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Application of a Parallel Interval
Newton /Generalized Bisection
Algorithm to Equation-Based Chemical
Process Flowsheeting

Carol A. Schnepper and Mark A. Stadtherr

We describe here the application of a new parallel interval Newton /generalized
bisection algorithm for solving the large, sparse, nonlinear algebraic equation
systems arising in chemical process flowsheeting. The algorithm is based on
the simultaneous application of root inclusion tests to multiple interval regions,
and it is designed for implementation on MIMD computers with a combination
of local and shared memory. The algorithm was tested successfully on several
relatively small flowsheeting problems. The tests were performed using be-
tween 2 and 32 nodes of a BBN TC2000 parallel computer.
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1 Introduction and motivation

Computer-aided process simulation, design, and optimization are important
tools in the design and control of manufacturing processes in the chemi-
cal and petroleum industries. The diagram of a chemical process, showing
the units and the connections between them, depicts the flow of chemical
components through the system and thus is often referred to as a process
flowsheet. Especially in the chemical engineering literature, the simulation,
design, or optimization problems associated with flowsheets are referred to
as process flowsheeting problems [33].

In general, equation-based process simulation requires the solution of
large, sparse, differential-algebraic equation (DAE) systems. These systems
arise from the algebraic equations and the ordinary differential equations
that model the process units, the connections between them, and the design
specifications. If partial differential equations are included in the model,
some type of spatial discretization is usually necessary, and the resulting
equations are incorporated into the flowsheet system. Thus the general
DAE system may be written

g(i,2,t) =0,  tg<t<ty (1)
with a set of consistent initial conditions
Qf(to) = Xy. (2)

Here, the nonlinear equations ¢ and the time dependent variable set x are
assumed to be sufficiently differentiable. In order to solve the system in
equations (1) and (2), it is reduced to the form

flz) =0 (3)

and this system of nonlinear algebraic equations f is solved at various time
steps. The focus of this work is on the solution of the nonlinear algebraic
system (3), so only steady-state simulation and design problems are consid-
ered here. However, this work is also relevant to more general flowsheeting
problems since solution procedures for dynamic problems and optimization
problems frequently include steps requiring the solution of nonlinear alge-
braic systems.

Most published work on general purpose equation-based flowsheeting has
concentrated on using local methods, specifically Newton-like methods, to
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solve (3) [20]. Such algorithms are not always reliable unless the starting
point is sufficiently close to a solution, and they are not designed for finding
multiple roots, if they exist. The ability to locate multiple solutions is es-
pecially important since models involving complex nonlinearities are being
incorporated into flowsheeting as new physical insights are gained. For ex-
ample, models for exothermic reactors [17] and interlinked distillation towers
[31] may give rise to multiple steady states and singularities, and even when
simple models are used, multiple steady states may exist for a process as
relatively uncomplicated as two-product distillation [10].

Various techniques for addressing the limitations inherent in Newton-like
methods have been studied for application to equation-based flowsheeting.
These approaches include trust region methods [2, 3|, homotopy methods
[17, 25, 31, 32|, and methods based on imbedded linear programming prob-
lems [29]. Bisection algorithms based on interval analysis have not received
serious consideration in this context because the number of variables in-
volved in process flowsheeting makes such approaches infeasible on serial
computers. However, by taking advantage of parallel computer architec-
tures, interval bisection techniques can be made feasible, providing a globally
convergent solution method capable of locating multiple roots.

In this paper, a parallel interval Newton /generalized bisection algorithm
is developed and tested for application to equation-based flowsheeting. The
problem now becomes the solution of

F(X) =0 (4)

where F'(X) is a suitable interval extension of the large, sparse system of
nonlinear algebraic equations in (3). When efficiently implemented on a par-
allel computer, interval Newton /generalized bisection methods have charac-
teristics which are especially beneficial for equation-based flowsheeting ap-
plications. First and foremost, these methods can be guaranteed to locate
all real solutions, within a given region, to a system of nonlinear algebraic
equations [11]. In addition, in process flowsheeting the variables represent
physical quantities and phenomena, and intervals provide a natural way
for engineers to define the space in which useful solutions may be located,
excluding regions which are physically meaningless.

In this paper, real vectors and matrices are written as lower-case and
upper-case letters, respectively, in regular typeface. Interval scalars are
written as bold, lower-case letters, and interval vectors and matrices are
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represented with bold, upper-case letters. An N-dimensional interval vector
is considered to represent an N-dimensional box in space.

