0.114E-02
0.135E—-02
0.155E—-02
0.175E-02
0.194E—-02
0.272E—-02
0.349E—-02
0.426E—02
0.504E—-02
0.585E—02
0.670E—02
0.760E—02

0.427E—02
0.494E—02
0.554E—02
0.609E—02
0.660E—02
0.706E—02
0.852E—02
0.955E—02
0.104E—01
0.110E—01
0.116E—01
0.121E—01
0.126E—01

Table 1: Results for problem (20), (21)
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