Interval Computations
No 3(5), 1992

=FH

Alarel ¥

INTLIB: A PORTABLE FOCRTRAN-77
ELEMENTARY FUNCTION LIBRARY

Baker Kearfott, Milind Dawande, Kaisheng Du and Chenyi Hu

INTLIB is meant to be a readily available, portable, exhaustively doc-
umented interval arithmetic library, written in standard Fortran 77. Its
underlying philosophy is to provide a standard for interval operations to
aid in efficiently transporting programs involving interval arithmetic. The
model is the BLAS package, for basic linear algebra operations. In this
paper, we (1) outline previous packages and present efforts, (2) explain the
overall structure of the package, as well as give descriptions of some of the
routines, and (3) mention future enhancements.

INTLIB: IEPEHOCUMAS
BHUBJINOTEKA 9JIEMEHTAPHBIX
YHEKIVU HA A3BIKE FORTRAN-77

b. Kupdorr, M. Hdyauzge, K. Iy, Y. Xy

Bu6nuorexy INTLIB npeanonaranoch ciaejaTh JIEMKO JOCTYNHOM,
nepeHocuMoil, McuepneiBalollle JIOKYMEHTUPOBAHHOM GUBAMOTEKOR UH-
TEPBAJbHO apudMeTHKH, HANUCAHHOW Ha CTAaHAAPTHOM A3bIKe
FORTRAN-77. B ee ocHOBe JiexkuT Hamepedne obecrieudTb cTaHAapT
JUIA MHTepBaJibHbIX ollepaluuid ¢ TeM, 4Tobbl NoMoYb B »PpPEeKTUBHOMA
[IEPEHOCUMOCTHM MPOrpaMMm, COAeprKallluX MHTEPBAJBHYIO apudmeTn-
ky. IHpororunom 6ubnmnoreku sisnserca naxer BLAS ana ocHoBHBIX
ornepaluii nuHelHO aJsirebpol. B HacToswel pabore mbl (1) naaum
0630p NpeAllecTBYIOMX NTAKETOB M HAUIMX A0CTUXKeNUid, (2) onvwem
ob11YIO0 CTPYKTYPY HNaKeTa M AalMM CIleUMPUKALNIO HeKOTODPbLIX NPo-
nenyp v (3) HamMeTUM NyTU Pa3BUTUA [1AKETa.

© B.Kearfott, M.Dawande, K.Du, C.Hu, 1992

Our
nomial
evalua’
INTBI
BIS ap
to alloy
This le

-Vari
in the 1
60 Pro
Yohe’s
ably Pc
the dire
in [5]. ¢
include
Fortran
written
pability.
arithme
public i1
in the M

We di
tations 1
or as a
ple of th
impleme

None
involved.
arithinet,
particula
computa

Corlis:
Interval .

interval
dardize i1

nyi Hu

rely doc-

77. Its
wtions to
tic.’ The

In this
lain the
1e of the

YOHOT,
<OM UH-

A3bIKe
AHaApPT
TMBHO
pmeru-
IOBHBIX
Aannmm
numem
X npo-

"

INTLIB: A PORTABLE FORTRAN-77 ... 97
1. Introduction and purpose

Our INTBIS algorithm [12] for finding all solutions to certain poly-
nomial systems of equations contained portable Fortran 77 routines for
evaluation of the basic arithmetic operations. These routines allowed
INTBIS to find all roots of polynomial systems of equations. Since INT-
BIS appeared, various researchers have asked us for additional routines

to allow finding roots of systems which involve transcendental functions.
This led to INTLIB.

Various packages supporting interval arithmetic have been described
in the literature. The first such package was perhaps Herzberger’s Algol-
60 Procedures Evaluating Standard Functions in Interval Analysis [9].
Yohe’s Fortran 66 code (Software for Interval Arithmetic: A Reason-
ably Portable Package) [20] followed nine years later. Clemmesen, under
the direction of K. Madsen, published language-independent pseudocode
in [5]. Computer languages which explicitly support interval arithmetic
include Pascal-SC [16] the precompiler TPX for Turbo-Pascal [17] and
Fortran-SC [2]. Various libraries [11,7] are subroutine packages in C++,
written to take advantage of that language’s operator overloading ca-
pability. Aberth and Schaefer have provided C++ modules for range
arithmetic, a useful and interesting variant of interval arithmetic. Other
public implementations of interval computations, such as interval support
in the MAPLE symbolic manipulation package [18], are available.

