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In the paper the application of interval mathematics to the practice
problem solving in which a solution vector X € R™ depends on interval
input data. These problems are investigated from three points of view.
The application of regression analysis is studied, as well as that of interval
regression analysis. The problem of comparing and decision-making under
interval indefiniteness is considered.

HEROTOPBIE BOIIPOCBI IPUMEHEHW
| MNMHTEPBAJIBHOMN MATEMATHVEKUA B IMAPAMETPUHYECKOM
:' OIIEHUBAHUMN M ITPVUHATVHM PEINIEHUN

A.Il.Bomurann

B pabGore paccmarpusaercs npumMenciive MHTEpBallbHOW MaTeMa-
TUKU K PEIEHUIO IIPAKTUUCCKUX 3a/laUd. B KOTOPBLIX BCKTOP pPEUIeHUA
X € R" zasucur or unrepBanbibix BXoaHbix aannbix. Takue 3anaum
NCCHENYIOTCA C TPCX TOUCK 3PelnH. ANAJNSUPYCTCH NPUMCHENNE pe-
FPECCUOHHOTO aHaJM3a U UHTEPBANBLIIONO POrPeCcCHOIIOrO aHaAJINiA. a
TaKXe paccMaTpnBacTceda NpobjeMa CpaBHCHUA N HPURSTTUMH PelieHU’
B YCJIOBUAX VHTCPBAJILHOW 1HCONPCACACITIIOCTH.

0. Introduction

There are many practical applications of interval mathematics for solv-
ing problems with interval input data when real values and operations
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108 A.P.VOSHCHININ
with them are replaced resp. by real compact intervals:
[a] £ [a] e IR£ [g;a] £ {a € R:a < a < @)} (1)

and by interval operations [a]  [b] where * € {+, —, x, /}:

[a] + [8] =[a + b,@ + B); (2)

[a] - [b] =[a - b,a - B]; (3)
[a] x [b] =[Min{a-b,a-b,a@-b,a- b},

Max{a-b,a-b,a-b,a- b}); (4)

[a]/[8} =[a, @] x [1/b,1/b)]. (5)

In all these cases the property of isotonicity is satisfied
([a], [b) € IR, a € [a],b € [b]) — (a b € [a] * [5]). (6)

Using interval operations (2)—(4) one can easily define the operations
with interval vectors [c] € IR™ and interval matrices [A] € IR™":

[B][A] £ (8] x [asj]), [b] € IR, [A] &€ IR™"; (7)

[A] + [B] £ ([ai;] + [b;;]), [A],[B] € IR™"; (8)

[A][B] £ (D lau] x [b]), [A] € IR™ [B] € IR¥". (9)
=1

The tools for interval mathematics [1] are widely used for solving of
many practical problems when the solution vector z € R" depends on
interval input data, i.e. x £ x(A,b), A € [A], b € [b].

In particular case of interval linear system
[A]x = [b], [A] € IR"", [b] € IR" (10)
the solution set is defined as

X([Al,[b]) = {x€IR*: Ax=b, A€[A], be[b]}. (11)
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In general case thé solution set
=2 {xeR": x=x(A,b), A€[A], be[b]} (12)

may have a complete structure and because of this the corresponding
methods have to be used for computing of its outer and inner bounds,
ie. such interval vectors resp. =* and =7, that =7 C = C =t.

When solving concrete practical problem the answers on the following
questions should be given:

1. What is the model of errors and how to define the bounds of errors?

2. What is the special structure of input data and what is the appro-
priate interval method for computing?

3. How do we interpret the solution set =7

Two problems are discussed below from this point of view.
1. Regression analysis
The basic concepts

Problem definition. Using experimental data xi,y;,i =1,...,n, to esti-
mate of unknown parameter vector c of the given function

f(x;c) = c1p1(x) + c2pa(X) ... + Cmipm(X) = cTp(x),c €ER™, x € R*

(13)
under following assumptions:
H — 1: output values y; are received with additive errors e;
yi = f(x',¢) +e;; (14)

H — 2: e; are random normal distributed errors such as

M(e;) =0, M(eze;) =0, M(e})=0%, Vi, j=1,...,n;  (15)

H — 3: vector of basic functions ¢(x) = {p1(x), 92(X),. .. , pm(X)} is
known.
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Under these assumptions the OLS-method (Ordinary Least Squares)
provides the optimal estimation ¢ which can be received as a solution
of linear system

Ao = b, (16)

where A 2 F'F e R™™, b=F!y e R™, F2 F(x) = {fi; = pij(x*),i =
H;j: lam}

As a result of regression analysis we have the optimal estimation ¢,
and its covariance matrix D, i.e.

