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Using methods which can produce asymptotically accurate lower bounds for

the range of values of the function over compact sets, a global solution to

the general nonlinear global optimization problem is found. Coding interval

arithmetic in C++, the author has designed an ideal bounding mechanism

which is capable of producing reliable, “tight”, and asymptotically accurate

bounds, efficient to compute, applicable to any programmable function, easy to

generalize and automate. A rigorous algorithm, is presented which produces a

list of “boxes” enclosing the set of all global minimizers and an interval trapping

the minimum value. For further improvements in efficiency, the algorithm is

parallelized.

Параллельная интервальная

глобальная оптимизация и ее

реализация на C++

Э. Леклерк

На основе методов, которые могут дать асимптотически точные нижние

границы для множества значений функции на компактном множестве,

найдено глобальное решение общей нелинейной глобальной задачи опти-

мизации. Запрограммировав интервальную арифметику на C++, автор

разработал совершенный механизм, который способен получить надеж-

ные, <тесные> и асимптотически точные границы. Он эффективен при

вычислении, применим к любой программируемой функции, легко обоб-

щается и автоматизируется. Представлен строгий алгоритм, с помощью

которого можно получить список <боксов>, заключающих в себе множе-

ство всех глобальных минимизирующих переменных и интервал, содержа-

щий минимальное значение. Для дальнейшего улучшения эффективности

алгоритм параллелизуется.

c© A. Leclerc, 1994



Parallel Interval Global Optimization and Its Implementation in C++ 149

1 Definition of global optimization

Formally, the global optimization problem is defined as finding

f∗ = min
x∈X

f(x) (1)

where f : Rn → R1 is a continuous real value objective function and X ⊂ Rn

is a compact feasible set. X is often succinctly called the feasible region.
Since minimizing f(x) is equivalent to maximizing −f(x) this definition
sufficiently includes the search for global minima as well as global maxima.

For future discussion, the set of all points for which the objective function
possesses a global minimum value shall be called X∗. This is the set which
contains all points, x∗, such that f(x∗) = f∗. This set is often called the set
of global minimizers.

2 Computing with intervals

Computing with intervals is computing with sets. Consider the function,
f(x) = x4 − 8x2, with minima at x = ±2 graphed in Figure 1. If we
evaluate f at a point, say, x = 1 and over the interval [3, 4] we obtain

f(1) = −7 and f([3, 4]) = [9, 128].

From this we know that f(x) ≥ 9 for all x ∈ [3, 4] including even transcen-
dental points such as π = 3.14159 . . . . Since f(1) = −7, the minimum value
of f cannot occur in the interval [3, 4]. This fact has been proven using only
two function evaluations.

2.1 Computing with intervals using C++

Today, performing interval arithmetic on a computer with outward rounding

is easy to achieve. The IEEE standard for binary floating point arithmetic
specifies that the ability to round up or down as desired be available in the
arithmetic hardware or software. The author has written a fixed precision
interval arithmetic package in C and C++ which has been ported to the
following systems:
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Figure 1: Graph of f(x) = x4 − 8x2.

• HP300

• SUN3 and SUN4

• IBM-PC

• DECstation

2.2 An example of machine interval arithmetic

Consider the following interval computation of:

x(u, t) =
u2t

u2 + t2 + 1

where u = [.1, .3] and t = [.2, .6]. Evaluating each sub-expression, one
obtains:

u2 = [.01, .09]

t2 = [.04, .36]

u2t = [.002, .054]

u2 + t2 + 1 = [1.05, 1.45]

u2t

u2 + t2 + 1
=

[.002, .054]

[1.05, 1.45]
=

[

.002

1.45
,
.054

1.05

]

⊆ [.00137, .05143].
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It is hoped that the above example suggests how machine interval arith-
metic is performed. For more details, see [7].

