)

Interval Computations
No 3, 1994

wich, A. Bernat

f SC-langua-
i Numerical
1atics, Appli-

fe L1908 Finding Local Extremal Points
by Using Parallel Interval Methods

ral Computa-

Erlang Lyager

ter Science Finding all extremal points of a n-dimensional function is usually quite dif-
El Paso, ficult. By a special partitioning search, interval methods are used to ensure
SA that no extremal points are overlooked. The extremal points are furthermore
ep.edu located precisely and unambiguously.

Although no predictable structure exists within the search, a parallel version
shows almost linear speedup on a MIMD type architecture. The idea behind
the parallel method seems generally applicable to problems having a large
number of subtasks which show no discernible structure with respect to their
order of appearance or amount of work.

tep.edu

HaxoxneHne Todek JIOKAJTbHBIX
9KCTPEMYMOB C UCIIOJIb30BAHNEM
apaJijieIbHBIX NHTEePBaJIbHBIX
METOIIOB

9. Jloarep

! Haxoxnenune scex Touex SKCTPEMyMa, n-MepHO# GYHKUMH NpencTaBiseT coboi
JOCTATOYHO CIOXHYIO 3alady. IlpuMmenenme crennanbHoOro momcka ¢ pasbue-
HAEM B HHTEPBAJILHEIX METONAX MOXET HATh YBEPEHHOCTH, YTO HH OfHA TOYKA
SKCTpeMyMa He 6buta mpomyineHa. KpoMe TOro, MecTOIONOXEHHE TOYEK DKC-
TPEeMyMa yCTaHaBIWBae€TCI NPH 3TOM TOYHO U OQHO3HAYHO.

© E. Lyager, 1994

64 E. Lyager

XoTs Takof MOMCK He obiataeT IpelckadyeMoll CTPYKTYPOH, €ro Iapail-
JelbHas Bepchs oGECIednBaeT TOYTH JIMHEHHOE YCKOpPEHHE OBICTPONEHCTBUS
Ha apxuTekType MIMD. Ilapamnensasie MeTOAEL, TO-BEAMMOMY, XOPOIIO IIPH-
MEeHUMEI K JTI0OBIM 3aIadaM, COCTOSAMIMM M3 OOJIBNIOrO YHCINa IOA3adad C He-
IpeICKa3yeMbIM [OPSAKOM [OSBIIEHHS UK 005eMOM PabOTEHL.

1 Introduction

The use of interval methods for computing the range of a real-valued func-
tion is well known ([4] and [5]). When regarded as an optimization tech-
nique this corresponds to finding the global extremal values of the function,
and usually the extremal points are found simultaneously.

In the opinion of the author, considerable interest is associated with the
similar problem of finding all local extremal points (and extremal values).
As an example, the existence and knowledge of local extremal points are
important with respect to the physics of phase transitions. Given this
viewpoint, an algorithm has been found that discovers all local and global
extremal points. The algorithm is in essence a modified version of a similar
algoritli.. used for finding the range of.a function. The algorithm requires
substantial computing time because of the use of interval methods, thus
making the effort of constructing a parallel version worthwhile.

The method used to generate a parallel version of the algorithm is the
second major theme of this paper (the first theme being the search for all
extremal points). This method may ‘possibly be of general interest, as it
may be applied to a whole class of algorithms that are described by the
following properties.

° IThe work is progressively subdivided into smaller (sub-)tasks, created
during the operation of the algorithm.

o It is neither possible to predict the order of appearance of the tasks;
nor the amount of work associated with a task.

Finding Loc:

1.1 Th

The algorit

_twice conti

The algorit
when fist
a set of the

In the 1
contained 1

When we fi
able to find
1S a continy

endpoints ¢
the global 1

Our alg
ston F' witl
extension t
Positive con

Here f(_)g)
(i.e_, max(b,-
In addit;
®xtensions t
St 9, F (th4
°f £) and 8
eIivatives ¢
~ In this P
Mteryal egte
“econd deriy
lllterVal opes

5

3akasz 3

E. Lyage,

"0 Tapag-
IEVICTBUS
OIIIO TIPHU-
Ooad C He--

l-valued func-
nization tech-
f the function,

iated with the
remal values).
nal points are
5. Given this
cal and global
on of a similar
‘ithm requires
nethods, thus
ile.

sorithm is the |

search for all
interest, as it

cribed by the

tasks, created

2 of the tasks,

Y

Finding Local Extremal Points by Using. ..