2 Solution techniques and parallel algorithm

2.1 Interval nonlinear solution method

The method chosen here for solving (4) is based on the interval Newton /generalized
bisection algorithm discussed in [12]. According to [11], a generalized bisec-

tion algorithm combines a geometrical bisection process with a root inclusion

test. In this context, the interval Newton method serves as an existence and
uniqueness test.

For an interval Newton method, the nonlinear algebraic system (4) is

linearized to form
FI(X") (XM —2b) = — f(a¥) (5)

where the superscript denotes an iteration counter, F’(X*) represents an
appropriate interval extension of the Jacobian matrix of f evaluated for X*,
and z* is the midpoint of the interval vector X*.

The interval Gauss-Seidel linear solution technique was selected here to
solve (5) for the updated interval vector X**1. Tterating according to (5) is
most efficient for isolating the roots of (3) when the widths of the components
of X**1 are as small as possible, and the interval Gauss-Seidel linear solution
technique is known to perform well in this regard [8, 19]. In most cases, the
interval Gauss-Seidel method is also known to achieve smaller widths for
X*1 when (5) is first multiplied by a preconditioning matrix to produce

YkF/(Xk)(Xk+1 _ .Ik) — —ka(:ck) (6)

Then, applying the interval Gauss-Seidel solver involves calculating the com-
ponents of X**! on a row-by-row basis according to

j=1

T €T,

1 1 Mm
where b = Y*f(2%) and M = Y*F'(XF).
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The interval Gauss-Seidel linear solver possesses properties which al-
low it to function as an existence and uniqueness test and to couple the
interval Newton method to a bisection procedure. These desirable charac-
teristics of the Gauss-Seidel iteration follow from a proof presented in [19]
and have been studied by others, most notably [8]. The resulting interval
Newton/generalized bisection technique is then capable of locating all real
roots to (3). The critical properties of the Gauss-Seidel method and their
application in the solution procedure are as follows. First, if X**t C X*
after applying a Gauss-Seidel iteration, then (3) has a unique solution in
X*+1 and the traditional point Newton method starting from any point in
X*+1 will converge to that solution. In this case, the result from applying
(7) is considered to be a “true” response to an existence and uniqueness test,
or root inclusion test. If, on the other hand, xf“ N ¥ = @ for any 4, then
there are no solutions to (3) in X*, and the Gauss-Seidel method, acting
as a root inclusion test, returns a value of “false”. Finally, if the Gauss-
Seidel method returns neither “true” nor “false,” then the root inclusion test
is inconclusive, and the procedure returns a value of “unknown.” When the
Gauss-Seidel method returns “unknown,” either the value of X* is set equal
to that of X**! and another Gauss-Seidel iteration is performed, or one
of the coordinate intervals of X**! is bisected to form two subboxes. The
Gauss-Seidel iteration is subsequently applied to each of the two sub-boxes.
In this manner, a bisection process enables an interval Newton method to
isolate all of the solutions to (3) contained in the initial interval X ().

2.2 Parallel algorithm

The key to designing efficient parallel algorithms is identifying independent
tasks, having approximately equal computational requirements, for concur-
rent execution. For the parallel algorithm presented here, independent tasks
at the subroutine programming level arise from application of the bisection
process. In the serial implementation of an interval Newton /generalized bi-
section algorithm [12, 15|, after a bisection step is completed, one of the
sub-boxes is stored on a stack for later consideration while the program con-
tinues processing the other sub-box according to the interval Gauss-Seidel
method. However, the calculations performed on any given sub-box are
independent of the calculations performed on any other sub-box, and the
boxes on the stack may be considered in any order. Therefore, on com-
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puters with the appropriate multiple-processor architecture, each available
processor may execute the Gauss-Seidel method on a different box from the
stack.

The following parallel algorithm, developed here for solving large, sparse
flowsheeting systems, is based on the serial algorithm implemented in the
INTBIS program for small, dense, polynomial systems|12, 15]. For the algo-
rithm’s initialization stage, the user must furnish an initial interval X(© and
values for the parameters € and ep. The value of € is heuristically chosen to
represent the smallest allowable box dimension and is used to distinguish be-
tween roots that are close together. In the implementation here, roots that
are closer than € to each other may lie in the same small box. Similarly,
the parameter ey is necessary for Step III (j), which provides a mechanism
for the program to stop treating boxes near solutions at which the Jacobian
matrix is singular. For the test problems described in Section 3, we chose
e = 107° and € = 107!, More information concerning the computational
uses of € and e may be found in [12].

