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FOR CLOSURE-PHASE AND CLOSURE-AMPLITUDE
IMAGING IN RADIO ASTRONOMY
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Andrei Finkelstein

Closure-phase and closure-amplitude imaging are methods for recon-
structing a radioimage from the results of approximate measurements. If
we know the measurements precision (i.e., the intervals for the measured
values), what is the precision of the result of this reconstruction? This
problem cannot be solved by standard interval methods because one of the
measured quantities, the phase, takes its values on a circle, not on a real
line.

In the present paper we give the desired estimates. The basic result
is that if we measure the phase 8(¥) with precision ¢, so that the closure
phase (%) + 6(§) — 6(Z + ¥) is known with precision 3¢, then from these
measurements we can reconstruct # with precision 6¢. Similar estimates
are given for closure amplitude.
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MeToart 3aMbIKaAHUSA Pa3bl U 3AMBIKAHMA aMIJIATY 6L — 3TO METO bl
AJ151 BOCCTaHOBJIEHNA pajyoobpasa no pe3yiabTaTaM NMpUbJIMEKEeHHbIX
usmepeunii. Ecnu mHaM M3BecTHa TOUHOCTL M3MepeHU (T.e. uHTEp-
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BelecTBeHHOM NpAMO.

B nactosueil paboTe MBI NOJy4YaeM HCKOMBbIE OLCHKU. OcuoBHoOH
pe3ynbLTaT cjienylomui. Ecau Msl maMmepsieM $pasy 6(Z) ¢ TOUHOCTBIO
€, U TeM CaMbIM 3aMbIKaHNE $a3bl M3BeCTHO HaM C TOYHOCTBIO 3e,
TO M3 >TUX M3MepeHuil Mbl MOYKEM BOCCTAHOBUTEH # ¢ TouHocTbIO 6€.
AHaJJorMyHble OIEHKU TIOJIyUeHbl A/ 3aMBbIKaHUA aMIINTY bl

1. Brief introduction to the physical problem

The specific feature of very distant objects is that, although they may
be physically large, due to the enormous distance their angular (visible)
size on the sky is extremely small. For example, quasars have details of
milliarcsecond size (0.001 of an arc second). Normal telescopes are un-
able to see such tiny details, because their angular resolution A¢ (ability
to distinguish nearby points) is limited. A good approximation to this
resolution is given by: A¢ = A/D, where ) is the wavelength of inter-
est and D is the diameter of the telescope. Thus, in order to improve
the angular resclution, it is necessary to increase D. But to distinguish
details of distant radio sources (A & 2lcm) we need D equal to several
thousand kilometers. Of course it is technically impossible to build such
a big telescope.

We can overcome this difficulty if we take into consideration the fact
that in actual antennas the signal is received by several parts and we
observe the superposition of the signals received by different parts. So,
although we cannot build a single large antenna, we can simulate one
if we place several antennas at different locations, collect the signals,
send them to one place and there simulate the superposition by using a
computer. This is called a Very Long Baseline Interferometry (VLBI).

As a result of this simulation, we have a signal that simulates what we
would have received from a single large antenna. This signal is sinusoidal
(with frequency equal to the frequency of observations) and can therefore
be characterized by its amplitude and phase. These values are related
to the function that describes the brightness I(Z) of the source that we
are observing at point Z (this function is called an image, or a brightness
distribution). In the idealized situation, when we neglect noise and mea-
surement error, the measured amplitude is proportional to the absolute

value A(D) = |F(I )(E)| of the Fourier transform F(I) of the desired image

= —

I, where b is equal to the projection of the vector R between two antennas
onto the plane that is perpendicular to the source. Likewise the phase
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9(5) equals the phase of the (complex) Fourier transform. So in this case,
if we observe the same source on different pairs of antennas with different

b, we obtain both the amplitude A and the phase 0 of F (1), and thus re-
construct the complex value of F(I) for every b as A exp(if). By applying
the inverse Fourier transform, we determine the desired image I.