1.1 The problem

The algorithm that searches for local extremal points requires a C2 (i.e.
twice continuously differentiable) real-valued function f

f:D—=R DCR" n>0. (1)
The algorithm then computes all extremal points to a given precision e;
when f is restricted to an arbitrarily closed n-dimensional interval X (ie.,

a set of the type [a1,b1] X - - - X [a,, b,]) which is a subset, of the domain D.

In the following text, I(D) will denote the set of all closed intervals
contained in D. This denotation can be reformulated as follows:

X C D, X closed interval < X € I(D). (2)
When we find all extremal points (including the global ones), we are thus
able to find the range F(X) (={f(@) |z e X}) of f on X (indeed, since f
is a continuous function on a compact set X, its range is an interval, and
endpoints of this interval are the values of [at the global minimum and
the global maximum points).

Our algorithm requires that f has an inclusion isotone interval éxten-
ston F' with the property that the smaller the mtervals, the closer is this
extension to the range. To be more precise, we require the existence of
pbsiti»ve constants K and v such that:

VX € I(R) : d (F(X), F(X)) < Kuw(X)" 3)

Here f(X) is the range of f on X , w(X) is the width of the interval X
(ie., max(b; — a;)), and d is defined as d([a, 8], [c, d]) = max(|a— |, |b—d]).

In addition, we require that first and second derivatives of f also have
extensions that satisfy the same inequality: so, we assume that there ex-
st 0, F (the inclusion isotone interval extensions of the first derivatives

of f) and Gz’ﬂF (the inclusion isotone witerval extensions of the second
derivatives of f).

In this paper, as interval extensions F, 0,F and Bg’ﬂF , we take natural
nterval extensions of the corresponding functions (f, the first, and the
Second derivatives of f). A natural extension is what we get if we use
iterval operations instead of all the elementary operations of f. Natural

5

3axkasz 3

66 E. Lyager
extensions give linear approximations to the range (in the sense that v =, 1)
if f is either constructed solely of rational expressions in the independent
variables, or by also using additional functions with known range functions.

The very existence of a natural extension presupposes that we have an
expression for f. So, this algorithm will not be applicable to the case when
f is given implicitly (e.g., by an equation F(z,f)=0), and the algorithm
for computing f(Z) for a given i is still to be found.

1.2 The same idea can be applied to a more general
situation

In the previous subsection, we have described the problem that we will solve
in this paper. It is worth mentioning, however, that a similar algorithm
can be used to solve a more general problem:

e Since f is continuous, the extremal points and the range of f can
be found not only for the domain D itself, but also for an arbitrary
connected subset of D (as soon as this subset can be approximated
by unions of finitely many closed intervals). This additional ability
can be added at the expense of vastly increased computing time.

o We will describe our algorithm for the case when v = 1 and natu-
ral extensions are used. However, a similar idea works for arbitrary
extensions for which the above inequality is true. Therefore, in princi-
ple, we can apply a similar algorithm to implicit functions (for which

such an extension is often known).

1.3 What parallelism we will use

The diversity of methods used to implement parallel versions of the same
algorithm on different parallel architectures, makes it difficult to considef
several parallel architectures in one paper. So, in this paper, we will cop”
sider only one type of architecture: a MIMD (Multiple Instruction, Mult¥
ple Data) hypercube. Specifically, the algorithm is used on a Intel hype’
cube. The highlights of this parallel machine are:

Finding L

o N
or
ing
op:

o All
by

e An

e To
ete
ste

prc
e An

twe

o A
it i
mu

We make

nication
2 H

‘in
The pres:

by descri
global ex

210
ThlS COl

[5] It ¢

Nteryals
lmllm po
5%

L

E. Lyager

s that v = 1)
independent
ge functions.

t we have an
1e case when
ne algorithm

e general

we will solve
ar algorithm

1ge of f can
an arbitrary
pproximated
;ional ability
ing time.

