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20 S. M. MARKOV

HOM apudmeTmKoif, MCnone3youmeil paclinpeHHoe MHOYKECTRO onepa-
M Hax OBBIYHBIMY MHTepBasamu. PaccMorpenst HEKOTOpLIE NPUO-
KEHUA AaPUPMETUKH HanpaBIeHHbIX UHTEPBaJIOB K BLIYUCJIEHUIO (na-
TPABJIEHHbIX) MHOYKECTB 3HAYEeHMU MOHOTOHHBIX (pYHKLMIA.

1. Introduction

In a previous paper we define the concept of directed range of a mono-
tone and continuous function and derive formulae for the computation
of the directed range of a sum, difference, product and quotient of two
monotone functions in terms of directed ranges of the operands (see (15],
Prop. 9.). For this purpose the generalized interval arithmetic intro-
duced in [17] has been used. However, it is pointed out in [15] that the
same goal can be achieved when using an equivalent generalization based
on the concept of directod interval. Here we briefly introduce a relevant
arithmetic for directed intervals and demonstrate its potential use for the
presentation of directed ranges of monotone functions. The concept of
directed interval seems to be useful for a better comprehension and easy
interpretation of certain theoretical results; however it can be also easily
implemented into corresponding software modules computing ranges of
functions (see e.g. [2] for similar modules).

A directed range of a monotone and continuous function a over its
interval domain 7" = [t1,12] is a couple consisting of the range a(7T) =
{a(t)t € T} of a (which is a normal interval) and a binary variable
containing additional inforimation for the kind of monotonicity of a. The
kind of monotonicity of a determines the direction into which the range
a(T) is traced when the argument ¢ of a varies in its interval domain 7.
Indeed, if a is isotone (nondecreasing) in 7" then the interval a(T') is traced
from left to right whenever ¢ traces 7' from left to right; alternatively
a(T) is traced from right to left if « is antitone (nonincreasing) in T
we say that the direction of the range is positive, resp. negative, A
directed range can be represented either in the form of a directed interval
[4;+] = [a™,a%; 4] with A = [e~,a*] € I(R), or in componentwise
form as an ordered couple [a1,as] € R? of real numbers (also called
a generalized interval) [6]-[9), [15], [17]. In the latter case the binary
information regarding the direction of the interval can be encoded by
the order of the endpoints: increasing order means positive direction;
decreasing order means negative direction. Denoting the directed range
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a monotone function a over T by a[T] and the kind of monotonicity
s n T by 7(a;T) = £ we can symbolically express a[T] either as
4 ad?rected interval a[T] = [a(T); 7(a; T)] or as the generalized interval
e i— [a(?1),a(t2)]. If a is isotone on T then the directed range a[T]
olT] ;;)onds to a directed interval of positive direction a[T] = [a(J:'); +]
Cm‘r‘?valently to a proper interval [a(t,), a(t2)] from I(R)); if a is antitone
qu; then a[T] corresponds to a directed interval of negative dlr.ecton
OI[IT] = [a(T'); —] (equivalently to an improper (irregular) interval (if not
degenerated) a[T] = [a(t,), a(t)] with a(ty) > a(ts)).

The interval arithmetic for generalized interva!s (directe.:d interval.s in

onentwise forrm) is well developed; here we briefly consider the al"lth-
COptic for directed intervals. We consider here the case of real enfipomts.
%ﬁe practical situation involving machint? (ﬂ.oa?ing—poi'nt) en.dponits ;and
relevant directed roundings requires consu:’l.era.tlons. of 1nf:1us1on re -a;lons
and corresponding computational rules; this situation will be considere

in a forthcoming paper.

In the next section we briefly introduce the necessafy prerequisit. The
interval arithmetic structure M = (I(R), +, x, 4+, x ) based oun the set
of two familiar arithmetic operationsf +, X and two nonstan.dard opera(i
tions +~, X~ over the set of normal mte;;ya.ls I(R) [1(?]—[15] is presente
using the ”plus-minus” techniques for nota,tlon' of the 1nt<?rval eIild—p011(111ES
[11], [5], [15]). In section 3 we introduce the 1nterval. arithmetic 'for i-
rected intervals. In section 4 we consider the application of dlre(.:ted
interval arithmetic for the presentation of ranges of monotone functions
of one variable.