The above description applies only to the simplified case when we
can neglect the errors. This is the case with bright sources. If we now
try to analyze weak sources (e.g., the distant ones) for which the signal
is much smaller, we cannot neglect the errors any longer. One of the
methods to avoid the errors is called the closure phase method. Suppose
that we observe a source simultaneously on 3 different antennas, whose
coordinates in the plane that is perpendicular to the source are 4,75 and
rc. Ideally as a result of these observations we would obtain the three
values 6(7'a — 7), 0(Fp — 7c) and 0(74 — 7c). Crudely speaking, these
values correspond to the differences of phase ¢ of the signals received by
these antennas; e.g., (74 — 7g) = ¢4 — ¢p. On the path to each of these
antennas there are variations that alters these phases ¢. So, for example,
antenna A actually receives the phase ¢4 + n4, where n4 is caused by
travel effects. As a result instead of ¢4 — ¢ = 0(74 — 7*p) we have the
altered value (pa4+n4)—(¢p+np) = 0(Fa—7B)+na—np. So we measure
three values m 4 = H(FA—FB)—}—TLA—TLB, mpc = H(FB —7?0)+TLB —Nnc
and mac = 0(F4 — Fc) + na — ne. Since we do not know the values of
n4,NB,Nnc, each of these measured results gives no information about the
phase. But what we can do is we can compute a sum of these three values
that is free from such effects: msg +mpo —mac = 0(Fa —7p)+6(Fp —
rc) — 0(7a — ©'c). This expression has the form 0(Z) + 0(7) — 6(z + ),
where ¥ = 74 — g and § = g — 7. This combination is called the
closure phase (this idea appeared first in different radioimage processing
problems [Jennison 1953, 1958] and was applied to VLBI in [Rogers et
al 1974]). If we have a sufficiently dense net of antennas, then we can
measure the closure phase for all # and ¥, and then reconstruct ¢ and I.

For a current state of closure phase methods see [Perley et al 1989]
(especially Chapters 9 and 19).

Closure phase eliminates only additive errors, but there are other types
of errors that are not eliminated. Therefore we can measure the phase
on each of the antennas only approximately (with some precision €), and
thus we compute the closure phase with a precision 3. The main problem
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is: what is the resulting error in the reconstructed phase?

This problem is solved for the case when we know the statistical charac-
teristics of the errors [Lannes 1989, 1989a}; however, in reality we seldom
know them. The only thing that we do know about the errors is the up-
per limit that is guaranteed by the manufacturer of the measuring device
or by authors of the measuring procedure. In other words, the only thing
that we know is the interval of possible values of an error. For this case
the problem of how to estimate the resulting error in the image is still
open.

This is a challenge for interval mathematics, because, first, it is an im-
portant problem and, second, traditional methods of error estimate (see,
e.g., [Kreinovich et al 1991]) are not applicable, because these methods
are applicable to the intervals of the real line, and here we have intervals
on a circle (where the phases are defined).

We are going to meet this challenge in the present paper.

Similar ideas can be applied to diminish the error in the amplitude
_ [Perley et al 1989]. For two antennas that are located in the points 74
and 7'g the amplitude A(74—7B) is computed as a correlation between the
signals received by these antennas. So, crudely speaking, an amplitude
is proportional to the product of the signals: A(74 —7 ) = kakp. These
signals are extremely weak, so they have to be amplified. Even the best
amplifiers have unpredictable fluctuations of their amplifying coeflicient.
So instead of kakp we actually measure the value map = kakBgagn,
where g4 corresponds to this unknown change in amplification. As in
the case of phases, if we observe the same source by four antennas, we
can form a combination that contains no g: mAacmMBD /(mapmc p). This
combination is called the closure amplitude. If we denote & = 74 — 7B,
j=fg—"7c, Z=.7B—TD, then we can express the closure amplitude as
A + DA/ (ARG AT - 7).

For closure amplitude several problems occur that are similar to the
problems of closure phase: this trick does not eliminate all possiblc errors;
so the measured amplitude and hence closure amplitude contain some
error. What is the resulting error in reconstructing A? An additional
difficulty in this case is that since the errors are mainly multiplicative,
the precision with which we measure A is not constant, but depends on
the value that we are measuring: namely, it 1s proportional to the valie

R
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of A. For example, if we know that the measured value A equals gA,
where 0.95 < g < 1.0, then the maximum possible error |A — A| is 0.05A.