1 and natu-
for arbitrary
)re, in princi-
ns (for which

: of the same
t to consider

we will con-
ction, Multi-
. Intel hyper-

Finding Local Extremal Points by Using. .. 67

e N = 29 complex processors, with the dimension d = 0,315 82, T3 e
or 9 at DIKU. Processors are of type Intel 80286 with a 80287 float-

ing point coprocessor, and each processor runs a simple multitasking
operating system.

¢ All processors have separate memory (approximately half a mega-
byte).

® Any processor is connected to d neighbors.

o Total number of processor interconnections is %dN , and the diam-
eter of the hypercube (ie., the smallest number of communication

steps that enable to send a message from each processor to any other
processor) equals d.

¢ Any two processors may exchange messages, but communication be-
tween neighbors is faster.

® A special manager processor 1s used to start the parallel programs;
it is the only processor with 1/0 facilities. Any processor may com-
municate with the manager. 2

We make our algorithm efficient by utilizing the possibility of fast commu-
nication between neighbors.

2 How to find all extremal points using
‘interval methods

The presentation of the algorithm for finding all extremal points, starts off
by describing a method used to find the range of the function f (i.e. the
global extremal points and values).

2.1 Computing the range of f

This computation is based on techniques presented in [3] and

[5]. Tt consists of the following rules applied repeatedly, until no more

intervals are left. The description focuses on the search for the global min- -
imum points and value. The search for the global maximum points and
5%

68

E. Lyager

value is similar, and it can be done at the same time as the search for the

minimum.

1. The interval X is subdivided into smaller intervals X; which in turn

are subdivided further. For any subdivision X d=1,2, .00, lloficke
one gets by the use of (3):

a (7). U Fi) < Kyeo(@

which shows that f(X) may be approximated to within an arbitrary
precision, by using a sufficiently detailed subdivision.

The subdivision is constructed by “halving” the intervals, thereby
(since v = 1) also halving the distance between f(X) and the approx-
imation of the range for each subdivision. The subdivision method

is therefore termed bisection.

_ Tt is not necessary to subdivide all intervals every time because a more

efficient way may be achieved [5], just by subdividing the intervals
X, for which F(X,) contains the minimum value.

This is in practice done by subdividing the interval X, which has the
smallest lower bound of the minimum value, i.e.:

V1<i<l:F(X)m <F(X)ins (5)

(here Yi,s denotes the lower endpoint of an interval Y). The interval
X, is replaced by its subintervals. This procedure leads to a detailed
subdivision near the extremal points and to a coarse subdivision far
away from the extremal points. Because the widths of the intervals
replacing X, are smaller than w(X,), and because on every stage
of an algorithm, there are only finite intervals involved, this special
method of subdividing intervals eventually produces a better approx-

imation for f(X).

bound for the minimum value. To get such an estimate, we can, e.g-
for each interval X;, evaluate the value of f at an arbitrarily chosel

point from X; (for example, at the midpoint of X;); the smallest |

|

Some subintervals can be discarded because they can not contain 2 |
global minimum point. This is achieved by maintaining an uppe’ |

Finding Lo«

of t.
end]
curr
inte:
not

whic

The

whe:
an i

whei
rule

5. The
conv
only

E. Lyager

rch for the

ich in turn

o lof X,

(4)
n arbitrary

Is, thereby
;he approx-
on method

Ause a more
1e intervals

iich has the

(5)

[he interval
o a detailed
division far
he intervals
every stage
this special
tter approx-

>t contain a
1g an upper
we can, e.g.,
arily chosen
the smallest

Finding Local Extremal Points by Using. .. 69

of these values can serve as the desired upper bound. If the lower
endpoint FI(X,)ins F(X,) of an interval F/(X,)iys is greater than the
currently best known upper bound for the minimum value, then this
interval can be discarded. The reason for this is that this interval can
not contribute to the determination of the global minimum value,
which is known to be smaller than any value in the interval.