2. Presentation of ranges using normal intervals

Throughout the paper we denote by A the set consisting of the sym-
bols "plus” and "minus”, A = {+, —}. These symbols may have various
meanings according to the particular situation: t}.ley may refer t? the kind
of the endpoint (left or right), to the kind of an 1nteryal operatlon' (stan—
dard or nonstandard), to the dirrection of a directed interval (positive or
negative direction) etc.

A normal (proper) interval [a,b],a < b, is a compact set on the real line
R defined by [a,b] = {z | a < < b}. The set {[a,b] | a,b € Rya < b}
of all intervals is denoted by I(R). The left end-point of A € I (R) is
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denoted by a~ or A~, and the right end-point by a* or AT, so that
A=[a",a%] =[A", A*]. Thus a*® (or A®), with s € A = {+, —}, denotes
the left or the right end-point of A € I{R) depending on the value of
s. We define the product st for s, € A by setting ++ = —— = +,
4+~ =—4 = —,s0 that at* =a7~ =at etc.

Denote the set of intervals containing zero by Z = {A € I(R) | 0 €
A} = {A|a~ €0 < at}; the elements of Z are called Z-intervals. The
set of intervals which do not contain zero is [[R)\ Z ={A € I(R) |0 ¢
A}; such intervals are called zero-free intervals. Define a sign functional
o:I(R)\ Z — A, by means of c(4) = {+, if a= 20; —, if at <
0}, o((0,0]) = +.

The interval arithmetic § = (I(R), +, x,/, C) [1], {16], [18]-]21] con-
sists of the set I(R) together with a relation for inclusion C and the
basic operations addition + : I(R)® I(R) — I(R), multiplication X :
I{(R)® I(R) — I(R) and inversion (reciprocal value) / : I{R)\Z — I(R),
defined by

ACB<«= (b"<a™) and (a* <b%), for A, Be€ I(R), (1)
A+B=[a"+b",at + "], for 4, B € I(R), (2)
[a=e(B)p=o(A) qo(B)pold)] for A, B € I(R)\ Z,
Ax B =1 [a%5,a®b%], § = o(A), for A€ I(R)\ Z, B € Z,
[a=%b% a’b’), 6 =0(B), for A€ Z, Be I(R)\ Z, (3)
A x B = [min{a~b*,atd"} , max{a~b",atb}], for A,B € Z,

o

(4)
1/B=[1/b%,1/b7], Be I(R)\ Z. (5)

(b3}

In the special case when A is a degenerate interval of the form A
[a,a] = a, we have Ax B = ax B = [ab~7(%) ab°(®)] = {[ab™,ab¥], if a
0; [abt,ab”], if a < 0}. For a = —1 we have (-1) x B = —B
~[p™,b%] = [-b*, —b"]. The operations subtraction A — B and division
A/B are defined in S as composite operations by -

A-B=A+(-1)xB=A+(-B)
=[a~ =bt,at -b7], for A, BeI(R), (6)
A/B=Ax(1/B) -
- [a"“(B)/b"(A),a"(B)/b“’(A)], for A,B.€ I(R)\ Z, (7)
T [a8/b7% a8 /b8, 6 =0(B), for A€ Z,Be I(R)\ Z.
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The operation inversion 1/B in S can not be composed just by means

f the operations + and x and therefore has to be assumed as basic

o eration in S. The operations +,—, %,/ in § defined by (2)—(4), (6)-
ope

’ (7) satisfy the relations: Ax B={axb|la€ AbE B}, x € {+,—,%,/},

which provide a basis for important applications.

From algebraic and practical point of view the St.ructure S is incom-
lete. In order to obtain a complete structure we m.troduce tv.vo add.l-
Eona.l operations +~, X~ which turn S into a .powerful mterval—an?hmencl:
structure (I(R), +,+~, X, x~, C). The additional (_nonstandaurd()1 1g1terva
arithmetic operations +~, x ™ in I(R) (cf. [10]-{15]) are defined by

A+~ B=[a"7+b",a" +b77], for A,BeI(R), (8)
Ax™ B
[a"(B)Eb“’(’“f,a“’(B)sb"("”E], for A,BeI(R)\ Z,
[a=b=%,a=%%), § =a(A), for A€ I(R)\Z, Be€Z,
= [a—ab—é; a®b=%], 6 = o(B), for A€ Z, B€EI(R)\ Z, ©)