2. Closure-phase imaging:
formulation of a mathematical problem
and main results

2.1. Basic definitions

Definition 1 (image). By an image, or a brightness distribution, we
mean a function I(Z) from the plane R? into the set of real numbers. The
absolute value |F'T(I)| of its Fourier transform will be denoted by A and
called an amplitude function, and its phase will be denoted by 6(%) and
called a phase function of that image I. So FT(I) = A()exp(i0(%)),
where A is an even function and 6 is odd: A(—-Z) = A(Z) and (%) =
—6(Z).

. Comments.

1. If we know both the amplitude and the image functions, then we

can reconstruct the image I(Z) by applying the inverse Fourier transform
FT™1 to A(Z) exp(i0()).

2. The phase is defined only modulo 27.

Definition 2 (circle). By T we’ll denote a circle with unit radius, i.e.,
the set of values [0, 27] where equality is defined so that 0 = 27, and the
sum A + B and difference A — B of two values from T are defined as
A+ B mod 27 and A— B mod 2x. For every real number z by p(z) we’ll
denote an element z mod 27 of T.

Example.If 7 and 3/27 are two elements of T', then their sum in 7' equals
1/27: first we add these values and obtain 5/27, then we divide the result
by 2m and take the remainder 1/2.

Comment. This mapping p is a homomorphism in the sense that p(z +
y) = p(z) + p(y), p(~z) = —p(z) and p(0) = 0.

Denotations. Elements of T will be denoted by capital letters, and real
numbers by small ones.

Geometrically the values of T' correspond to the rotations of a unit
circle. A rotation by 27 radians leaves the circle intact, therefore 2 = 0
in T. 4 corresponds to the composition of two rotations, and —A4 is a ro-
tation in the opposite direction. Another possible representation is when
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we fix some point P on a circle and represent A by the point into which
P turns when we rotate the circle by an angle A. This representation
enables us to define the distance p(A4, B) on T as the length of the short-
est of the two arcs that connect A and B. For example, for A = 0.5 and
B = 1 the distance equals to 0.5 because the shortest of the two arcs is
going from 0.5 to 1, and for /4 and 3/27 the distance is 3/47, because
the shortest arc goes from 3/2m through 27 =0 to 1 /4r.

Definition 3 (distance). By a distance p(4, B) between the two values
A, B € T we mean the value min(|4 — B|,|A+ 27 — B|,|B + 21 — Al).

Comments.

1. The maximum value of the distance is m, when the points are
on opposite sides of the circle. If d(A, B) < g, this means that we can
get B from A by adding a value A from the interval [—¢, €.

2. Tt is easy to prove that this distance satisfies the usual properties of
a distance: symmetry p(A, B) = p(B, 4), triangle inequality p(A,C) <
o(A, B) + p(B,C).

3. The relationship between this distance and the distance on a real
line is simple: p(p(z),p(y)) = min, |z —y — 27n|, where n runs over
all integers. This means, on one hand, that for every two numbers x, Yy
the distance between p(z) and p(y) is either the same as the distance
between z and y (if the path from = to y is the shortest) or smaller, that
is, p(p(z),p(y)) < |z —y|. On the other hand, it means that for every
z,y there exists an integer n such that |z —y — 27n| = p(p(z), p(y))-

We have mentioned that the phase 6 is defined only modulo 27n for
an integer n. However, since an image is normally located in a bounded
region, its Fourier transform is an analytical function, and therefore its
phase Im(log(FT(I)) is also analytical. So we can consider 6(Z) to be a
continuous function from R? to the set of real numbers R. So we arrive
at the following definition.

Definition 4 (phases). By a phase function we mean a continuous odd
function @(F) from the plane R? into real numbers. By a phase, that
corresponds to a phase function, we mean a function ©(F) = p(0(%)).
By a closure phase, that corresponds to a phase function 6, we mean a
function ®(Z,7) = ©(Z) + O(¥) — O(Z + 7).

A b et S
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2.2. Closure-phase imaging in case of precise measurements

First we are going to describe to what extent closure phase determines
a phase function. These results are in essence already known in closure-
phase imaging, but we have added precise mathematical formulations and
proofs because we’ll use them to compute the error estimates. (All proofs
are given in Section 4).

Proposition 1. If two phase functions 0(") and ¢'(Z) correspond to the
same closure phase, then ¢’ (f) = (%) + k% for some constant vector k.

