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AN ORDER-THEORETIC APPROACH
TO
INTERVAL ANALYSIS

Dalcidio M. Claudio!, Martin H. Escardé? and Beatriz R.T. Franciosi®

Interval analysis makes heavy use of inclusion order for intervals, and
relies on the notion of monotonicity of functions for this order. It turns out
that (IR, D), where IR is the set of Moore intervals plus [—o0, 4+00], is a
complete partial order (cpo). Then it is appropriate to use the theory of
cpo’s in order to fully formalize the role of inclusion order. This work de-
velops basic concepts of interval analysis within this order-theoretic frame-
work. There is a natural topology for cpo’s, the Scott topology. It is shown
that Scott topology on IR is compatible with both inclusion-monotonicity
and the usual tépology on the real line.
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oCHOBHBIE TIOJIO/KEHNA UHTEPBAJILHOrO aHaJln3a B PaMKaX TeOPEeTUKO-
nopAdKoBoro noaxona. CyllecTByeT ecTeCTBEHHasl TOMNOJJOTHA AJis
cpo — Tononorusa Ckorra. [lokasano, uro Tononorua Ckorra Ha IR
cOBMECTUMA KaK C MOHOTOHHOCTLIO [0 BKJIIOUEHUIO, TaK M ¢ 0GbIUHOM
TOr0JIOT el BellleCTBeHHOM npAMoii.

1. Introduction

Interval analysis [1] makes heavy use of inclusion order for intervals,
and relies on the notion of monotonicity of functions for this order. It
turns out that (IR,D), where IR is the set of Moore intervals plus
_o0,+00], is a complete partial order (cpo) [2]. Then it is appropriate
to use the tueory of cpo’s in order to fully formalize the role of inclusion
order. This work develops basic concepts of interval analysis within this
order-theoretic framework (see also [3-6]), as described below.

Section 2 introduces basic concepts of interval analysis. Section 3
pl-esents the deﬁnition of cpo and some fundamental notions relative
to cpo’s. In particular, the notion of continuous functions on cpo’s is
defined, and continnity for functions on IR is related to continuity of
functions on R. Section 4 infroduces a standard topology on cpo’s,
the Scott’s topology. and relates it to the continuity notion for cpo’s.
Moreover, the Scott’s topology on IR is related to the usual topology on
the real line. Finally, section 5 presents conclusions and discusses further
applications of the cpo-structure of IR.

2. Basic concepts of interval theory

Definition 1.(Intervals). Let R be the ordered field of real numbers.

For real numbers a < b the closed interval { € R| a < z < b} is
denoted by [a, b]. B

In this work, the closed set of all real numbers is also considered as a
closed interval, denoted by [—oo, +oc].

Definition 2.(IR). The set of all closed intervals is denoted by IR.

The letters X,Y, Z are interval variables over IR, the letters X , }7, A
are interval variables over IR", and F, G, H are interval function variables
over JR" — IR. ’
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Real numbers are identified with single-point intervals, so that R C.
IR. Hence for z € R we have z = [z, z].

Then it is possible to extend functions R* — R to functions IR" —

IR.

Definition 3.(Interval ranges). Let f : R® — R. The interval
range of f is F' : IR™ — IR defined by

F(X) =¥ eIR[Y C f(X)}

i.e., the least interval in IR which contains f (X )
F' is denoted by f in order to make explicit its dependence on f.

Note that F' is an extension of f. The proof for n = 1 is given by

F(z) =F([z,a]) = [ {Y € IR|Y C f([z,2])}
={f(2)} = [f(2), f(2)] = f(x).

Some of this equalities are due to the identification of real numbers with
single-point intervals (cf. definition 2).

Theorem 1. (Characterization of interval ranges). For all f :
R"™ — R, the interval range f : IR™ — IR of f satisfies

F(X) = [inf f(X),sup f(X)).

Theorem 2. (Monotonicity of interval ranges). For all f : R" —
R, f is inclusion-monotonic, i.e., X C Y implies f(X) C f(Y), where
XCYiff X;CY; foralli=1.n.

3. Order-theoretic structure of IR

Definition 4.(Partial order). Let D be a set, and C a relation on D-
Then (D, C) is said to be a partial order (po) iff C is reflexive, transitive
and antisymmetric.

Definition 5.(Complete partial order). Let (D,C) be a po.
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tervals, so that R C, A non-empty set X C D is said to be directediff forallz,y € X, 2 C 2
and ¥ C z for some z € X.

to functions IR" — (D,E) is said to be a complete partial order (cpo) iff D has a least
cJement L, and for all X C D directed, X bas a least upper bound,

denoted by [ ] X.

Definition 6.(w-continuous cpo). Let (D,C) be a cpo.

The way-below order < on D is defined by d < e iff for all X C D
} directed, e C | | X implies d C « for some z € X.

A set B C D is said to be a basis for D iff for all z € D, the set
(be B|b < z} is directed and its least upper bound is z.

— R. The wnterva]

lependence on f. (D, C) is said to be an w-continuous cpo iff D has a denumerable
n = 1 is given by basis.

Definition 7.(Domain). Let (D,C) be an w-continuous cpo.
([2,2])} A set X C D is said to be bounded iff X has an upper bound in D.

D is said to be bounded-complete iff every bounded subset of D has a

: ast upper bound.
n of real numbers with le pp . |
A domain is a bounded-complete, w-continuous cpo.