Algorithm

[. Initialization

(a) Set L = 1. L is the stack counter, indicating the number of boxes
placed on the stack since the last execution of Step II (b(i)).

Set X = X©),
Input values for € and €ep.
Push X onto the stack of boxes to be considered.

Set STKPTR = 1. STKPTR is the stack pointer, indicating the
location of the most recent box added to the stack.

(b)
(c)
(d)
(e)

II. Check stack. Executed on controlling processor.

(a) If the stack is empty, then

(i) If any other processors are active, then

(1) Wait for one other processor to finish.
(2) Return to Step II (a).
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(ii) If no other processors are active, then go to Step IV.
(b) If the stack is not empty, then

(i) Set LP = L. LP represents the number of processors, at
one per box, that are necessary for concurrently executing
Step III on all L boxes.

(i) Set L =0.

(iii) Activate up to LP — 1 additional processors for executing
Step III in parallel.

(iv) Execute Step IIL.

(v) Return to Step II (a).

ITI. Root inclusion test. Executed on all processors, one processor per box.

(a) If all parallel tasks generated at Step II (b(iii)) are complete,
then remain idle until reactivated by the controlling processor at
Step IT (b(iii)).

(b) If any parallel tasks remain unfinished, then continue to Step III
(c).

(c) Remove a box X from the stack.

(d) Set STKPTR = STKPTR — 1.

(e) Determine d(X), the maximum value among the widths of the
elements of X.

(f) If d(X) < ¢/4 and X has nonnull intersection with a box X' in
the list of solution-containing boxes L such that d(X)+d(X') <
€/4, then return to Step III (a). Otherwise, continue to Step III

(2)-

Perform the Gauss-Seidel root inclusion test T'(X).

If T(X) = “unknown” and d(X) > €/16, then go to Step III (1).
If T(X) = “false”, then return to Step III (a).

If T(X)="“rue” or |f(x)| < €p, then

(i) Store X in list L.

(ii) If X has nonnull intersection with a box X’ in list L such
that d(X) + d(X') < €/4, then delete X’ from list L.
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(iii) Return to Step III (a).

(k) If T(X) = “unknown” and d(X) < €/16, then (adjust for roots
on a boundary)

(i) Replace X by the box X; with the same midpoints as X but
four times as large.

(i) Delete from list L all X' € L for which X’ N X} # () and
d(Xp) + d(X') < e/4.
(iii) Store Xj in list L.
(iv) Return to Step III (a).
(1) Subdivide X as follows:

(i) Bisect X to form sub-boxes X; and Xs.

(ii) Store X on the stack of boxes for later consideration.
(iii) Set L =L+ 1. Set STKPTR = STKPTR + 1.
(iv) Store X5 on the stack of boxes for later consideration.
(v) Set L =L+ 1. Set STKPTR = STKPTR + 1.
(vi) Return to Step III (a).

IV. Final point solution approximation.

(a) Execute traditional point Newton method for each box stored in
solution-containing list L.

(b) Print as output the solution(s) and algorithm performance infor-
mation.

In this implementation, a controlling processor executes Step II (b(iii)),
which generates a parallel task indicating that Step III should be performed
LP — 1 times, and that specific value of LP — 1 becomes associated with a
particular parallel task. When fewer than LP — 1 processors are available,
all of the available processors work on the task until they have executed the
subroutine implementing Step III LP—1 times. Step II (b(iii)) uses the value
of LP — 1 rather than LP because the controlling processor itself, which is
responsible for activating the other processors, executes Step III at Step II
(b(iv)). The controlling processor may generate additional parallel tasks
without first waiting for previously generated tasks to finish, thus activating
as many processors as possible.
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For this work, the preconditioning matrix Y* in (6) was the inverse of the
Jacobian matrix of f evaluated at the midpoint of the interval vector X%
This preconditioner should be a sufficient approximation to the inverse of
the matrix of midpoints of the elements of F’(X"), which the literature [19]
frequently suggests as a good preconditioner. While other preconditioners
for improving the performance of the Gauss-Seidel method are the subjects
of current research [13, 16|, they are even more computationally expensive
than an inverse Jacobian matrix.