Vice versa, if 8'(Z) = 0(Z) + ki for some constant vector k, then the
corresponding closure phases coincide.

Comment. In other words, closure phase determines phase function
uniquely modulo the linear function. This non-uniqueness has a sim-
ple interpretation in terms of the image itself. Suppose that we know the
amplitude A(Z). Then we can get an image I(Z) by applying the inverse
Fourier transform to A(Z)exp(i6(%)).

Proposition 2. If /(%) = 4(Z) + k& for some constant vector k, A(%)
is an amplitude function, I(%¥) = FT~'(A(Z)exp(i0(Z))) and I'(Z) =
FT~Y(A(Z) exp(i0'(F))), then I'(#) = I(Z + @) for some constant vector
a. Vice versa, if I'(Z) = I(Z + @) for some constant vector @, then for
the corresponding phase functions ¢'(%) = 6(&) + ki for some constant
vector k.

Comment. So the non-uniqueness of image reconstruction in the closure-
phase imaging really means that from the closure phase we can recon-
struct an image only modulo its absolute position; when we shift the
image as a whole and thus change its coordinates, the closure phase does
not change. In view of that it is reasonable to give the following definition.

Definition 5. We say that two phase function 6(Z) and 6’(Z) are equiv-
alent if the difference between them is a linear function of Z. We say that
two images I(Z) and I'(&) are equivalent if I'(¥) = I(# + @) for some
constant vector d.

In these terms the above Propositions may be reformulated as follows:

Proposition 1’. Two phase functions correspond to the same closure
phase if and only if they are equivalent.

Proposition 2'. Two images I(Z) and I'(Z) are equivalent if and ¢nly if
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their amplitude functions coincides and their phase functions are equiv-

alent.

2.3. Closure-phase imaging in case of real measurements

Definition 6. Suppose a positive real number ¢ is fixed. We'll call it a
precision. Suppose also that a phase function 6(Z) is given, and ®(&,7) is
a corresponding closure phase. By a result of measuring its closure phase
with precision € we mean a function ®(&, 7) that satisfies the inequality
o(&(2, 7), B(F, 7)) < 3¢.
Comments.

1. This inequality has 3¢ in the right-hand side, because in order
to measure the closure phase one needs to measure three phases and add

them. Since the maximum possible error resulting from measuring each
of the three phases is €, the maximum possible error of this sum is 3e.

9 For each & and 7 the set of possible values of ®(&,%) form an in-
terval, but an interval on the circle. If only these measurements results
®(Z,7) are available, then the only thing that we know about the ac-
tual phase function 6 is that it satisfies the inequality p(é, P) < 3e. Of
course, there can be several functions @ that satisfy this inequality, and
the measurements do not allow us to choose between them. We arrive at
the following definition.

Definition 7. Suppose that a phase function 0(Z) is given. We'll call it
an actual phase function. Suppose also that @ is a result of measuring
its closure phase with precision £. We say that a phase function 6'(Z) is
reconstructed from the approximate closure phase if p(2(Z, 7)), d'(Z,7)) <
3¢, where @' is a closure phase corresponding to 6. '

2.4. Main problem

The main problem is: how close is the result @' of reconstructing the
phase from approximate measurements to the actual phase function 6(%)?

2.5. Why is this problem difficult to solve?

This problem sounds like a problem of interval mathematics (sce, e.g.,
[Moore 1966], [Moore 1979], [Alefeld et el 1983], [Ratschek et al 1984]):
we have an algorithm (actually several different algorithms are known
[Perley et al 1989]) that transforms the approximate values of the closure
phase into a phase function; we know the intervals of possible values of
the closure phase, and we need to know the interval of possible values of
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the result. However, for the following reasons it is difficult to apply the
usual methods of interval mathematics to this problem:

1) All these intervals are the intervals on the circle, not on a real line, as
in the usual interval mathematics.

2) Interval mathematics usually gives ansestimate for some given algo-
rithm. Although we are interested in the precision of some already
existing algorithm, but we are also interested in the principal possibil-
ity of reconstructing the phase. So if there is an algorithm that would
give the result with the better precision than all the existing methods,
we would like to know that.