We do not attempt to mention all of the interval arithmetic implemen-
tations researchers have produced for their own use, in an ad-hoc way,
or as a means to proceed with a higher-level computation. An exam-
ple of this is the interval arithmetic by Krishchuk, Vasilega, and Kozina
implemented in assembler language for IBM PC compatibles [14].

None of the above packages is universally applicable. Yohe’s is large,
involved, in obsolete Fortran 66, and presently unsupported. The interval
arithmetic support in language compilers and precompilers is limited to
particular machines. The C++ libraries are valuable, but only if the
computational project is carried out in C++.

Corliss has proposed language-independent specifications for a “Basic
Interval Arithmetic Subroutines Library” (BIAS), as well as bindings for
interval arithmetic in Fortran, Ada, and C [6]. The goal was to stan-
dardize interval arithmetic in the same way that the BLAS standardized

98 B. KEARFOTT, M.DAWANDE, K.DU, C.HU

numerical linear algebra, aided portability, and aided optimization of
applications codes on advanced architecture machines. INTLIB is a real-
ization of this BLAS / BIAS philosophy. INTLIB implements the most

important operations in the BIAS proposal.

INTLIB is meant to provide:

portable, rigorous interval arithmetic to the Fortran community (to
prevent wheel re-invention),

well-documented templates for the design and validation of efficient
machine-specific versions.

e a library to suﬁport operator overloading in Fortran 90,

a reasonable testing paradigm, and
e simple but professional error signalling.

Though possibly not optimal on specific architectures, INTLIB is meant
to be usable in a production mode. It can be used by itself in Fortran 77
or with operator overloading in Fortran 90.

2. Contents and structure of the package

We have organized the package into
e clementary interval arithimetic subroutines.
e interval elementary function subroutines,
e utility routines,
e an error-printing routine,

e a routine to set mathematical constants and inachine-dependent, con-
stants, and

e testing prograins.

Elementary interval arithmetic subroutines.

These routines include subroutines which are essentially unchanged
from our previous work INTBIS, subroutines which are found in improved
form from INTBIS, and new routines. Routines in a form essentially as

in INTBIS include:

Al
SCLAI
SCLM!

ST
The
MU!I

POWE

RNDOU

The
1D

CANCI

C
.
€

adds

Ic
width

timization of
LIB is a rea)
mnts the Mogt

mmunity (to

1 of efficient

IB is meant
Fortran 77

wdent, con-

nchanged
Improved
ntially as

ADD,

INTLIB: A PORTABLE FORTRAN-77 ... 29

which adds two intervals;

SCLADD, which adds an interval to a point;

SCLMLT,
SUB,

which multiplies an interval by a point; and

which subtracts two intervals.

The following routines have been improved from INTBIS.

MULT:

POWER:

RNDOUT:

For multiplying two intervals, the version in INTBIS used the
naive definition (2.19) of {15]. The improvement, suggested in
[10], is an implementation of the more efficient formulas (2.20)
of [15].

The INTBIS version took a nonnegative integer power of an in-
terval. The routine has been generalized to allow taking a nega-
tive power of an interval. Associated error checking is provided.
The routine has also been rewritten to be rigorous on systems for
which the Fortran intrinsic represented by A**N is not optimally
accurate. Thus, this routine is now more properly an elementary
function, rather than a basic operation.

Called after each elementary operation, this routine performs
siimulated directed rounding, to make the interval arithmetic
mathematically rigorous. This is done using a simplified model
of the number system (similar to that in [3]). The version in
INTLIB has improved behavior near the underflow threshold.

The following routines are new in INTLIB.

IDIV

CANCEL

does interval division of ordinary intervals. It signals an error if
the result is an extended interval.

performs cancellation-type subtraction on an accumlated sum.
For example, if one knew that X and Y were the same interval,
then the result of applying CANCEL to X and Y would be an
interval containing zero whose width would be on the order of
the uuit roundoff error.’

Calls to all routines in INTLIB are similar. For example, ADD, which
adds intervals A and B and result in RESULT, is structured as follows.

1Of course, ordinary interval subtraction X — X would not yield zeroc unless the
width of X were zero.