[ max {a~b*,a*b™}, min {a~b",a*b*}], for A,B € Z,

wherein the sign variables 7,6 € A are chosen in such a way that the

intervals involved in the right-hand sides are elements of I(R) ) that is
a” Y+ <a?+b77 qo(Blep=o(A)e < a—°Blepo(A)e From these inequal-

ities we can explicitly express 7, £ as follows. Define

w(A) =a*t —a”, for A€I(R),
Y(A) = a=A) /g7 = {a~ [a* if 0(4) = +; at[a” ifo(4) = -},
for A€ I(R)\ Z,

and the sign operators ¢ : I(R)® I[(R) — A and ¢ : ({(R)\ Z) QRU(R)\
Z) — A by

$(A, B) = sign(w(A) — w(B)) = {+, if w(4) 2 w(B); —, othgrwise},
WA, B) = sign(x(A4) — x(B)) = {+, if x(4) 2 v(B); —, otherwise}.
Using that for A, B € I(R) \ Z the inequalities
Y(A) > x(B) and a?(Bp=o(A) < g—o(B)po(A) are equivalent we see that
v, £ in_(S), (9) can be defined as v = ¢(A, B),e = P(A, B).
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The elements ~4 = [~a*,—a"] and 1/4 = [1/a*,1/a"] are inverse
with respect to the operations +~ and x~, that is A +- (-4) =0,
A x~ (1/A) = 1. The following composite operations can be defined:

A-"B=A+"(-B)=[a""=b"",a"~ 1], for A, B € I(R),
A/_B =Ax~ (l/B)

_ [aa(B)s/ba'(A)e,a—o(B)e/b—a(A)e], for A,B € I(R) \ Z,
~\ [a=%/b%,a%/b%), § = 0(B), for A€ Z, BeI(R)\Z.

where v = ¢(A,B), ¢ = (A,B). We denote the system
(I(R),+,+7,%,x~,C) by M. The algebraic properties of M are well
studied (see [3]-[5], [10]-[15]); they incorporate and extend the proper-
ties of S. The meaning of the nonstandard operations becomes transpar-
ent when considering the arithmetic operations for directed intervals and
when applying them to computation of directed ranges. We end this sec-
tion by recalling the presentation of ranges of monotone functions using
the interval arithmetic M.

Dencte by CM(T) the set of all continuous and monotone functions
on T € I(R). For a function f € CM(T) denote

+, if f isisotone in T;
T(f;T) = e e

—, if f is antitone in T.
Then for f,g € CM(T), the relation 7(f; T) = 7(g; T) means that both
functions are isotone or both are antitone in T; 7(f; T) = —71(g9;T) means
that one of the functions is isotone and the other is antitone. The follow-
ing proposition holds true [14].

Proposition 1. For f,g € CM(T) and X C T:

f+95CM(T) = (f +g)(X)

- { fX)+9(X),  iH7(f;T)=1(g;T),

F(X)+79(X), H7(f;iT)=~7(9;T);

f-9€eCM(T)==(f - g)(X)

_ JF(X) =" g(X),

{ if 7(f;T) = 7(¢9:T),
T f(X) - g(X),

if7(f;T)=—7(q;:T);
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In addition to the above assumptions, if f,g do not change sign in T,
then

fg € CM(T) = (fg)(X)
_ { f(X)xg(X), i r(|f;T) =7(lgl; T),
f(X) x7g(X), ifr(|f|;T)= =7 (lgl; T);
JESo D = )
_ {f(X)/“g(X), if 7(|f; T) = 7(lg]; T),
f(X)/g(X), i r(|fl;T) = —7(lg|;T).

Example 1. Denote exp(—X) = {exp(—z)|z € X}, arctg(X)
{arctgz|z € X}. Using Proposition 1 we obtain for the range of h(z)
exp(—z) + arctg(z) the simple expression

i

h(X) =exp(—X) +~ arc‘tg(X)

for any X € I(R),0 ¢ X obviously standard interval arithmetic is unable
to provide an exact interval arithmetic expression for' h(X) using the
ranges of exp(—x) and arctg(x).