Since we cannot directly apply the standard methods, we must invent
something new.
2.6. Solution

Theorem 1. Suppose that 6(&) is the actual phase function, precision is
¢ < w/6 and 0'(Z) is reconstructed from the approximate closure phase.
Then there exists a function " that is equivalent to § and such that
10" (Z) — 0'(Z)| < 6¢ for all &.

Comments.

1. So closure-phase imaging allows us in principle to reconstruct the
phase function with precision 6e, where € is the precision with which
we measure the phases. This result is better than the previous known
estimate 9¢ [Kosheleva et al 1978].

2. The restriction ¢ < 7/6 is really not very restrictive, because in
actual measurements the precision is much better than /6 =~ 10°.

3. The following Theorem shows that 6¢ is the best possible precision
estimate in the sense that one cannot reconstruct the phase 6(Z) with
better precision:

Theorem 2. Suppose that 6(Z) is any phase function, and 0 < € <
m/6. Then there exists a function 0'(F) that is reconstructed from an
e—approximate closure phase, such that for any function ”(%) that is
equivalent to 8(Z), we have sup; |0"(Z) — 6'(Z)| > 6e.

In other words, there exists a result ®(Z,#) of measuring the closure
phase with precision €, and a function ¢'(¥) that can be reconstructed
from this approximate closure phase ®(%, ) such that:
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o this function '(2) differs from (Z) by > 6¢ for some Z, and

o if we take any phase function 6”(¥) that is equivalent to the actual
phase 0(Z), then 0" (#) will also differ from the reconstructed phase
function /(%) by at least 6¢ for some Z.

3. Precision of closure-amplitude imaging

3.1. Closure-amplitude imaging
in case of precise measurements

Definition 8. By an amplitude function we mean a continuous even
function A(Z) froin the plane R? into the set of positive real numbers.
By a closure amplitude that corresponds to an amplitude function A, we
mean a function C(Z,9,7) = A(Z + DA/ (A@) AT — Z))-

Comment. This combination is possible only when A if different from 0,
therefore we consider only the cases when the amplitude function never
attains 0 and is thus always positive. For other functions closure ampli-
tude methods are not applicable (at least not directly applicable). This
restriction does not really limit our possibilities because, if for some ac-
tual image A(Z) = 0 for some &, then by making an arbitrarily small
perturbation (that will not be detectable by our measurement instru-
ments because there is always a limitation of precision), we can always
come to an image that leads to the same observational data and already
has no 0 at this point Z.

Proposition 3. If two amplitude functions A(Z) and A'(%) correspond
to the same closure amplitudes, then A'(Z) = kA(Z) for some constant k.
Vice versa, if A'(%) = kA(Z) for some constant k, then the corresponding
closure amplitudes coincide.

Comment. In other words, closure amplitude determines the amplitude
function uniquely modulo a multiplicative constant. This non-uniqueness
has a simple interpretation in terms of the image itself. Namely, suppose
that we know the phase 8(Z). Then we can obtain an image I(Z) by
applying the inverse Fourier transform to A(Z) exp(i0(2)).

Proposition 4. If A'(Z) = kA(Z) for some constant k, 6(%) is a phase
function, I(Z) = FT7'(A(Z) exp(i0(%))) and I'(Z) = FT-1(A'(Z)
exp(i0(&))), then I'(F) = kI(Z). Vice versa, if I'(¥) = kI(Z) for some
constant k, then for the corresponding amplitude functions A'(Z) =
kA(Z).
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Comment. So the non-uniqueness of image reconstruction in the closure-
amplitude imaging really means that from the closure amplitude we can
reconstruct an image only modulo its absolute value, because I and kI
lead to the same closure amplitude. In view of this it is reasonable to
give the following definition.

Definition 9. We say that two amplitude function A(Z) and A’(Z) are
equivalent if their ratio is a constant: A'(#) = kA(Z). We say that two
images I(£) and I'(Z) are amplitude- equivalent if I'(Z) = kI(F) for some
constant k.

In these terms the above Propositions may be reformulated as follows:

Proposition 3'. Two amplitude functions correspond to the same clo-
sure amplitude if and only if they are equivalent.

Proposition 4'. Two images I(Z) and I'(Z) are amplitude-equivalent if
and only if their phase functions coincide and their amplitude functions
are equivalent.