The upper bound for the minimum value is thus calculated by:

I-,
Finf sup 1= mif f (m(X,)) (6)

where m(X;) denotes the midpoint of X;. The condition under which
an interval X, is discarded can be rewritten as follows:

§

~Finf sup < F(Xp)ing = discard X, (7)

. Some other subintervals can be discarded by use of the monotonicity

of f. For example, if for an interval X;, f is strictly increasing in
a, then the global minimum can occur only at the points € X for
which o takes the smallest possible value. In other words, if X; =
- X [a~,at] x .-+, then the global minimum on X; can be attained
only for & = a~. Such points are on the edge of X;. Therefore, they-
either belong to some other subinterval as well (so this interval X
can be safely discarded), or this edge coincide with the edge of the
initial interval X.

So the _interval X; = X,-1 X -+ x X[is discarded or reduced if:

OuF(X;) > 0=
(X g # Xy = discard X;) v (8)
(Xip = Xiop = reduce X; to D=y

where X3 = X1 x ... x [XFinp Xl X -+ x X[(and a similar
rule if 0, F(X;) < 0). *

. The convexity of f may also be used to discard intervals because if f is

convex (i.e. 95 ,F(X;) < 0) in some coordinate , the minimum can
only be found on the edge of X;. Just like in the case of monotonicity,

70

E. Lyager

this can only happen if the edge of X; in coordinate « is a part of
the edge of X in coordinate . Thus: '

02 . F(X;) < 0=
(Xfs 7 Xing) N Xy # Xsup) = discard X;) V
(X7 = Xing = reduce X; to X Ieft) %
(XD = Xop = reduce X; to X~ ”ght)

i,5up sup

(9)

If, however, 92 ,F(X;) > 0, nothing can be done.

. The final method is the Krawczyk-method [2], a modified Newton-

Raphson search for the zero point of d,f. The method applies the
Krawcyzk operator:

K(z,X) =z - YoF(@) + (E- DRX)X—2) (10)
where Y is any regular matrix, 0F (z) is the vector of 8, F(z), DR(X)

is the Jacobi interval matrix of 82 ;F(X), E is the unity matrix, and

z is any point in the interval X. For the fastest convergence, one’

chooses:

CJIN
mv

(5]

= m(

Y = m(4 3

(X))

The Krawczyk iteration is performed'by:

|

X =X;N K_(m(_)ii),_)ii)- (12)

The Krawczyk operator has the following additional important prop-

X; and if K (a: X)N X = (), then X contains no extremal points.
ThlS last property provides us with an additional rule for discarding

intervals.

When X is discarded by the use of this new rule, care must be taken

to keep edges of X that coincides with the edges of X, just like when |

using the monotonicity or convexity of f to discard intervals.

Finding Lo

7. An

for
but
too

When
containin
give bour

22 F

The searc
conceal a
this diffic
Importan
for findin
methods
necessitat
able to dx
This i

areas wit)

E. Lyager

s a part of

Y
) (9)

d Newton-
applies the

) (10)
z), DR(X)

natrix, and
‘gence, one

(11)

(12)

rtant prop-
1t exists in
nal points.
discarding

st be taken
t like when
vals.

Finding Local Extremal Points by Using. .. Tl
7. An interval X is declared to be a result, if:
(w(L) < e A the last application of the Krawczyk
method did not reduce X;) (13)

= X, i1s a result interval

for given precision €. This combination criterion may seem strange,
but experience shows that the ordinarily used criterion: w(X;) < ¢
too often leads to inaccurate determination of the extremal points.

When no more intervals are left, the results are some intervals X!
containing the identified candidates for extremal points. These intervals
give bounds for the global minimum value:

min F'(X[*),,s is the lower bound

(14)

Finf sup(from Step 3) is the upper bound.

2.2 Finding all extremal points of f

The search for all extremal points is difficult because any subinterval may
conceal an extremal point. The key idea for the algorithm to overcome
this difficulty, comes from the observation that Steps 2 and 3 above play
important roles with respect to the decrease of the amount of work done,
for finding the global extremal points and values. Unfortunately these two
methods are specifically concerned with the global extremal value. This
necessitates that the two methods should be localized, i.e. changed to be
able to deal with local extremal points and values.