3. Directed interval arithmetic

An ordered triple of the form A = [a™,a¥;a], where a~,a* are reals
such that a= < at, and o € A, will be further referred as a directed
interval. We shall also present A as an ordered couple of the form A
= [4;0] with A € I(R),a € A. The sign variable a in A = [a=,at;q]
is called direction of the directed interval A, and is denoted by 7(A);
according to the value of o = 7(A), a directed interval A = [a=,at;q]
can have a positive or negative direction. The set of all directed intervals
is D = I(R)®A. For A = [a~,a%;a] € D denote p(A) = [a~,at] € I(R);
the interval p(A) € I(R) is called the proper partof A. A directed interval
A =[a”,a%; o] is said to be degenerate if p(A) is degenerate. Degenerate
directed intervals have by definition of both plus and minus directon. This
means that for « € R we do not distinguish between [a, a; +] and [a, a; -]
and write [a,a;4+] = [a,a; —~] = a. The set of all directed Z-intervals,
that is directed intervals A with 0 € p(A), is denoted by T. A directed
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interval is said to be zero-free if its proper part is a zero-free interval.

D\ T is the set of all zero-free directed intervals.

The functionals w, x, o from section 2 are extended for directed inter-

vals A = [A;a] by setting f(A) = f(p(A)) = f(A), for f € {w, ¥, o}.
Operations between directed intervals are introduced as follows.

Addition of two directed intervals A = [a=,a%;0],B=[b",b%;8] € D
is defined by
A+B=[a",at;0]+ b7, bt; 3]
[a= +b7,a% +bt;0], if o=,
=4 [@a™ +b*,at +b;q), if a=-08,a" +b* <at +b,

10

[a++b",a"+b+;,5], if a=-6,a"+bt>at+b, (10)
_{ [a= +b7,a* +bt; ], if a=04,
B ‘[a"'7+b7,a'7+b"’y;a'y], if a=-p,

wherein v = sign((at +b7)—(a~ +b+)) = #(la”,at], [b7,b%]) = ¢(A, B).

Multiplication of two directed zero-free intervals is defined by

AxB=[a",a* 0] x [b7,b%; 5] =
[a—-a'(B)b—ﬂ{A)’ aU(B}bU(A); a], 1f O = /87
[a"(B)b“’(A),a—"(‘g)bam);CY], if o= —, a®(B)p—a(A) < a—9(B)po(A)
[a_"(B)b“(A), aa(B)b—a(A); ﬁ], o= —3, a?(B)p—o(A) > g~ o(B)po(A)
B { [a—a(B)b—a(A),acr(B)bO'(A);a], if o= ,8,

[aeo(B)b-Ea(A), a—sa(B)beo(A); ae’:‘], if o= '—ﬁ-

wherein € = sgn(a~°(B)po(4) _ a"(B)b_"(A)) = x(A4, B)

Using the form [4; o], [B; 3] for the operands A, resp.

B, we can
express the sum by

[A+ B;al,
[A+~ B; ],

if a=/,

4500+ (5i) = { ol

wherein 7 = ¢(A, B). In a concised form we can write

[4;0] + [B; 8] = [A+°" B; y([4; 0], [B; 8]),
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o, respectively,
A+B=[A4 +°% B: 1,(A,B)],
wherein m1([4; o), [B; B]) = 11(A, B) is defined by

| [ if w(d)>w(B),
m1([4; 0}, [B; B]) = { B, if w(4)<w(B),

Similarly we have for A,B € I(R)\ Z

[4; ] x [B; 8] = [A x°” B; 72([4; o}, [B; B])],

or equivalently for A,B € D \T

A x B =[A x*? B; (A, B)],

wherein 72 is given by

a, if x(A4) 2 x(B),
naal o) ={ 5|
B, if x(4) < x(B).
According to (11) multiplication by a degenerate interval is expressed
by
a x [b™,b%; B] = [ab~(®), ab"(?); 3.

If a = —1 we have (—1) x [b~, bt 8] =—[b", bt Bl = [_b+’ —b7; 3], resp.
—[B; 8] = [-B,; B], which is the negative of [B; 3]. Negation preserves the
direction of a directed interval and changes the sign of its proper part.

The inverse additive of [a~,a%;a] is the directed interval
[-at, —a~; —a]. Indeed, using (10) we have:
[a™,at;a] + [-a*,—a"; —a] =[0,0;4] = 0.