100 B.KEARFOTT, M.DAWANDE, K.DU, C.HU

SUBROUTINE ADD(A, B, RESULT)
IMPLICIT DOUBLE PRECISION (A-H, 0-Z)
DOUBLE PRECISION A(2), B(2), RESULT(2)

(Univariate routines have the argument list (A, RESULT).)

In the basic package, we have not attempted to implement extended
interval arithmetic, or indeed, any operation whose result may be any-
thing other than a standard interval. The set of extended intervals is not
closed under intersection, etc., and additional support functions and er-
ror checking would be advisable. Also, the precise definitions of extended
interval arithmetic are still subject to some modification.

Interval elementary function subroutines.

The following routines have been completed at the time of writing of

this report.

ICOS (Interval cosine)
IEXP (Interval e®)
ILOG (Interval natural logarithm)
ISIN (Interval sine)

ISQRT (Interval square root)
IATAN (Single argument arctangent)
IACOT (Single argument arccotangent)
IASIN (Interval arcsine)

IACOS (Interval arccosine)

IIPOWR (Nonnegative interval to an interval power)
ISINH (Hyperbolic sine)

In general, we used various argument reduction techniques coupled with
Taylor polynomial approximations. Actual details appear in in-line doc-
umentation. In our design, we weighed conflicting goals of portability,
clarity, accuracy (tightness of the bounds), and efficiency.

The interval square root, an elementary operation in the IEEE float-
ing point standards [19], requires a more sophisticated algorithm for
non IEEE arithmetic. Since we do not assume IEEE arithmetic in the
portable version of INTLIB, we used a combination of argument reduc-
tion, Taylor polynomial approximation, and an interval Newton method.

Likewise, we assume nothing about the Fortran-supplied intrinsic func-

tions.
comput

The
more th
we exch

Utility
Thes:

as for r
propose:

ICAP
IDISJ
THULL
TILEI
IILTT
IINF
IMID

IMIG
INEG |
INTABS (
TRLEI (
TRLTI (
ISUP (
IVL1 (
IVL2 (
IWID (

The errc

Error |
developed

xtended
be any{
s is not
and er-
xtended

iting of

' with
1e doc-
ability,

) float-
un for
in the
reduc-
ethod.

> func-

INTLIB: A PORTABLE FORTRAN-77 ... 101

tions. Thus, even for monotone functions, we supply our own code to
compute bounds on the values at the endpoints of the domain intervals.

The value of the two argument arctangent would possibly consist of
more than one interval, due to branch points. Due to this complication,
we excluded the two argument arctangent from the initial package.

Utility routines.

These routines are needed to support operator overloading, as well
as for reliable exception handling. The list is modified from Corliss’

proposed BIAS specifications.
ICAP (Intersection)
IDISJ (Two intervals disjoint)
THULL (Convex hull)
ITLET (Set inclusion in closure of interval)
ITILTI (Set inclusion in interior)
IINF (Return left endpoint)

IMID (Return approximation to midpoint using available floating point
arithmetic)

IMIG (Mignitude)
INEG (Unary negation)
INTABS (Interval absolute value)

IRLEI (Point inclusion in closure of interval)

IRLTI (Point inclusion in interior of interval)
ISUP (Return right endpoint)
IVL1 (Construct interval from a point)
IVL2 (Construct interval from its endpoints)

IWID (Outwardly rounded width)

The error handling routine.

Error handling is roughly similar to that in INTBIS, but is better
developed.

L
102 B.KEARFOTT, M.DAWANDE, K.DU, C.HU

Errors are checked within the individual routines at the points where
they possibly occur. If an error condition occurs, an integer flag E is set,
and the error routine ERROUT is called. Subsequent action depends
on E and on two other flags P and S. The errors are assigned three
severities?, similar to the scheme in the SLATEC library [8]°. A print
flag P controls which severity of errors is printed, and a stop flag S
controls which error severity causes termination of execution.

The flag F, set by the package, and the flags P and S, set by the user,
are global®. An additional global flag R, set by the package, indicates in
which routine the error occurred. An additional global variable indicates
the unit number for output of error messages.

Routine to set constants.

This is one of the few routines which may need some modification in
transporting the library from one machine to another.

This routine grew out of routine SIMINI in INTBIS. Its purpose is to
set machine constants (unit roundoff erroz, etc.) and interval inclusions
for mathematical constants such as w, e, and related values. These are
then stored in global variables (common blocks) for efficient use bv the
elementary function routines. Installation requires setting the maximum
number of units in the last place by which an elementary operation can
be in error. This value is 1 for IEEE arithmetic.