3 Reliable global optimization

using intervals

Given the ability to compute bounds for the range of f over a set, a simple
exhaustive global search algorithm becomes evident. One of the simplest
of the bounding methods partitions the initial compact feasible set X into
compact subsets, SX

i . A lower bound on the function value, FL(S
X
i ), over

each subset SX
i is then calculated. In addition, an upper bound on the global

minimum thus far, Uf∗, is maintained.

Any subset SX
i where FL(S

X
i ) > Uf∗ is properly eliminated as not con-

taining a global minimum. This process of partitioning, bounding, and pos-
sibly eliminating is continued on successively generated subsets until some
stopping criteria is met. The union of the remaining uneliminated sets will
contain the set of all global minimizers of f .

All bounding methods, such as branch and bound algorithms [6, 3], cov-
ering methods [3], linear lower bound methods [1], Lipschitzian methods [13],
bisection methods [3, 14], and interval methods [5, 4, 9, 12, 15, 11], imple-
ment the following general algorithm:

1. Partition the initial search space into smaller subregions;

2. Bound the function (and possibly its derivatives) over the subregions,
and

3. Eliminate (by using the bounds calculated in Step 2) those subregions
which definitely cannot contain a global minimizer.

The union of the remaining uneliminated subregions will contain all global
minimizers.

The general bounding algorithm uses the exhaustive principle. It indi-
rectly searches for a global minimum by exhaustively partioning and “cutting
away” all of the feasible space, X, which definitely cannot contain a global
solution.
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Hansen [5, 11] describes an exhaustive interval global optimization algo-
rithm incorporating the following elimination procedures:

• Midpoint test: Let mX be the feasible midpoint (or any other point)
of a sub-box X of the initial search box, B. Also, let f(mX) =
[LFmX

, UFmX
]. If f is evaluated over another sub-box Y of B yielding

f(Y ) = [LFY
, UFY

] and LFY
> UFmX

then Y cannot contain a feasible
global minimizer. Therefore Y can be eliminated.

• Monotonicity test: Consider the case in which a box B is certainly
strictly feasible. Suppose the gradient g is evaluated over a sub-box
X of B. If 0 /∈ gi(X) for some i = 1, . . . , n, then the gradient is not
zero in X. Therefore the global minimum cannot occur in X, and X
can be eliminated.

• Nonconvexity test: Again consider a certainly strictly feasible box
B and consider a sub-box X of B. If a global solution point, x∗ occurs
in B, then f must be convex in some neighborhood of x∗. In other
words, the Hessian of f(x) must be non-negative definite (positive
semi-definite) at x∗. If it can be shown that the Hessian is not positive
semi-definite anywhere in X, then X can be eliminated.

• Interval Newton method: An interval Newton method can be used
to eliminate all or part of a sub-box X.

4 Distributed algorithm on a network

of workstations

A coarse grain parallel global optimization algorithm, based on Hansen’s
algorithm, is considered. The distributed algorithm has three main steps:

1. Initialize/startup all processors:

• Input initial search box, B, ǫx (a box will not be further subdi-
vided if its width is smaller than ǫx), and other parameters.

• Spawn remote processes.

• Send state information to each “living” process.
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2. Perform Hansen’s algorithm in parallel:

• Dynamic load balancing (demand driven).

• Additional load balancing (heuristic for distributing “good”
boxes).

• Broadcasting new UF∗
(so that all can make sharp midpoint

tests).

3. Terminate all processors:

• Detect global termination (centralized algorithm).

• Compute final solution list (collect all lists).

The steps are defined and discussed in the succeeding sections. Before
doing so, the pair of terms partitioning and mapping are defined in the con-
text of the parallel program. Partitioning refers to the manner in which
the input data is divided-up among each of the processors. Mapping is con-
cerned with the particular feasible assignment (with respect to the processor
interconnection topology) of processor to process which minimizes commu-
nication costs.