The inverse additive is of opposite direction. The inverse additive of
the negative of a directed interval [a=,a%;q] is the interval [a~,at; —q]
called conjugation of [a~,a%;a]; conjugation inverts the dlrectlon and
preserves the proper part; it is denoted by i([a~,a%; 0]) = [a=,at;a]- =
[a=,a*; —q], resp. [A4;a]- = [4; —a].
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Similarly, the inverse element of [a~,a*; ) with respect to the opera-
tion x is the directed interval [1/a*,1/a"; —a]; indeed we have

[a™,at;0a] x [1/a*,1/a7; —a] = [1, L] =1.
We write for the inverse multiplication element:
1/[a",a*;a] = [1/a*,1/a"; ~a].

Subtraction of two directed intervals is defined resp. by A—-B = A +
(~B). Division of two zero-free intervals is defined by A /B =Ax(1/B).

The algebraic structure (D, +, x) is a rich algebraic structure. It is
equivalent to the algebraic structure (H, +, x ), where H = R2 is the set of
all ordered couples of real numbers (see [6]-[9], [17], [15]). The following
associative and distributive laws hold true in (H, +, x) and consequently
in (D, +, x):

Proposition 2. For A,B,C € D

(A+B)+C=A+(B+C).

Proposition 3. For A,B,C e D\T

(AxB)xC=Ax(BxC).

Proposition 4. For A)B,C,A+B e D\T
(A+B)xC
(AxC)+ (B xC),
=4 (AXC)+ (BxC._),
(AxC_)+(BxC),

if 0(4) =0(B)(=a(A+ B)),
if 0(A)=-0(B)=0(A+ B),
if 0(A)=—-0(B)=—0(A+ B).

. We omit the verification of the above propositions which can be done
directly from the definition.

Each relation between directed intervals implies a corresponding rela-
tion between the proper part of these intervals, that is a relation between
normal intervals. We shall demonstrate this on the example of Proposi-
tion 2.
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Substituting A = [4;a],B = [B;3],C = [C;v] in (A+ B) 4+ C =
A + (B 4 C) we obtain:

[4+7 B; 71(A, B)] +[C;9] = [450] + [B+77 C; (B, C)].

Comparing the proper parts of both sides we obtain for A, B, C' € I(R),
o, 3,7 € A

(A48 B) 47(AB)Y 0 = 4 4on(B.C) (B LAY (),

This equality presents the associative law for the operations +, 4.
Using this equality one can exchange the order of the operations in any
expression involving two consequtive additions (standard and/or non-
standard). For a detailed form of this and other laws see [15]. We note

that this techniques leads to a concise form of the results (for other forms
ct. 3], [4], [18], [19]).

4. Presentation of ranges using directed intervals

Proposition 1 can be elegantly reformulated in terms of directed in-
tervals. Let f € CM(X) and let f[X] = [f(X);7(f; X)] be the directed
range of f (see introduction). Then the following analogue of Proposition
1 holds true.

Proposition 5. For f,.g € CM(D),X C D:

f+9€eCM(X)=(f+9)[X] = f[X]+ g[X];
f—9geCM(X)=(f — 9)[X] = fIX] - g[X]-.

‘In addition to the above assumptions, if f,g do not change their sign in

D, then

fg € CM(X) =(f9)[X] = fIX]o(g(x)) X Q[X]o(f(hX));
flg € CM(X),g(z) # 0 =(f/9)[X] = fAX]otex))/9[X]=o( x5

wherein o(f(X)) = o(f[X]) is the sign of the interval f(X) (or of the
directed interval f[X], which is the same), that is the sign of f on X, so
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that f[X]o(sx)) = {f[X], if f> 0, i(f[X]), if f <0}. Note that for A
=[A;0] and 0 € A we have A, = [4;0q].

Proposition 4 is more powerful than Proposition 1 in the sense that it
gives the direction of the resulting interval as well.

Example 2. Let us repeat the task from Example 1 in terms of
directed ranges and directed interval arithmetic. We have exp[-X] =
[exp(—X); -], arctg[X] = [arctgX ;+]. Using Proposition 5 we obtain
for the directed range of the function h(z) = exp(—z) + arctg(x) the
expression A[X] = exp[~X] + arctg[X] for any X € I(R), where h(z) is
monotone, that is for 0 ¢ X.
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