For selecting an appropriate coordinate interval for bisection, the “max-
imum smear” strategy suggested in [12| was used. This bisection approach
attempts to determine the coordinate direction in which the gradient of the
functions in the system (3) changes most rapidly. It accomplishes this by
computing, for every component of X**+!

sj = (bj — aj) - max([Ji 1], | i2]) (8)

where a; and b; are the left and right endpoints, respectively, of the j-th
component of X**! and where [Jij1, Jijo] is the interval element located
at row 4 and column j in the interval Jacobian matrix F’(X*). Then the
coordinate interval j of X**! corresponding to the maximum s; is bisected.
For flowsheeting problems, this “maximum smear” scheme has been shown
to be superior to both bisecting the widest coordinate interval and bisecting
the widest coordinate interval after scaling with an infinity norm [23].

Techniques for efficiently storing and manipulating large, sparse matrices
|6] were also incorporated into the program. For the solution of the large,
sparse, linear systems of real equations required in computing Y*, a two-
pass approach, involving a reordering stage followed by a numerical stage,
was implemented [9, 27, 28|. Sparse matrix techniques were also applied in
the adaptation of the point Newton method [2, 3] required for Step IV (a).

2.3 Efficiency of parallel algorithm

The parallel algorithm described here is designed for a MIMD (Multiple-
Instruction, Multiple-Data) computer, defined as a multiple-processor com-
puter capable of simultaneously performing different sets of instructions on
many different data streams |7]. For our algorithm, the computer should also
support both globally shared memory, which any processor may access, and
local memory, which is specific and private to each processor. For Step III,
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each processor is provided with its own private copy of all of the variables
and arrays except for the stack of boxes awaiting the root inclusion test,
the stack counter L, the stack pointer STKPTR, and the list of solution-
containing boxes L, which are stored in global memory. Each processor
must be able to change the values of its own variables without influencing
the other processors, but all of the processors must access the same stack
and stack-related variables. Additionally, the list of boxes L must be shared
among the processors so that all of the boxes in the list are available for
comparison at Steps I1I (f), III (j(ii)), and IIT (k(ii)).

Several conditions must be met in order for the parallel algorithm to
perform efficiently. First, several bisections are necessary for the algorithm
to achieve its full speedup potential, where speedup is defined as the time it
takes to complete a job on one processor divided by the time the job requires
on P processors. Some problems require only one call to the root inclusion
test subroutine, and while the parallel algorithm would successfully isolate
their solutions, it would not offer any speedup over a sequential implementa-
tion since it would execute on only one processor. In addition, the algorithm
assumes that several bisections are performed early in a program run. When
the program executes Step III the first time, only one interval box is on the
stack, and only the controlling processor is active. However, if every box
results in a value of “unknown” after the first three passes through Step III,
the stack will contain eight boxes, each of which may be tested on a different
processor. On the other hand, if hundreds or thousands of processors are
available, the startup time necessary to activate all of the processors would
be unacceptable. In that case, the initialization procedure in Step I should
also include a breadth-first partitioning of X9 so that each processor could
remove a box from the stack during the first pass through Step III. Finally,
the binary tree of sub-boxes must grow in width as well as depth. A binary
tree with depth-only growth would be produced if, after every interval bi-
section, one of the sub-boxes always resulted in a root inclusion test value
of “true” or “false” while the other sub-box always resulted in a test value
of “unknown.” The algorithm would achieve a maximum speedup of two on
this type of problem, regardless of the number of available processors. In
contrast, a more balanced binary tree would activate many processors after
only a few root inclusion tests.

The maximum speedup an algorithm can attain is clearly an important
issue. One of the best-known models for estimating an upper bound on
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speedup for a parallel algorithm is based on an adaptation of Amdahl’s law
[1] to multiprocessor systems:

P
PA—=f)+/f

where f is the fraction of code which may be performed in parallel on P
processors. Equation (9) represents an upper bound on performance because
it assumes that negligible time is spent on processor startup, interprocessor
communication, synchronization, and other factors which degrade program
performance. From (9), it is easily seen that a significant fraction of code
must run in parallel in order to approach maximum speedup, and this effect
is amplified as the number of processors increases.