Cols = A7b, D(cos) = 0?A71. (17)

The confidence set (25 and its outer bounds [c],, for given probability
a and known variance o2 can be also obtained for truth vector ¢

Qols = {C e R™: (C - cols)T A (C . cols) < U2X2(a7 m)} ’
Plc € Qo) < o (18)

o = { fed] = [ehry — (0, m)(di) /2,
i + xler,m)(dii)! 17, i = Tm}, (19)

where x?(a,m) is corresponding quantity of Pearson’s distribution, d;; is
diagonal element of covariance matrix D.

Using the interval approach to regression model we can formally replace
matrix A and vector b in (16) by resp. interval matrix [A] and interval
vector [b] and to receive an interval linear system

[Alcos = [b],  [A] € IR™™, [b] € IR"™, (20)
but as it was mentioned above in this case it is necessary to define the
sources, type and bounds of crrors, structure of data, etc.

Model of errors. Analyzing the possible ways of collecting, handling
and transmission of experimental data from object to computer two cases
should be distinguished.
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For the first one there is direct connection between object and com-
puter through A/D card, i.e.

object — A /D card — computer.

In the second case data collects and transmits according with the
scheme which is included the user as one of components:

object — instruments — user — computer.

Obviously each component within both these schemes is a source of
different errors which will be noted as: € (object), e! (A/D card), €’
(instruments), e* (user), e (computer). It is easily to state that:

e® are an integrative result of many errors and noises and consequently
they are random normally distributed errors;

e! are bounded A/D transform errors;
e", e’ are bounded rounding errors of respective component.

Let A*, A’ A* A® denote such values that for bounded errors take

place ‘ _
et |[< A | e |< A% e |< A", | ef [< AC. (21)

By using of corresponding specifications and information from user it is
possible to define these values and respectively interval matrix [F] and
interval vector [y] related with interval linear system (16).

It is necessary to underline that when using interval mathematics for
computing OLS -estimations the random errors €? should not be taken
into account. This is first of all because of their normal distribution
and besides that because of OLS-method by itself involves these random
errors by the optimal way, i.e. OLS-estimations are the best one in the
class of all linear estimations under the random errors.

Special structure of input data. To receive interval linear system (16)
for given interval matrix [F] and interval vector [y] we first have to cal-
culate outer bounds for A and b

[A] = [F]"[F]. [b] = [F][y] (22)

and then to obtain the outer bounds =% of the solution set of interval
linear system (16) taking into account dependencies of errors in first equa-
tion and the fact that matrix A is a square, symmetric, positive defined
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and as a rule bad-conditioned matrix. The most appropriated method
for defining of outer bounds =% under these conditions is described in [2].

Interpretation of the solution. QObviously the outer set solution =+

reflects the influence of the bounded errors el, e, e, e® and conversion
errors on OLS-estimations. Comparing the sets [c]os and =V it is easily
for user to evaluate the effect of errors mentioned above and to make
corresponding decision. In particular, if [¢;]o)s E;" it means that the
influence of rounding errors on OLS-estimations is very essential.

2. Regression analysis with interval data

This problem is similar to one mentioned above. The difference is that
vector y is given in interval form [y] and it is assumed that unknown
truth output value in every trial belongs to the given interval [y;], i.e.

y, < f(x,e)<T;, Vi=1,...,n. (23)

Using vector notations we can rewrite (23) in form
Fe=[y], F eR™, [y] € IR, (24)

which presents overdefined interval linear system with the solution set

Q:{ceRm:y_igf(xi,c)giji, Vi:l....,n} (25)

As every solution ¢ € {2 provides a model f(x, ¢) which passes through
all interval output measurements it can be consider as set of possible
values of the unknown parameters c.

It can be proved that:
1. If rank F < m (in particular, when n < m) Q is unlimited set;
2. If rank F = m and Q # 0 the solution set Q2 is compact;

3. If m = n, rank F = m the solution set can be presented in the form
Q={ceR™: c=Fy, yely]} (26)

and ) is symmetric convex politope with 2* top points and with the
central point ¢ = F~! - ¥, where y denotes the midpoint of [y].
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Using interval approach under the assumptions that the errors in F
are much staller then in y we can state the following.