This is achieved by using the convexity/concavity of f to determine
areas within X which contain at most one extremal point.

Vi<a<n:d, F(X) <0
= X, contains at most one maximum;
VlgagnzaiaF(X_i)>0 (15)
= X; contains at most one minimum; .
I <a<nl<f<n: &, F(X) <ON;4F(X;) >0

= X, contains no extremal points.

(2 E. Lyager

Note. Ideally the convexity/concavity/saddle point of f should be deter-
mined by calculating the interval eigenvalues of the Jacobi interval matrix,
but this requires much more time than this simpler approach, and the re-
sults are practically the same (only for a few functions eigenvalues lead to
drastically better results).

Thus each subinterval belongs to a certain kind of area which carries
a new characterization, i.e. what kind of extremal point it may contain.
There are five different types.

1. Unknown—initially, all subintervals belong to this class.

2. Local Maximum—when a subinterval is determined to contain at
most one maximum point (by the first rule above), it constitutes a
new area. Within this new area the algorithm only searches for a
local maximum (or global extremal points). ~

3. Local Minimum—as for “Local Maximum”.

4. Global Maximum—when a subinterval is reduced, it may leave be-
hind edges in common with the initial interval X (as in Step 4).
Within these edges of X, the algorithm only searches for a global
maximum point.

5. Global Minimum—as for “Global Maximum”.

When a subinterval is characterized to be of the types 2 to 5, it spawns a
new area of the same type. All subintervals from this area are of the same
type therefore, it is no longer necessary to compute the characterization of
these subintervals.

It is this characterization based upon interval techniques which ensures
that the search doesn’t miss any interval containing extremal points. How-

ever, the characterization may fail (as discussed in the note above, and |

demonstrated in Section 4), causing too many candidate extremal points
to be found. :

Within an area, it is possible to use the algorithm for the computatio?
of the range of f because here the local extremal point is also a global
cxtremal point (disregarding the edges). The range algorithm of Section 2.1
can be used with the following minor changes.

Finding Loc

1. The

2. The
the «

3. Disc
valu
ntrc

and
4. The
5. Con

knov
6. The
7. The

chai

3 Tt

The natu
done for .
expressiol
time spen

- of subinte

There:
subinterv:
for the di
knowledg
ready me
tremal pc
tribute th
Jobs are g

E. Lyager

uld be deter-
erval matrix,
1, and the re-
ralues lead to

which carries
may contain.

»
I

;0 contain at
constitutes a
earches for a

nay leave be-
s in Step 4).
. for a global

), 1t spawns a
e of the same
cterization of

vhich ensures
points. How-
e above, and
tremal points

computation
also a global
of Section 2.1

Finding Local Extremal Points by Using. .. 73

1. The subdivision is the same way as before (no changes in that).

9. The choice of the interval to subdivide is made as previously, with
the only difference that we are choosing an interval within each area.

3. Discarding the intervals by use of the upper bound for the minsmum
value (or the lower bound for the maximum value) is modified by
introducing area specific upper and lower bounds:

area
wnf,sup

and e (16)

sup,inf
and using these with method 2.
4. The use of the monotonicity of f is similar (unchanged).

5. Convexity/concavity is not used when the type of an interval is
known.

6. The same Krawczyk method is applied.

7. The criterion for determining a result interval is the same (un-
changed).

3 = The parallel search

The natural job unit in the search for extremal points is the calculations
done for a single subinterval. This is true, if calculation of the interval
expressions for F', 0,F, and 83)[3}7 are time consuming, compared to the
time spend doing the “housekeeping” of the algorithm, and if the number
of subintervals is large.

Therefore, the responsibility of the parallel version is to distribute the
subintervals to the processors in the hest possible way. However, no plan
for the distribution can possibly be 1ade in advance because this requires
knowledge of the position of the extremal points (since, as we have al-
ready mentioned, most subintervals will be generated around these ex-
tremal points). One is thus left with only parallel algorithms which dis-
tribute the computing job during the operation of the algorithm (when the
jobs are generated).

