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In the paper an interval system of continuous logic and the rules for

éo‘nstructing plausible inference based on it are considered.
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B pa6ote npeanoskena WUHTEpBaJibHasA cMCTeMa HenpepbIBHOMN J1o-
FMKA M NpaByUa NOCTPOEHUA NpaBaonoaoGHOro BRIBOAA Ha ee OCHOBe.

1. Introduction

The recent experience in the sphere of knowledge engineering in artifi-
cial intelligence and, in particular, for expert systems (ES) light upon the
necessity to extend the model of “omniscient” expert. A high-level pro-
fessional can argue under incomplete, inexact and rapidly changing (even
to opposite) information. Finally, expert’s appropriate conclusions are
not always strictly correct. Usually they are presumable, plural and rea-
sonable with some degree of confidence that makes possible their further
revision.

Classical logic deduction simulates strictly correct and generally valid
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clauses. Consequently, it is not suitable to express inexact and non-
monotonic reasoning.

Inference in non-monotonic logics (Reiter’s logic for default reasoning
[6], McDermott-Doyle non-monotonic logics {3, 4], autoepistemic logics
[5]) depends on the order of clauses. Though multivalued logics [2] offer
additional ”degrees of freedom” in inference, its interpretation and tracing
are rather difficult.

Therefore, since non-monotonic system must discard its own conclu-
sions, it must be able to modify the inference rules and to lock/unlock
some of them.

Approximate reasoning in rule-based expert systems is based on dif-
ferent models of ”inference confidence”. This models make easier the
sorting of conclusions over their degrees of confidence. The theoretical
backgrounds of the variety of confidence estimators [1] are lackmg that
leads to their different heuristic interpretation.

In this paper is presented an interval continuous propositional logic for
approximate reasoning.

2. Interval approximate reasoning

Let express an tnezact proposition in the following forin
p7 [a_’a+]’ (]')

where p € V, V is an unbounded countable set of clauses; [a™,at] is
an interval estimator of logical truth (falsity), o= ,a* € S, o™ - ot > 0,
S = [$~,S8*] is a symmetric scale of logical truth between “False” (F
or S7) and “True” (T or St), shown on Fig.1
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Fig.1. An example of verbal interpretation of scale S
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Logical operations over propositions in form (1) are defined as follows.

Interval negation
X X
b, [a s a+] P, [—O[+, —Ol-]
P [—a —a ] D, [a—aa+]
E Interval conjunction
X Y X&Y
" p a7, 0] , [87,8%] p & ¢, [min(a™,37), min(at, FH)
" p, [o7,0"] g, [-8F,-B7]| p & g, [min(e—, —BF), min(a¥, -5,
P, :'—Ct’+,—01 q, [ﬁ_))@-}.] -p & q, min(—a"',,@“'),miu(—a‘,ﬁ"‘)_
_:'Ba —O.’+, —a_: -q, [—/6+7 _/8_] P & g, [min(-—a"', —ﬂ“‘),mi.n(—a‘, -ﬁ_)]
Interval disjunction
X Y XVY

p o, at g, [87,87] pVy, [max(a",ﬁ‘),max(a"",ﬁ"‘)]

p & , ot g, [—/6+7 —/3_] pV 7y, max(a", —ﬁ+)7 niax(a+, _/8—)
P, [_a+7 — q, [/B_HB+] p \4 q, _max(—a"',,@"), max(—a—,,@+)_
-p, [—at, —a7][=g, [-B%,-B7]-pV ~¢, [max(—a¥, —B¥), max(—a~, —57)]
where [o] = [a™,a*] C]0, S*] and [8] = [, 81] C]0, SH]

Complete logic equivalence of two inexact propositions p, [@~,at*] and

¢,[87,37] is defined as

([, at]) = (¢,187,8%) = > a, [y, 1)) (2)

where v~ a” = 37, The central propositional
connective = denotes “equality by definition”. Complete logic equivalence

in interval logic calculus is used in the context of identity.

vt = ot = 3t.
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Using the above presented operations and definition (2) are proved
the following properties: idempotency, commutativity, distributivity, as-
sociativity, complementarity, involution and D’Morgan rules, for interval
propositions.

If knowledge is represent in the form of inexact propositions (1) the
asserting deduction rule (modus ponens) can be defined as

p, [o7,a"]=q,[67,87]

-
P 77"l
(3)
q, [X_’ X+]
-(+) —-(+)
BT —(+) ; —(+ o
S

for [a], [8] and [y] C]0, St].

In such formulation the extended modus ponens operates even in the
case when intervals [y] and [o] does not match completely (and even does
not intersect).

References

1. Ivashko, V.G. and Kuznetsov, S.O. Uncertainty estimators in rule-based expert
systems. In: Pospelov, D.A. (ed.) “Expert Systems: present state and future
perspéctives”, Nauka, Moscow, 1989, pp. 92-103 (in Russian).

2. Lukasiewicz, J. Many-valued systeins of propositional logic. In: McCall, S. (ed.)
“Polish logic”, Oxford University Press, Oxford, 1967, pp. 234-248.

3. McDermott, D. and Doyle, J. Non-monotonic logic I, Artificial Intelligence 13
(1-2) (1980), pp. 41-72.

4. McDermott, D. Non-monotonic logic II: Non-monotonic modal theories. J. ACM
29 (1) (1982), pp. 34-57.

5. Moore, R.C.

for automate

6. Reiter, R. 4
pp. 81-131.



INTERVAL APPROXIMATE REASONING ... 87
‘2) are Proveq 5. Moore, R.C. Autoepistemic logic. In: Smets, P. et al. (eds) “Non-standard logics
trj'butiVity, as. ‘for automated reasoning”, Academic Press, London, 1988, pp. 105-136.
es, for illterval ¢. Reiter, R. A logic for default reasoning. Artificial Intelligence 13 (1-2) (1980),
pp. 81-131,

sitions (1) the
ined as

(3)

else
(4)

s evell in the
nd even does

le-based erpert
ate and future

[cCall, S. (ed.)
antelligence 13

ories. J. ACM