3.2. Closure-amplitude imaging in case of real measurements

Definition 10. Suppose a positive real number 6 is fixed. We’ll call it
a relative precision of amplitude measurement, or a precision for short.
Suppose also that an amplitude function A(Z) is given, and C(&, 7, ?) is
a corresponding closure amplitude. By a result of measuring the closure

amplitude with precision § we mean a function C(Z,, 7) that satisfies
the following inequality:

(L= _ O
(1487 = T

Comments.

1. The reason for this inequality is as follows: when we measure A
with relative precision &, it means that the result A of the measure-
ment must be between A — A and A + 8A, i.e., in other words, that
1-6< A/A < 14 64. The closure amplitude is obtained by multiplying
two amplitudes and dividing by two values. So the maximum possible
value for the measured closure amplitude is when the multiplying terms
take their maximum possible values (A(1 + §)) and the dividing terms
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take their minimal possible values ((1 — §)A). In this case the result-
ing closure amplitude is twice increased by 1+ 6 and twice divided by
1 — &, so, if the real value is C, the maximum possible measured value is
C(1+6)2/(1—6)2. This explains the right inequality. The left inequality
can be explained in a similar manner.

2. For each %, and Z, if the only thing we know is the result C of
measuring the closure amplitude with precision 6, then we actually know
an interval of possible values of C: [((1 = 8)2/(1 +&)*)C, ((1+6)?/(1 -
5§)2)C]. So the only thing that we know about the actual amplitude
function A is that the resulting closure amplitude lies in this interval. Of
course, there can be several functions A that satisfy this inequality, and
the measurements do not allow us to choose between them. So we arrive
at the following definition.

Definition 11. Suppose that an amplitude function A(%) is given. We'll
call it an actual amplitude function. Suppose also that C is a result
of measuring its closure amplitude with precision 6. We say that an
amplitude function A’(Z) is reconstructed from the approximate closure
amplitude if

(-8 _ CE57 _ (1+6)

(]‘ i 6)2 - C,("f’ ga 7?) N (1 - 6)2

where C' is a closure amplitude corresponding to A’.

3.3. Main problem

The main problem is: how close is the result A’ of reconstructing

the amplitude from approximate measurements to the actual amplitude
function A(Z)?

Comment. This problem is also non-trivial, because interval mathemat-
ics usually gives an estimate for some given algorithm, but now we are
interested in the principal possibility of reconstructing the amplitude. So
if there is an algorithm that would give the result with better precision
than all the existing methods, we would like to know it.

3.4. Solution

(STheorem 3, _‘?U})PCSG that A(F) is the actual phase function, precision is
< 1 and A’(Z) is reconstructed from the approximate closure amplitude.
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Then there exists a function A” that is equivalent to A and such that
(1 - 6)1/(1+8)* < A"(F)/A'(Z) < (1 +6)*/(1 — 6)* for all .

Comments.

1. So closure-amplitude imaging allows us in principle to reconstruct
the amplitude function with relative precision (1+6)*/(1—8)* —1, where
§ is the relative precision, with which we measure the amplitudes. For
small 6 this relative error estimate is approximately equal to 86.

2. The restriction 6 < 1 is really not very restrictive because in actual
measurements the precision is much better.

4. Proofs

Proof of Proposition 1. That 6§ and 6 + EZ correspond to the same
closure phase can be checked by explicit computations. So let us prove
that if 6 and 6’ correspond to the same closure phase, then they differ by
a linear function.

Suppose that two phase functions (%) and 6'(Z) correspond to the
same closure phase ®(Z, 7). According to the definition of the closure
phase this means that ©(Z)+0(7)~0(F+7) = 0'(2)+0'(¥)— O’ (F+7) for
all Z and ¥, or, what is equivalent, O(%)+0(7)—O(Z+9) -0 () -0’ () +
©'(Z + §) = 0. The values © are defined modulo 27. In terms of # and
¢’ this equality means that the corresponding difference equals 27wn for
some integer n, i.e., that for every Z and ¢ there exists an integer n(Z, )
such that () 4 0(¢) — 6(Z+9) - 6'(Z) - 0" (§) + 0" (£ + ¥) = 2nan(Z, 7). If
we denote by 60(Z) the difference §'(Z) — #(Z) between the two functions,
we can rewrite this equality as 60(Z) + 66(y) — 60(Z + ) = 27n(&, 7).