The inclusions for the mathematical constants are obtained by express-
ing the constants to more digits than the precision, then using simulated
directed rounding. We assume that conversion of decimal numbers to the
machine format is as accurate as a floating point operation. Othewise,
the representation of the constants will need to be changed.

The representation of the constants may also need to be changed if
double precision is more highly accurate than on most machines

Some simplifications of this routiize wonld be possible with the Fortran
90 machine query functions.

2(0, 1, and 2, corresponding to warning. error. and fatal error)

3However, to keep calling sequences simple for operator overloading. the severity
flag is stored in a common block instead of passed as an argmnent.

*(in the common block ERR)

TTTZ ENGRY. SRS e =0 *

Each
dardized
to check
sions at

a) nature

b} crosso
appros

¢) points

d) 20 inte
the pa

Interval ¢
clementas
for the el
single, shi
provided.

Witho
curacy of
difficult.
sistent wi
particular
the input
tests are
within the
terval rou
elementar

On sys
multiple 1
functions,
valicdation
1';111@'05.

5For exa
5The tun
EVAL2 and

; where
7 is set,
epends
1 three
\ print
flag. S

e user,
ates in
dicates

tiol 1in

e 1s to
usions
'se are
hv the
dmum
n can

press-
lated
to the
ewise,

ged 1f

rtran

werity

INTLIB: A PORTABLE FORTRAN-77 ... 103

3. The testing programs

Each elementary function has its own testing routine, with a stan-
dardized name®. These routines are distributed as part of the package,
to check the installation. Each testing routine evaluates interval inclu-
sions at

a) natural special points of the function,

b) crossover points and extreme points in the argument reduction and
approximations,

¢) points near the limits of the floating point system, and

d) 20 intervals shaped from preset pseudorandom numbers according to
the particular function and the particular machine arithmetic.

Interval output is printed along with point output from Fortran-supplied
elementary functions, if they are available. The evaluation and printing
for the elementary functions with one argument is standardized with a
single, shared routine EVAL.® Suinmaries of correctness and accuracy are
provided.

“Without assuming availability of higher precision or of optimal ac-
curacy of the Fortran intrinsic elementary functions, rigorous testing is
difficult. However, using the same input data for each machine is incon-
sistent with testing the behavior of the algorithm near the extremes of a
particular number systern. We have opted to program the tests so that
the input is scaled according to the individual machine parameters. The
tests are then successful if the point evaluations at the end points are
within the interval values. An unsuccessful test means either that the in-
terval routines are pot functioning correctly or that the Fortran-supplied
clementary function routines are inaccurate.

On systems with multiple precision elementary function libraries, the
multiple precisicn functions can be easily substituted for the standard
functions. to give a more rigorous test of the routines. In fact, in our own
validation efforts, we independently computed more accurate values and
ranges.

5For example, TICOS tests ICOS and TIEXP tests IEXP.
6The tunctions TIIPWR and TINPWR, with two arguments, use similar routines
EVAL2 and EVAL3. and various modifications are used for testing the utility routines.

104 B.KEARFOTT, M.DAWANDE, K.DU, C.HU

4. Future enhancements

Our hope is that INTLIB will be both widely used in a production
mode and used as a template for efficient, machine-specific versions. Be-
sides this, our own future efforts may include

1. providing Fortraa 90 code to access the library through operator over-
loading,

2. providing versions of the package for IEEE arithmetic machines and
for compilers with libraries of Fortran intrinsic functions which are
optimally accurate,

3. providing extended interval arithmetic routines,
4. providing complex interval arithmetic routines, and

5. further improving the elementary functions, such as with an accu-
rate dot product. We may make use of other packages, such as that
presently being developed by W. Walter.

Another, more ambitious extension may be to provide routines for
slope arithmetic [13].

5. Credits

Besides my co-authors, I wish to acknowledge George Corliss at Mar-
quette University. Many discussions with him both encouraged me and
allowed me to improve the package. I also wish to acknowledge my one-
time student Rebecca Yun and Abdulhamid Awad, an undergraduate
student at the University of Houston- Downtown who worked on several
of the routines.

References

1. Aberth, O. and Schaefer, M. Precise computotion using range arithmetic, via
C++. Preprint, Dept. Math., Texas A&M Univ., College Station, 1990.