74 E. Lyager

During the project which formed the basis for this paper, we examined
several different parallel versions of the above-described algorithm. One of
them turned out to work well (i.e., to find all the extremal points) in most
cases. In some cases, other versions were better. However, we will present
arguments in favor of this chosen version that strengthen our belief that
this is the version to be recommended in the general case. the belief that
it is a generally applicable and efficient parallel version.

LY

3.1 The details of the parallel version

All parallel versions that we have checked follow the algorithm described
in the previous section. The difference is solely in the distribution of the
subtasks (i.e. the subintervals) between the hypercube’s processors. In the
version that turned out to be the best, the distribution is performed by
using the following rules.

o,

1. If any processor is idle, it requests a subtask from each of its d neigh-
bors.

2. If any processor receives a request for a subtask, it determines whe-
ther or not it has more than one subtask. If this is the case, it sends
one of its subtasks to the requesting processer (what exactly subtask
it will send is described by Rule 3). If the processor does not have
more than one subtask, it registers the request for later treatment.

3. In case that the requested processor has several subtasks, it chooses
one by the following order of priority.
(a) Subintervals of unknown type have first priority.

(b) Subintervals of known type, but not belonging to the same area
as the currently processing subinterval of the processor, have
second priority.

(c) Other subintervals are of third priority.

4. When a subtask is transferred, is always carries the following infor-
mation.

‘(a) The subinterval itself.

Finding Loca

(b)

(c)

5 Onr
infor
recel

6. Upor

whea
0 to
area
area
othe

7. Whe
the
subi
mup

8. The
terv
cess
in [;

3.2 C

These rul
the validi

1. Thi

par

E. Lyager

e examined
hm. One of
1ts) in most

will present
belief that
- belief that

1 described
ttion of the
sors. In the
rformed by

its d neigh-

nines whe-
se, it sends
:ly subtask
s not have
~eatment.

1t chooses

same areq
'ssor, have

ving infor-

Y

Finding Local Extremal Points by Using. .. 75

(b) The area of the subinterval, including the best known infor-
mation about the area. This includes the lower bound of the
mazimum value and the upper bound of the minimum value for
the area.

(c) The best known global information, i.e., the lower bound of the
global mazimum value and the upper bound of the global mins-
mum value.

5. On reception of a subtask, the information on the area and the global
information is used to update the corresponding information in the
receiving processor.

6. Upon discovery of a new area, this is identified by:
(Processor-number, Sequential-number)

where the Processor-numberis an identification of the processor (from
0 to 2¢ — 1), and the Sequential-number is a count of the number of
areas this processor has discovered. This identification follows the
area and its subintervals when the subintervals are transferred to

other processors.

7. When a result interval is found, its corresponding subtask is sent to
the manager processor which applies the method of discarding the
subintervals by use of the upper/lower bound for minimum/maxi-
mum value (Step 3 of Section 2.1).

8. The parallel algorithm terminates when no processor has any subin-
tervals left, and when no messages are in transit between two pro-
cessors. This situation is determined using an algorithm described

in [1].
3.2 Comments on the rules of the parallel version

These rules have the following important characteristics that contribute to
the validity and/or to the efficiency of this parallel version.

1. This rule more or less guarantees that the scaling behavior of the:
parallel version with total processor number N, does not make the

E. Lyager

parallel program unusable if it is used on a hypercube with a large
number of processors. This can be demonstrated by assuming the
following.

(a) The total number of subintervals in the problem, is assumed
to be proportional to the number of processors N because if
the amount of work is fixed with changing N, the performance
of most parallel algorithms deteriorates with increasing N. This
assumption gives a constant amount of work per processor,
whatever value of V.

(b) The total number of messages (the sum of the number of re-
quests and the number of transferred subtasks) is assumed to
be proportional to the total number of subintervals, i.e. propor-
tional to N.

_Given these assumptions, the number of requests per proCeséor is
not dependent upon N. Thus the communication facilities of the
hypercube are not saturated with increasing V.

. The requesting processor is given a subtask even when a subtask is
not available initially (i.e., at the moment of time when the request
was received). A very long time may pass before a subtask is sent to
the requesting processor, and meanwhile, this requesting processor
may have received several subtasks from some of its other neighbors.