Both functions (%) and ¢’ are continuous (because they are phase
functions, and we defined phase functions to be continuous). So their
difference 66 is also a continuous function. Therefore the linear combina-
tion 66(&) + 66(7) — 66(Z + ¥) is a continuous function of ¥ and . But
according to the above inequality this combination is equal to 27n(Z, §/).
So 2mn(Z, ) is also a continuous function of Z and ¥,and hence n(7,7)
is a continuous function. But n is always an integer. So n cannot take
two different values (else according to the intermediate value theorem it
would take all intermediate values, including those non-integer ones). So

n is a constant, i.e., n(Z, ) = n for some n.
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In order to compute this n let’s consider the values # = § = 0. Since
both 6 and 6 are phase functions, they are both odd; in particular,
9(0) = 6'(0) = 0. Therefore 60(0) = 0, and therefore for & = 7= 0
50(0) + 66(0) — §6(0) = 0. But, on the other hand, this value is equal to
2mn, and so n = 0

Substituting n = 0 into the above equality, we conclude that 66(%) +
50(7) —80(Z+Y) = 0 or, which is equivalent, §0(Z+79) = 56(%)+66(y) for
all # and 7. Here §0(Z) is a continuous function, and continuous functions
with this property are known to be linear (see, €.8 Section 5.1 of [Aczel
1966]). So 0'(Z) — 6(Z) = 60(%) = i@ for some constant vector k, hence
0(7) = 0(&) + k&. QED.

Proof of Proposition 2 directly follows from the well-known prbperties
of Fourier transform: that a Fourier transform of a shift I(Z + @) equals

exp(ia@)FT(I).

Proof of Theorem 1. The idea of this proof is as follows: We have
already seen in the proof of Proposition 1 that the problem of uniqueness
of image reconstruction can be reduced to solving a linear functional
equation. We’ll now use a similar reduction of our new problem to the
problem of finding functions that are in some reasonable sense “almost
linear”.

Suppose that 0 is an actual phase function, 6’ is reconstructed from
the approximate closure phase ® and £ <7 /6. By @ and ® we'll denote
the closure phases that correspond to 6 and 0'.

Since @ is the result of approximate measurement, then according to
Definition 6 the following inequality ‘s true for all & and 7 p({l')(:b’ 1),
®(%,7)) < e Since 6’ 1s reconstructed from o, by Definition 7 the
following inequalities are true: p(®(Z,9)s 3'(z,7) < 3¢ Applying the tri-
angle inequality for the distance p, We conclude that p(®(Z, 7), @' (Z,9)) <
p(®(Z,7), ®(Z, 7)) + o(&(2,7),®'(Z,9) S 3+ 3¢ = 6e.

By the definition ®(Z, 7) = O(%) +0()) -0 +7) = (by the definition
of ©) = p(0(%)) + p(6(7)) — p(O(Z + if)) = (since p s a homomorphism)
— p(B(Z)+0(if)—0(F+7))- Similarly 3 (T,7) = p(8'()+0' ()0 (F+7)):

So the previous inequality may be rewritten as follows:

o(p(8(Z) + 6(7) — 6(F + ), p(0'(2) + 0'() — ¢'(E+7)) < Be:
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According to the properties of p (see above comments after the definition
of a distance) p(p(a),p(b)) = |a — b — 27n| for some integer n. So in our
case for every & and §f there exists an integer n(&, §) such that |A(Z, ) —
2mn(Z, )| < 6¢, where by A(Z, ) we denoted the difference between the
two arguments of p: A(Z,§) = (0(Z) +0(9) — 0(Z+ %)) — (6'(Z) + 0'(¥) —
0'(Z47)). Denoting the difference between 6’ and 6 by 6 (as in the proof
of Proposition 1), we conclude that A(Z, §) = 60(Z) + 66(7) — 66( + 7).

Just as in that proof, 66 is a continuous function, so A i is also a continuous
function of both its arguments # and 7.

The inequality |A(Z, §) — 27n(Z, §)| < 6 means that A(Z, ) belongs
to the interval [27n — 6¢,27n + 6¢]. Since ¢ < 7/6, we conclude that
6e < m, so this interval, in its turn, belongs to the open interval ((2n —
1)w,(2n + 1)m). From this we can conclude that A cannot attain the
values (2n + 1)r.