A distributed network environment is a fully connected multiprocessor
system. Furthermore, the interprocessor communication time is virtually
homogeneous. Therefore, in the succeeding algorithm description, the reader
can assume that any process can be mapped to any processor, and the
mapping issue will not be addressed further. The parallel algorithm is now
described.

4.1 Initialize/startup all processors

The initial phase of Hansen’s algorithm contains 4 steps:

1. Input initial box, B.

2. Input initial box width tolerance, ǫx.

3. Queue the tuple, (B,LFB
), on the box queue.

4. Update UF∗
.
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These first 4 steps are performed only on the main processor, namely
P0. Next, P0 will attempt to spawn N − 1 process copies of itself on N − 1
remote processors, Pi, 0 < i < N. P0 will then wait until it has received from
each Pi a local state message, LSM, indicating the status of the attempted
spawn (many errors can occur when attempting to spawn a remote process
on a distributed network). Each of the LSMs are compiled, along with
the sending processor’s unique identification number, domain name, and
Ethernet address, into a global state message, GSM. After all N − 1 LSMs
have been received, P0 sends a copy of the GSM to all Pis. All processors
now have the necessary information to communicate with any other living

processor involved in the parallel computation.

4.2 Perform Hansen’s algorithm in parallel

Once Step 4.1 above has been completed, only P0 has a box on the box
queue. How do the other N − 1 processors proceed? This brings us to the
issue of dynamic partitioning and load balancing.

4.2.1 Dynamic partitioning and load balancing

Whenever any processor, Pj , has an empty box queue, it begins sending box

request messages, BRMs, to a random Pi, i 6= j. If there are boxes available
on Pi’s box queue, then Pi sends Pj a box message, BM, containing half of
its queued boxes, but no more than NUMBOXES (sending arbitrarily large
messages is undesirable).

Otherwise, Pi sends back a short no boxes available message, NBM,
indicating that it has no boxes available. If Pj receives a NBM , it then sends
requests to processors, P(i+1)modN , P(i+2)modN , P(i+3)modN , . . . , P(i+k)modN

until it receives a BM or until k = N − 1 (see Section 4.3.1).

This partitioning scheme is dynamic and demand driven. The hope is
that by sending half of the workload to each box requesting processor, the
work load (number of boxes) among all processors can be balanced.
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4.2.2 Broadcasting the new UF∗

As each processor executes Hansen’s algorithm in parallel, eventually (as-
suming there exists a point, x ∈ B (the initial input box) such that f(x) <
LFB

) an improved upper bound UF∗
on the global minimum will be discov-

ered by a given processor, Pj . At this point, Pj will send this new UF∗
,

NUF∗
, to all other processors Pi, i 6= j. When a given Pi receives this NUF∗

it compares it with its local UF∗
. If NUF∗

< UF∗
, Pi updates UF∗

. Otherwise,
Pi must have received a lower NUF∗

from some other processor or calculated
a lower UF∗

itself during the time it took to receive Pj’s NUF∗
. In this case,

Pi’s UF∗
is not updated.

4.3 Terminate all processors

With the sequential version of Hansen’s algorithm, it was guaranteed that
if the first box on the box queue had width less than ǫx, then so did all
the other remaining queued boxes. However, in the parallel case, if the first
queued box on the box queue of given processor, Pi, has width less than
ǫx, then this does not necessarily imply that all the remaining boxes on the
N − 1 other processors’ box queues will have width less than ǫx.

Indeed, Pi may very well only have found a local minimum. What is Pi

to do in this case? If Pi simply prints its output and then terminates, then
an uninteresting local solution very likely will be outputted, and moreover,
a valuable worker processor will be lost.