This rule keeps the subtasks flowing among the processors, and
this flow is a desired feature (see the comment for Step 4).

. The prioritized selection of the subtask to be transferred to another
processor, is based upon the wish that the work done for a single area
should not be spread over more than a few processors (if possible).

The justification for this involves the determination of the lower/
upper bounds of the mazimum/minimum values. Ideally these
bounds should be globally available to all processors, but global val-
ues are not easily obtained in a MIMD architecture. The second best
solution keeps the potentially global information on as few processors
as possible, especially in combination with Step 4. Notice, that this
only solves the problem of global information for the area specific

Finding Loc.

valuc
will ;

4. The
the ¢
samse
an a

5. This

6. The
glob.
cons
used

7. Seve
edge
that
of gl
quir
extr

8. The
ber

N
st

the

If tl
othe
the

are

E. Lyager

with a large
issuming the

, 1s assumed
V because if
performance
sing N. This

T processor,

imber of re-
assumed to
l.e. propor-

proceséor 18
lities of the

3 subtask is
the request
sk is sent to
g processor
r neighbors.

)essors, and

).

to another
.single area
possible).

the lower/
eally these
global val-
second best
processors
3, that this
ea specific

Finding Local Extremal Points by Using. .. 7

values of the lower/upper bounds.. The global lower/upper bounds
will not be well known throughout the processors.

. The rule of always transferring the currently best known values of

the area specific and the global lower/upper bounds are based on the
same wish as for Step 3. It is done in order to (hopefully) maintain
an approximation of the idea that these values are global items.

. This rule is just the updating part of Step 4.

. The identification of the area is necessary, in order to be able to

globally identify which area a certain subinterval belongs to. The
construction of the identification is a kind of timestamping, ordinarily
used with distributed systems.

. Several processors may find the same extremal point, situated on the

edge of X. They may even find extremal points on the edge of X
that are not global extremal points (because of the lack of knowledge
of global lower/upper bounds, see the comment for Step 3). This re-
quires that a central agent eliminates the duplicates and the spurious
extremal points.

. The termination detection is initiated (arbitrarily) by processor num-

ber zero.

Notice that the termination detection algorithm from (1] requires
instantaneous communication. This restriction may be alleviated, if
the termination token of the algorithm also carries the information:

.~ Total number of messages sent minus number of messages
received, for all processors up to, and including, the current
processor.

If this number is zero when calculated in processor zero (and the
other criteria of the termination detection algorithm are satisfied),
the parallel program is terminated. This assumes that all messages
are single messages.

78 ~ E. Lyager
4 Results

In cases where the Krawczyk method is able to reduce the subintervals,
the determination of all extremal points succeeds, and the extremal points
are found to within two decimal digits of the computer’s floating point
precision (such an accuracy-is due to our choice of a specml criterion for
determining a result interval). Furthermore, no “spurious” extremal points
are found (i.e. points that the algorithm claims are extremal points, while
in reality they are not). If the Krawczyk method does not work (e.g. if
an extremal point is in the vicinity of a point where the Jacobi matrix is
singular), the extremal points are only determined with precision &, Wthh
results in inaccurate and ambiguous determination.

In a few cases, like with the function:

f(l',y) =Yy X = [—171] X [_171] ’ (17)

the algorithm never decides whether (0,0) is an extremal point or not,
because no area is found by the use of (15).

The following function:

f(@,y) = e V/sin(—1/z) + e Y¥sin(—1/y)
X = [0.01,10] x [0.01, 10]

(18)

serves as an example of the normal functioning of the algorithm. This
function has 256 minimum points and 256 maximum points in X. The
distance between the (local) extremal points decreases from around 0.4 to
approximately 3-10~* with decreasing z,y, and the correspondmg extremal
values decrease from ~ 1 to approximately 4 - 1038,

In such a complicated situation, the algorithm determines all 512 -ex:
tremal points, and no others, when used with precision ¢ = 1075, During
the search for the extremal points, approximately 9500 subtasks are gener-
ated, each requiring approximately one second of CPU time. This number
is sufficiently large to utilise all 32 processors fully. The following figure
shows the parallel speedup, calculated by:

B NG Computation time for one processor (19)

Computation time for 1 processors

Finding Loc

Sp

The al;
as long as
each dema

Furthe:
subtasks t:
cated indi:
directly wl
of the algo

This fu
many large
more essen
faster. As

f(=z,y)

This funct
mately 0.4
only 28. 1
before. He
are more ¢
subtasks u

E. Lyage;

subintervals
remal points
oating point
criterion for
remal points
coints, while
vork (e.g. if
bl matrix is
ton ¢, which

(17)

dint or not,

(18)

thm. This
n X. The
yund 0.4 to
\g extremal

all 512 -ex-
%, During
are gener-
1is number
7ing figure

(19)

Finding Local Extremal Points by Using. .. 79

Speedup for Parallel Version
Function: e=/%sin(1/z) 4+ e~ /¥ sin(1/y) _ L

30

25 - ‘
20 Linear speedup~ /
Speedup /—'—Measured speedup
15 /
10
/ Linear ----

5 O@/e, Parallel method &€

0+ , | : :

T T
0 5 10 15 20 25 30
Processors

The almost linear speedup is a general feature of the parallel version
as long as the function in question generates a large number of subtasks,
each demanding much CPU time.

Furthermore, the parallel version is quite successful in distributing the
subtasks to the processors, without using too much time. This was indi-
cated indirectly by an almost linear speedup, and it was also confirmed
directly when we monitored the processors’ activity during the execution
of the algorithm.

This function f is well suited for our parallel algorithm, because it has
many large subtasks. It is natural to expect that the speedup will deviate
more essentially from the ideal linear one, if the function can be calculated
faster. As an example of such function, we took the following function:

f(z,y) =sin(-1/z) +sin(-1/y) X =[0.01,10] x [0.01,10]. (20)

This function generates 2000 tasks; each of these tasks requires approxi-
mately 0.4 CPU seconds. For 32 processors, the speedup in this case is
only 28. The reason for this is as follows: computing f(&) is faster than
before. Hence, the number of subtasks per unit time increases. Since there
are more subtasks per unit time, the mechanism for distributing these
subtasks uses a larger part of the computation time.

80 E. Lyager

5 Summary

This paper describes an interval based algorithm for finding all extremal
points of an explicitly given real-valued n-dimensional function. The algo-
rithm guarantees that no.extremal points are overlooked, and determines
the extremal points accurately and unambiguously (in most cases).

We propose a parallel implementation of this algorithm on a hypercube
that (in general) performs with an almost ideal speedup. Namely, linear
speedup is attained when the calculation of the interval values of the func-
tion is not too simple, and the function is sufficiently complicated (i.e., has
many extremal points).

Acknowledgments

Thanks to Stig Skelboe (DIKU) for suggestions and corrections.

References

[1] Dijkstra, E. W., Feijen, W. H. J., and Gasteren, A. J. M. Derwation
of a termination detection algorithm for distributed computations. In-
formation Processing Letters 16 (1983), pp. 217-219.

[2] Krawczyk, R. Newton-Algorithme zur Bestimmung von Nullstellen mit
Fehlerschranken. Computing 4 (1969), pp. 187-201.

[3] Moore, R. E. On computing the range of a rational function of n
variables over a bounded region. Computing 16 (1976), pp. 1-15.

[4] Ratschek, H. and Rokne, J. Computer methods for the range of func-
tions. Ellis Horwood Limited, 1984.

[5] Skelboe, S. Computation of rational interval functions. Bit 14 (1974),
pp. 87-95.

Received: October 25, 1992 Department of Computer Science
Revised version: October 17, 1993 University of Copenhagen (DIKU)
Copenhagen, Denmark
E-mail: erling@diku.dk

Interval Cc

No 3, 1994

The si;
tions 1
the pre
rounde
tests d
most [
numbe
proces:

Paccm
JIMHER:
paine:
eM HH’
KEeHUs!
adpdek
JIEHO B
o Hax

(§) 3akK