(9)

Mazimum Speedup =

Our algorithm may underutilize the available processors when the rate
of interval bisection is insufficient for maintaining a suitably large stack,
thereby reducing the fraction of operations executing in parallel and decreas-
ing the maximum speedup it can realize based on (9). Fortunately, several
steps in the algorithm present the opportunity for further parallelization,
and the fraction of concurrently executing code could be increased by im-
plementing such finer-grained parallelism in addition to the large-grained,
subroutine-level parallelism incorporated here. For instance, the individual
steps of the Gauss-Seidel procedure could be spread across many processors
[14], and another level of parallelism could be exploited by implementing an
appropriate parallel sparse linear solver [4, 5, 35] for computing the inverse
point Jacobian preconditioning matrix. In addition, the point Newton me-
thod in Step IV (a) offers several opportunities for finer-grained parallelism
130].

3 Flowsheeting test problems

For our computational experiments, we used five flowsheeting problems, all
of which are derived from problems appearing in the chemical engineer-
ing literature. These problems include models for an ethylene plant, an
interconnected system of mixer and divider units, an ammonia plant, a two-
component flash, and a single-stage distillation column. The flowsheeting
modeling equations are based on the formulations from SEQUEL-II, a pro-
totype equation-based flowsheeting system [26, 34].
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The types of functions used in the flowsheet models are related to ma-
terial balances, energy balances, and phase-equilibrium calculations. Equa-
tions describing material balances are nearly linear since they indicate only
that the amount of a given material flowing into a process unit is the amount
that also must flow out of it. Energy, or enthalpy, balances, on the other
hand, are complex nonlinear functions of temperature. For these test prob-
lems, we used ideal vapor heat capacities and heat capacities estimated with
the corresponding states model attributed to Sternling and Brown [22] to
calculate the enthalpies of the vapor and liquid streams, respectively. Phase-
equilibrium calculations, for computing the vapor and liquid fractions of a
material, are even more complex. Equations for determining phase equi-
libria are functions of pressure and temperature and are tightly coupled to
the energy balance equations. For the equilibrium calculations performed
here, we implemented Raoult’s Law with Antoine’s formula for computing
saturation pressures.

In these types of functions, the main variables represent flowrates for
entire streams and individual chemical components, pressures, temperatures,
and enthalpies. Other variables, added for specific process units, represent
parameters such as heat duties, mole fractions, and the fraction of material
flowing into each stream located downstream from a splitter.

RXTR HTR
RXTR
| HTR MIX PCHANGE SEP SEP SEP
| (VALVE) 171 |
PCHANGE ’ I . I
{(COMPRESS)

Figure 1: Ethylene plant flowsheet
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The first test problem is an ethylene plant model adapted from Sample
Problem #3 in [18]. The flowsheet for this problem is shown in Figure 1.
In this process, chemical reactions convert ethane and propane to ethylene
and various byproducts. The reaction in the first reactor (RXTR) is

3CoHg + 6C3Hg — 4Hy + 4CH4 + 5CoHy 4+ 2CsHg + CyHyg (10)
and the reaction in the second reactor is
4CoHg — 2Hy + 2CHy 4+ 3CoH4. (11)

For this problem, only material balances are written, and thus the resulting
system of equations is nearly linear.

The second problem involves only mixing and dividing units, and its
flowsheet is shown in Figure 2. This problem, like the first problem, was
adapted from [18] and is considered interesting in the chemical engineer-
ing literature because it contains multiple material recycle and feed-forward
loops. The equation system includes both energy and material balances, but
it includes few complex nonlinear equations because no phase-equilibrium
calculations are necessary.

MIX DIVIDE MIX DVIDE MIX DIVIDE e

Figure 2: Flowsheet for the interconnected system of mixers and dividers

The third problem is an ammonia plant model, adapted from [24], de-
scribing the flowsheet in Figure 3. This process converts hydrogen and
nitrogen to ammonia via the chemical reaction

Both energy and material balances are written for this flowsheet, and phase-
equilibrium calculations are required for the flash separation units.

The fourth problem is a two-component phase-equilibrium problem taken
from Example 8-14 in [21]. Its flowsheet is shown in Figure 4. In this
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PCHANGE HTR MIX
(PUMP) ; HTR
—  MIX HTR DIVIDE
RXTR HTR FLASH
1
FLASH
l—-—-

Figure 3: Ammonia plant flowsheet

problem, a mixture of ethane and n-heptane at a fixed temperature and
pressure is allowed to separate into vapor and liquid phases, and the amount
and chemical composition of each phase is computed. The only difference
between the problem stated in the reference and the problem we solved is
the equation of state used.