2. Bleher, J. H., Rump, S. M., Kulisch, U., Metzger, M., Ullrich, C. and Walter,
W. Fortran-SC - a study of a fortran eztension for engineering and scientific
computation with access to ACRITH. Cowmputing 39 (2) (1987), pp. 93-110.

3. Brown, W. S. A simple but realistic model of floating-point computation. ACM
Trans. Math. Software 7 (4) (1981), pp. 445--480. g

|

10.

11.

12.

13.

14,

16.

17.

18.

19.

20.

. Bundy, .

Trans. N

. Clemmme

tic. AC)H

. Corliss,

Preprint

. Ely, J. F

some co
puter Sc

. Fong, K.

matherm

. Herzberg

analysts.

Jiang, H
nical rep
Milwauk

Jiillig, H.
sche Uni

Kearfott.
package |
Krawczy:
ated cent
Krishchu

interval «
ronic det

5. Moore, R

1979.
Rall, L. E

puters an

Rump, S.
enVIrOnM
(Netherla

Maple, wve

IEEE sta
New York
Yohe, J. D
Trans. M:

productiop
rsions. Be.

Tator over-

chines and
which are

an accu-
ch as that

utines for

s at Mar-
1 me and
' my one-
graduate
n several

metic, via

d Walter,
sceentific

1--110.

.on. ACM

|

10.

11.

12.

13.

14.

16.

17.

18.

19.

20.

"INTLIB: A PORTABLE FORTRAN-77 ... 105

. Bundy, A. A generalized interval package and its use for semantic checking. ACM.

Trans. Math. Software 10 (4) (1984), pp. 397-409.

. Clemnmesen, M. Interval arithmetic implementations using floating point arithme-

tic. ACM SIGNUM News 19 (4) (1984).

. Corliss, G. F. Proposal for a basic interval arithmetic subroutines library (BIAS).

Preprint, 1990 (available electronically from georgec@boris.mscs.mu.edu).

. Ely, J. Prospects for using variable precision interval software in C++ for solving

some contemporary scientific problems. Ph.D. dissertation, Department of Com-
puter Science, Ohio State University, 1990.

. Fong, K. W., Jefferson, T. H. and Suyehiro, T. Guide to the SLATEC common

mathematical library. Preprint, Lawrence Livermore National Laboratory, 1990.

. Herzberger, J. ALGOL-60 procedures evaluating standard functions in interval

analysis. Computing 5 (4) (1970), pp. 377-384.

Jiang, Hong. Implementing a basic interval arithmetic subroutines library. Tech-
nical report no. 333, Dept. of Math., Stat., and Comp. Sci., Marquette University,
Milwaukee, 1990.

Jullig, H.-P. Algorithmen mit Ergebnisverification mit C++ /2.0. Preprint, Techni-
sche Universitat Hamburg-Harburg, 1991.

Kearfott, R. B. and Novoa, M. INTBIS, a portable interval Newton/bisection
package (Algorithm 681). ACM Trans. Math. Software 16 (2) (1990), pp. 152-157.

Krawczyk, R. and Neumaier, A. Interval slopes for rational functions and associ-
ated centered forms. SIAM J. Numer. Anal. 22 (3) (1985), pp. 604-616.

Krishchuk, V. N., Vasilega, N. M. and Kozina, G. L. The ezperience of applying
wnterval calculation for the analysis of the strength characteristics of radio-elect-
ronic devices. Preprint, 1992.

5. Moore, R. E. Methods and applications of interval analysis. SIAM, Philadelphia,

1979.

Rall, L. B. An introduction to the scientific computing language Pascal-SC. Com-
puters and mathermatics with applications 14 (1) (1987), pp. 53-59.

Ruwp, S. M. Accuracy control and estimation, self-validating systems and software
environments for scientific computation. IFIP Trans. A, Comput. Sci. Technol.
(Netherlands) A-2 (1992), pp. 49-56.

Maple, version 4.2.1. Brooks/Cole, Monterey, California, 1990.

IEEE standard for binary floating point arithmetic (ANSI/IEEE 75/-1985). IEEE,
New York, 1985.

Yohe, J. M. Software for interval arithmetic: a reasonably portable package. ACM
Trans. Math. Software 5 (1) (1979), pp. 50-53.