Model of errors. The sources of errors are similar to the case of regres-
sion analysis. The errors in output vector y are bounded errors which in-
clude all errors related respectively with object (€°), computer (), A/D
card (e') or instruments (e’) and user (e*). The bounds of these errors
should be given by the user.

Special structure of input data. As a rule F is bad-conditioned matrix
with n > m and rank F = m. As we have assumed that there are no errors
in matrix F its structure should not be taken into account. Obviously
there are no dependencies between components of vector [y].

If F is m X m matrix and rank F = m any general method for interval
linear system can be used for computing of outer set [c] D f2.

If F is n X m matrix rigorous outer bounds for §? can be obtained as
a solution of 2m linear programming problems (2]
min(max)c;

] . _ . (27)
subject to y. < f(x',c) <7, Vi=1,...,n.

Interpretation of solution. The outer set solution [c] is a set of possible
values of the unknown parameters ¢ with the influence of all bounded
errors e', e’ e*,e°. Analyzing this set user can evaluate a sensitivity of
parameter vector to these errors. If, for instance, 0 € [¢;] it is possible
to accept the hypothesis H : ¢; = 0 and consequently to “turn to zero”
corresponding coefficient in f(x, ¢).

When meodel will be used for prediction of y outer set solution [c] allows
to receive the guaranteed error of prediction. If model will be included as
a goal function in some optimization problem the inner set solution can
be also useful.

2. Comparison

In many practical applications it is necessary to compare intervals and
to choose one of them according to some criteria. For example let be
defined an optimization problem

() = min, (@)
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where [f(x)] £ [f(x) f( x)] is known interval function, ¢ € IR™, x €
R* X = {x!,...,x,.. LX) is - liscrete set of feasible solutions. Obvi-
ously in this case to each solution x* corresponds interval estimation of
the goal function [a’] = [f(x')]. The discrete set of such interval estima-

tions we’ll note as 4 = {[al],...,[a’],.. [a"]} For computing the set
of optimal solutions
2lxieX: x'= argmlnf(x) f(x) e [f(x)]}. (29)

Interval version of corresponding methods can be used 1nclud1ng that
ones which are based on the comparison of the feasible solutions x* € X.
In this case such partial ordering relations can be defined on X and on
A

<] We]=2, @<d, V], @]eA;  (30)

@)= (o] [o](lo'] # 2; | (31)

xt <%/ [af] < [@7], ¥x', %7 € X; (32)
x'2x [of] [a’] vxixl e X, (33)

It can be proved that relations (30) and (32) are antlsymmetnc and tran-
sitive relations, resp. (31) and (33) are symmetric and reflexive relations.
It means that on A resp. X a partial ordering relatlon is.defined. In this
case one can.define the set of optimal solutions as

X0 2 IxeX: I <x' ¥ eX}. (34)

It can be proved that (29) and (34) are presented the same set, i.e. X9 =
X0 besides that if we define the set

T(z) 2 {z,xe X: x =z}, : (35)
then X° C T(x?) for any x° = argmin f(x), x° € X, f(x) € [f(x)}.

Refering to (33) we can obtain that

TE) = {zeX: f@INTEN#2) . (39

Depending on how the interval function [ f (x)]-is defined and what is

its structure we can distinquish three cases. |
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1.f(x) is linear combination of known bounds of interval function [f (x)],
i.e a note f(x) € [f(x)] means that

f(x) = af(x)+(1-a)- f(x), a €0,1]. (37)
It is proved thatjis P(iret’o set for bikriteria problem
x xeX
£) 25 min,  F(x) <=5, min (38)

and x* = x7 either [f(x*)] C [f(x/)] or [f(x7)] C [£(x?)].
2. f(x) is any function which passes within known bounds, i.e. f(x) €
[f(x)] means that f(x) < f(x) < f(x), ¥x € X. In this case

xS £ - (39)
and the solution set is defined as

XM={xeX: f(x)< ’afg min f(x)}. (40)
3. f(x) is linear parametrized function with interval parameters, 1.e.
[fGA] = [ed]er (%) + [ea]a(x) + ... + [emliom(%) = 0T (x)[c].  (41)

In this case the relation (33) can be present in the form
x'2x’ 3eeld: {px) = o(x))}[c]. (42)

Together with (36) it allows in some cases to evaluate the outer set
solution for (28).
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