FLASH

Figure 4: Flowsheet for the two-component flash problem

The fifth flowsheet represents a single-stage distillation column with a to-
tal condenser. This problem is adapted from [10], and its flowsheet is shown
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in Figure 5. The problem involves separating methanol from 1-propanol,
and is similar to problem 4 except that it includes a material recycle loop
and a phase change in the cooling unit.

Statistics describing the size of these problems are summarized in Ta-
ble 1. For each of the five problems, the table lists the number of variables,
the number of nonzero coefficients in the occurrence matrix, the number of
unit operations, the number of process streams connecting the units, and the
number of chemical components. Note that all of the problems are relatively
small for process flowsheets.

The interval components of the initial interval boxes were set to the
widest possible values representing reasonable physical limits for all of the
problems except the ammonia plant model. For example, the initial in-
tervals for the unknown variables in the two-component flash problem were
0., 1000.] for flowrates, [310., 500.] for temperatures, [0., 1000.] for pressures,
[—100000., 100000.] for the heat duty and enthalpies, and [0.,800.] for the
ratios of vapor mole fractions to liquid mole fractions. For the ammonia
plant problem, the initial interval box was based on estimates derived from
values of the design specifications.

4 Results from computational experiments

The results from applying the parallel algorithm to solve the test prob-
lems described in the previous section are discussed here. The sequential
runs were performed on one processor of a BBN TC2000 multiple-processor
computer, and the parallel runs were executed on multiple processors of a
BBN TC2000. The algorithm was implemented with the Uniform System
programming model. We selected the Uniform System because it provides
memory and process management tools which efficiently map our algorithm
onto the hardware configuration of the BBN TC2000.

Results from running a sequential implementation of the algorithm on
only one processor are given in Table 2. These runs were performed mainly
to establish a basis for measuring the performance of the multiple-processor
runs, but a few comments concerning the application of the interval New-
ton/generalized bisection technique to flowsheeting problems are in order
here. First, the problem size as gauged by the number of variables does
not appear to be the most important factor in determining the number of
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DIVIDE: HTR
(COOL)
] mx DFLASH

Figure 5: Flowsheet for the single-stage distillation column

Problem Number of | Number of | Number of | Number of | Number of
Variables | Nonzeros Units Streams | Components
Ethylene 163 497 10 14 7
Plant
Mixers and 146 509 6 10 10
Dividers
Ammonia 177 659 11 15 5
Plant
Two-Component 21 57 1 3 2
Flash
Single-Stage 50 136 4 7 2
Column

Table 1: Statistics for test problems
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root inclusion tests required to locate the solutions. Rather, the degree
of difficulty the method experiences depends heavily on the complexity of
the nonlinearities and the amount of coupling between the equations. Note

Problem #
Ethylene | Mixers | Ammonia Two- Single-
Plant and Plant Component Stage
Dividers Flash Column
# of roots found 1 1 1 3 0*
Maximum binary 1 7 16 27 81
tree level reached
Maximum stack 0 6 14 21 38
depth reached
# of root inclusion 1 7 108 569 100001
test calls
CPU time (sec) 3.1 21.8 1003.5 49.0 21789.6
* — Reached the maximum number of root inclusion test calls before finishing.
Problem is known to have at least one solution.

Table 2: Results from running a sequential implementation of the algorithm

that the ethylene plant model, the second largest problem tested, was the
easiest problem for the method to solve, while the relatively small single-
stage distillation problem was the most difficult. However, recall that the
model for the ethylene plant is nearly linear, in contrast to the single-stage
distillation problem which includes highly nonlinear, tightly coupled equa-
tions arising from the equilibrium flash unit and the material recycle loop.
Other factors influencing the required number of root inclusion test calls
include the number of solutions located in the initial interval box and the
size of the initial box. For example, the two-component flash problem pre-
sented here required a relatively large number of root inclusion test calls
to isolate the three solutions, only one of which represents a physically at-
tainable condition. This demonstrates that even relatively simple problems
may have multiple solutions. While a traditional, point method may con-
verge to a single nonphysical root, the interval Newton /generalized bisection
algorithm presented here successfully locates them all. It should be noted
that a different formulation of the problem, not included in this paper, re-
quires only one root inclusion test call. The alternative formulation involves
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a similar amount of complexity and coupling but has only one root. Finally,
the size of the initial box dramatically affected the method’s behavior on
the single-stage distillation problem. For the problem reported here, the
elements of the initial interval box were unnecessarily wide, and the method
was unable to locate any solutions, even after more than six hours of CPU
time and 100,000 root inclusion test calls. On the other hand, only one
root inclusion test is required to locate a solution to this problem when the
initial box is based on estimates more accurately reflecting the character of
the process.