The solution, for the moment, is to maintain a second queue, called the
possible solution queue, PSQ, on every processor. Now, if the width of the
first queued box on Pi’s box queue is less than ǫx, then all of the boxes on
Pi’s box queue are placed on PSQ. Pi then behaves as in 4.2.1 for a processor
with no queued boxes. Furthermore, whenever Pi determines a new UF∗

, it
checks all boxes on PSQ and discards those boxes which fail the midpoint
test (see Section 3) using the new UF∗

. Global termination now becomes a
question of detecting when every processors’ box queue is empty. For the
moment, such a state is detected with a simple centralized algorithm. A
distributed algorithm using either a ring [2] or a tree [16] would be more
efficient and fault tolerant.
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4.3.1 Detect global termination

If a given Pi does not receive a BM after sending N−1 BRMs, Pi then sends
P0 a possible global termination message, PGTM. Pi then waits for either
a BM or a terminate message, TM , from P0. If P0 receives a PGTM and
has boxes on its box queue, then P0 simply sends Pi a BM. If P0 receives
a PGTM while it has no boxes on its box queue, then P0 logs Pi’s PGTM.
When P0 receives N − 1 PGTMs, P0 sends a TM to all other processors.
Additionally, if P0 is sending BRMs and receives a BM, P0 must send BMs
to all processors for which a PGTM was logged.

4.3.2 Compute final solution list

When a processor, Pi, receives a TM, it prints out all boxes on its PSQ and
terminates. P0 does the same as soon as it detects global termination and
has sent N − 1 TMs. The final solution list is obtained by combining the
output from each terminated processor. As in the sequential version, the
union of all the boxes on the final solution list will contain the set of all
global minimizers.

4.4 Maintaining reliability with the distributed

algorithm

In order to maintain reliability within a distributed environment, the follow-
ing measures were taken:

• All communication is performed using reliable socket datagrams in
UNIX. This guarantees that messages sent between processors are not
corrupted.

• All possible signals are caught. When an error occurs (such as a
segmentation fault or bus error) or when the process gets killed, the
complete contents of the queues are immediately written to a file or
sent to another processor. In either case, the algorithm continues as
reliably as possible.

• Global termination is determined properly. However, a distributed
algorithm using either a ring or a tree would be more efficient and
fault tolerant than the centralized algorithm used.
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Figure 2: Graph of two Gaussian sum spectroscopy function.

5 Results

The distributed algorithm was tested on the photoelectron spectroscopy prob-
lem first mentioned in [11].

For this problem, a spectral curve as the sum of two Gaussian functions
(see Figure 2) was arbitrarily constructed. The function definition is

xi = 4.0 + 0.1(i+ 1), i = 1, 2, . . . , n

yi = a1e
−[

xi−u1

s1
]2 + a2e

−[
xi−u2

s2
]2

with the constants defined in Table 1.

a1 = 130.89 a2 = 52.6
u1 = 6.73 u2 = 9.342
s1 = 1.2 s2 = 0.97

Table 1: Photoelectron spectroscopy data.

An attempt to “fit” this curve by recovering a1, a2, u1, u2, s1, and s2 was
made. Given n = 81, (xi, yi), and the initial input box, B, defined in Table 2,
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B
a1 = [130, 135]
a2 = [50, 55]
u1 = [6, 8]
u2 = [8, 10]
s1 = [1, 2]
s2 = [0.5, 1]

Table 2: Initial input box for the photoelectron spectroscopy problem.

the task was to minimize f defined as follows:

f(a1, a2, u1, u2, s1, s2) =
n

∑

i=1

(

a1e
−[

xi−u1

s1
]2 + a2e

−[
xi−u2

s2
]2
− yi

)2

.

The results were published in [11] with the following timings:

• Single processor time ≈ 30 hours;

• 32 processor time ≈ 11 minutes.

The parallel algorithm was run on up to 40 processors and achieved
superlinear speedup as indicated by Figure 3. Other examples exhibited
similar superlinear speedup. In order to explain this superlinear speedup,
the progress of the parallel algorithm will be considered in the form of a
binary tree.