Theorem 3. (Order-theoretic structure of IR). For X,Y € IR
define X CY if X D Y. Then (IR,C) is a domain. Moreover, the least
element of IR is L := [—o00, +00]; the way-below order for IR satisfies

ranges). For all f

atisfies

]. XY iff X=1Lorxy <y1 <y < 23,
where X = [z, 22] and Y = [y, y2]; and a basis for IR is {[p, q] € Q?|p <
zes). For all f:R" — q}-

s f(X) € FY), where 1 interval [a,b] can be seen as a totally defined real number if a = b,

and as a partially defined real number if a < b; the interval L can be seen

as a completely undefined real number (see [7]). Totality and partiality .

s of IR correspond to respectively maximality and non-maximality for C. The

' fact that L is a completely undefined real number corresponds to the i ct
t,and C a relation on D.that it is the least element for C. '

C is reflexive, transith e, pyoginition 8.(| J-Continuity) Let (D,Cp) and (E,Cg) be cpo’s. A
function f : D — E is said to be | |-continuous iff for all D-directed X,
et (D,C) be a po. f(X) is E-directed, and f({ |, X) =g f(X).
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Theorem 4. (Monotonicity of continuous functions). Every | |-
continuous function f : D — E is C-monotonic.

Theorem 4 shows that the notion of L]—continuity for functions IR —
IR is compatible with the notion of inclusion-monotonicity. On the other
hand, there are continuous functions IR — IR for Moore topology which
are not inclusion monotonic, as it is well known (see [3]).

Theorem 5. (Cartesian products of domains). Let D; fori = 1..n

be domains. Then D; x --- x D, coordinatewise ordered by
(1, s Zn) C(y1,...yn) iff 2; Cy; fori=1.n
is a domain.

In particular, IR" is a domain.

Theorem 6. (Continuity of interval ranges). For all f : R* — R,

f:IR™ — IR is | |-continuous iff f is continuous for the usual Hausdorf
topology on R.

There are functions which are not continuous in the whole of R but are
continuous on a subset of R. A similar theorem holds for these functions
For instance,  + 1/z is a continuous function on R — {0}, which can
be extended to a | J-continuous function F on the whole of IR such thal
F(X)=L1Lif XCO0ie,0€ X. In general, every continuous functio?
on A C R can be extended to a | J-continuous function on the whole o
IR (see theorem 11, section 4).

Theorem 7. (Function spaces). Let D,E be domains. Then [D -~
E], the set of | |-continuous functions D — E pointwise ordered by

fCgiff f(x) C g(z) for all z € D,
is a domain.
In particular, [IR® — IR] and [[IR" — IR] — [IR™ — IR]] at

domains.

In the same way that an interval is a set of real numbers, a IJ
continuous interval function can be seen as a set of real functions, a
cording to the following theorem.
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Theorem 8. (Interval functions as sets of real functions). For all
U,Continuous F :IR"™ — IR define

>

|F| = {f : R" — R continuous |F is an extension of f}

Then
e FCGiff|F|2 |G
e F' is maximal iff |F| is a singleton

o f={f}

corollary 9. There is a 1 — 1 correspondence between ‘continuous real

functions and | |-continuous maximal interval functions, given by f +— f
Moreover, for each continuous real function f, the set

{F|F is a continuous interval extension of f}
is directed and its least upper bound is f.

Then, in the same way a real number z was identified with the interval
[z, 2], we identify a continuous real function f with its interval range f.

4. Topological structure of IR

Definition 9.(Scott topology). Let (D,C) be a cpo. The Scott
topology Sp on D is defined by:

O C D is Sp-open iff
o z €0 and 2 C y implies y € O,
e | |X €O, with X C D directed implies X N O # 0.
Theorem 10. (| ]-continuity=Scott-continuity). Let (D,C) and

(E,C) be cpo’s. Then f : D — E is | |—continuous iff f is Scott-
continuous.

Theorem 11. Let H be the usual Hausdorff topology on the real line
and S be the Scott topology on IR. Then (R, H) is a topological sub-
space of (IR, S), i.e.:

e RCIR,

e H={OUR|O € S}.
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Corollary 12. A function f : A —» R, for ACR, is H -continuous iff
f has a S-continuous extension F : IR — IR. Conversely, if a function
F IR — IR is S-continuous, then the function f : A= R defined by

e A={reR|F(zx) €eR},
o f(x)=F(z)forallz€ A

is H-continuous.

Note that the Scott topology on IR is T and is not T3 (i.e., Hausdorff).
Hence this topology is not metrizable.

5. Conclusion

The Moore topology on IR is not compatible with inclusion mono-
tonicity, in the sense that there are continuous functions for this topol-
ogy which are not monotonic. But the notion of inclusion monotonicity
is fundamental for interval theory. This work presents an order-theoretic
approach to interval analysis, emphasizing the role of the inclusion order.
Section 3 develops this approach, and shows that it is an appropriate
foundation for interval analysis. Section 4. introduces Scott topology
for cpo’s. It turns out that the Scott topology for the cpo IR extends
the usual Hausdorff topology on the real line (see section 4, theorem
11). Moreover, every continuous function for this topology is monotonic.
Hence Scott continuity is compatible with monotonicity.

Section 3 shows that in the same way elements of IR, can be seen as ap-
proximations of real numbers, elements of the function space [IR" — IR]

can be seen as approximations of real functions. In the same way real
numbers are identified with single-point intervals, real functions are iden-
tified with interval ranges. Moreover, in the same way approximations
of real numbers are seen as sets of real numbers, approximations of real
functions can be seen as sets of real functions.

-

This order-theoretic approach to interval analysis has some immed}
ate applications. First, it is possible to give denotational semantics [8]
to programs which allow interval computations. Note that denotational
semantics of programming languages usually omit numerical features, ex-
cept for integer numbers. Second, there is a theory of computability fof
domains (see [91). so that we have the notion of computable interval, com”
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: o., an operator like integration or differentiation). Note that Moore
iﬂterVﬂ-l theory does not allow us to classify objects as computable or

p on-computable.

1.
2.

3.

4.

-
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