For the parallel runs on multiple processors, the parallel implementa-
tion of the algorithm was run on increasing numbers of processors until the
speedups appeared to approach some maximum value. With the exception
of the maximum stack depth, the statistics recorded in Table 2 are the same
for both the sequential and parallel programs. This is expected since there
are no differences in the numerical techniques between the programs. The
difference lies in the order in which interval boxes are stored on and re-
moved from the stack. Multiple processors performing simultaneous root
inclusion tests will handle the stack differently for every run, even when
the same problem is retested on the same number of processors, owing to
small differences between the individual processors and in the interproces-
sor communications. It should also be mentioned here that the number of
root inclusion test calls executed for the single-stage distillation problem is
a minor exception since the program halts before the entire initial interval
is processed. The sequential program halts as soon as the number of root
inclusion test calls exceeds the user-supplied maximum, but the parallel pro-
gram allows all active processors to complete root inclusion tests in progress
at the time the maximum is reached. Thus for the single-stage distillation
problem, the number of root inclusion test calls the parallel program ex-
ecutes may vary from run to run and is usually slightly greater than the
number performed by the sequential program.

For parallel runs solving four of the flowsheeting problems studied here,
Figure 6 shows plots of speedup against numbers of processors, and Table 3
lists an approximation of the fraction of operations executed in parallel for
each of these four problems. For each problem, the fraction of concurrently
executing operations was estimated by substituting the speedup gained on
the maximum number of processors used into equation (9) and solving for
f. The ethylene plant model was not solved with the parallel program since
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it requires only one root inclusion test call and therefore would not benefit
from the parallel algorithm developed here.
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Figure 6: Parallel speedup preformance

The maximum speedups the parallel program achieved for the four flow-
sheeting problems ranged from one to 4.8, and the fraction of concurrently
executing operations ranged from zero to 0.86. The maximum speedups
seem most strongly related to the number of root inclusion test calls re-
quired and to the extent of branching in the binary search tree arising from
interval bisections. Of the four problems studied here, the interconnected
system of mixers and dividers required the fewest root inclusion tests, at
seven, and Table 2 shows that the sequential program reached level seven
in the binary search tree and level six on the stack of interval boxes. This

Problem Fraction in Parallel
Mixers and Dividers 0.00
Ammonia Plant 0.68
Two-Component Flash 0.82
Single-Stage Column 0.86

Table 3: Fraction of operations executed in parallel
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information indicates that the binary search tree for the system of mixers
and dividers branches according to our worst-case scenario, in which only
two boxes are present at each level of the binary tree. For this problem, the
parallel algorithm would therefore achieve a speedup of only two under the
best circumstances, and here it fails to produce any speedup at all. Different
computational requirements for each of the seven root inclusion tests and
the startup overhead costs associated with activating multiple processors
account for this performance. In contrast, the remaining three problems
require sufficient numbers of root inclusion test calls and subsequent binary
search tree branching to utilize reasonable numbers of processors. For these
three problems, the fraction of concurrently executing operations increases
as the number of root inclusion test calls increases. The speedups seem to
follow the same trend, even though the two-component flash problem results
in a greater speedup than the single-stage distillation problem while requir-
ing fewer test calls. In comparison with the flash problem, the distillation
problem resulted in a smaller speedup value from a greater fraction of con-
currently executing operations because the program achieved the speedup
on fewer processors.

5 Discussion and conclusions

When applied to process flowsheeting problems, the implementation of our
large-grained parallel algorithm on the BBN TC2000 is capable of achieving
speedups approaching five with approximately 70 to 85 percent of the op-
erations executing concurrently. This performance does not justify running
the program on more than a few processors, and the single-stage distillation
example illustrates that using an arbitrarily large initial interval box is not
always feasible with this algorithm. Fortunately, more impressive speedups
and processor utilization could be achieved on larger numbers of processors
by exploiting the smaller-grained parallelism within the large-grained tasks
of our algorithm.

In conclusion, our studies show that this interval Newton /generalized bi-
section technique is applicable as a global nonlinear solver for isolating all so-
lutions to process flowsheeting models. The large-grained parallel approach
described here will be most effective when combined with smaller-grained
parallel tasks and implemented on a very large number of processors.
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