At the beginning of the algorithm, one is usually given a single initial
input box (denoted as the root of the tree). One either eliminates this box or
divides it in half yielding two new boxes (depicted as child nodes). Likewise
these two new boxes can be eliminated or split. Continuing in this manner,
one gradually creates what shall be called a binary progress tree.

A portion of one possible binary progress tree is given in Figure 4. The
rectangularized regions represent sets of boxes which would be deleted using
the current upper bound UF∗

on the global minimum. An improved upper
bound NUF∗

on the global minimum exists within box B30.

In the single processor case, boxes are tested in the order B1, B2, . . . ,
B31. The reason for this is the fact that boxes are queued based upon the
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Figure 3: Old speedup graph.

B1

B2 B3

B4 B5 B6 B7

B8 B9 B10 B12B11 B13 B14 B15

B16 B17 B18 B19 B20 B22B21 B23 B24 B25 B26 B27 B28 B29 B30 B31

new UF*

Figure 4: Portion of one possible binary progress tree.
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time in which they were generated. This progress amounts to a breadth
first search of the entire tree for a “small” enough box containing a solution.
Because of this searching strategy, the NUF∗

within box B30 would require
22 tests before being discovered.

In the two processor case (P1 initially getting B2 and P2 initially getting
B3), each processor would employ a breadth first search on its respective
half of the tree. Therefore P2 would discover the NUF∗

in 6 tests (nearly 1/4
the number of tests it took in the single processor case). Furthermore, P2

would broadcast the NUF∗
to P1 thus allowing P1 to make sharper midpoint

tests earlier and possibly “pruning” other subtrees from consideration. It is
this combination of breadth first and depth first searching which is believed
to account for the superlinear speedup of the parallel algorithm.

5.1 Two improvements to the distributed algorithm

The superlinear speedup of the distributed algorithm suggests that a better
sequential algorithm exists. Indeed, Hansen [5] suggests a superior algorithm
based on the observation that it is often the case that the box most likely
to contain a global minimum is the one whose lower bound on the function
value, LFX

, is lowest.

1. The first improvement to the algorithm was to change the ordering of
boxes on the queue from a FIFO manner to a priority queue based on
the lowest LFX

. For the spectroscopy problem, this change resulted in
a speedup of 78 in the 1 processor case.

2. Secondly, to prioritize the tests globally, and not just locally within a
processor, each processor now broadcasts its lowest LFX

, which shall
be called LF∗

. The processor with the largest LF∗
requests for “good”

boxes from the processor with the lowest LF∗
. This change resulted in

an additional average speedup of 9 over the older parallel version.

The timing results of the improved algorithm were:

• Single processor time ≈ 23 minutes;

• 20 processor time ≈ 2.5 minutes.

This improved parallel algorithm was run on up to 20 processors. Ap-
proximately 50% of linear speedup was achieved as as indicated by Figure 5.
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Figure 5: New speedup graph.

References

[1] Bromberg, M. and Chang, Tsu-Shuan. Linear lower bound approach. In:
“Recent advances in global optimization”, Princeton University Press,
Princeton, 1992, pp. 200–220.

[2] Dijkstra, E. W., Feijen, W. H. J., and van Gasteren, A. J. M. Deriva-

tion of a termination detection algorithm for distributed computations.

Information Processing Letters 16 (5) (June 1983), pp. 217–219.

[3] Evtushenko, Yu. G., Potapov, M. A., and Korotkich, V. V. Covering

methods. In: “Recent advances in global optimization”, Princeton Uni-
versity Press, Princeton, 1992, pp. 274–297.

[4] Hansen, E. R. Global optimization using interval analysis — the multi-

dimensional case. Numer. Math. 34 (1980), pp. 247–270.

[5] Hansen, E. R. Global optimization using interval analysis. Marcel
Dekker, Inc., New York, 1992 (to be published).



162 A. Leclerc

[6] Rinnooykan, A. H. G. and Timmer, G. T. Argument for the unsolvability

of global optimization problems. In: “New methods in optimization and
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