We know that the value of a function A(Z, §) for each Z and ¢ belongs
to one of these intervals. Let’s prove that for all ¥ and ¢ the interval is
the same, i.e., that n(Z,§) does not depend on Z and % and is actually a
constant. Let’s prove it by reduction to a contradiction. Indeed, suppose
that a function n takes at least two different values, m < n. This means
that A takes a value from ((2m — 1)m,(2m + 1)7) and a value from
the interval ((2n — 1)7, (2n + 1)7). According to the intermediate value
theorem a continuous function A must take all the intermediate values,
in particular, the value (2m + 1), but this value does not belong to any
of the intervals, in which the value of A is located, and therefore cannot
be the value of A. The contradiction proves that n is a constant. For
¥ =y =0 we have A(0,0) =0, so n=0.

Substituting 0 into the above inequality for A, we conclude that
|A(Z, )| < 6¢, and, substituting the definition of A in terms of 66,
that [60(Z) + 60(y) — 66(F + §)| < 6e. For this particular mequal—
ity it is known [Hyers 1941, Ulam 1960] that there exists a vector k
such that |66(%) — Lml < 6e. Since we defined 66 as 6 — 6’, we con-
clude that |(F) — 0'(&) — k&| < 6e. This inequality can be rewritten as
0" (%) — 6'(Z)| < 6e, where the function " (%) = 4(&) —
to & (see Proposition 1').
inequality is true. Q.E.D.

k3 is equivalent
So we have a function for which the desired

Proof of Theorem 2. Let us define the following auxiliary function:
flz) =2,if || <1, f(z) =1ifz > 1, and f(z) = —1if x < —1. Let us

3akas 164~
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prove that |f(z) + f(y) — f(z +y)| < 1 for all z and y. To prove it let us
consider all possible cases.

Since the function f(z) is odd (i.e., f(—=z).= —f (z)), without losing
generality, we can consider only the case when z+Yy 2 0 (because the case
when z+y < 0 can be treated in a similar manner). Also, since the desired
expression is symmetric with respect to = and y, we can, again without
loosing generality, assume that @ > y. In this case, 22 > = +y > 0, hence
z > 0. So, it is sufficient to consider only the cases whenz > 0, 2 2 ¥,
and x + y > 0. Let us enumerate all such cases. Each of the numbers
and z +y can either belong to the interval [0,1], or to the semi-line (1, co0).
Combining the two pairs of alternatives, we get four possible cases. In
cach of these cases, we have three subcases depending on whether y is
< —1, between —1 to 1, or > 1. We will prove that the desired inequality
is true in all these subcases.

1. |z} €1, |r+y| < 1. Here, since y < x, only two subcases are possible:
lyl <1andy < —1.

la. If |y| < 1, then f(2)+ f(y) — flz+y) =2z +y— (x +y) =0, so the
desired inequality is evidently true.

ib. If y < —1, then |f() + f(v) — fe+y)l = o -1 - @+l =
|-1—-yl=1]1+y|. Fromz+y 2> —1 and z £ 1 we conclufie
that y = (x +y)—z > (-1) -1 2> —2. Therefore, —2 <y < —1,
~1<1+y<0 and |14y <L

2. |z| <1,z 4y > 1. Here,sincez+y>1>2, we have y = (:1:.+y)—
z > 0, and from y < x, we conclude that 0 < y < 1. In this case,

If(x)‘l‘f(y)—f(x—i-y)l:|33+1—(:c+y)|=|1——y|. From0 <y <1
it follows that 0 <1 —y < 1,80 |1 —y| < 1.

3. z>1,|r+y| <1 Here,z+y <1<, sox+y <z y<0,and so,
we have only two possible subcases: |y| < 1 and y < —1.

3a. |y| < 1. In this subcase, |f(z) + f(y) — fa+yl=N+y-(z+

y)] = |1 —=z|. Sincez+y <1 and y > —1, we conclude that
z=(r+y)—y <2 Hence, 1<z <2 -1<1-2¢< 0, and
1 — x| < 1.

3b. y < —1. In this subcase, |f(m)+f(y)—f(x+y)| = |1-1+f(z+y)| =
|f(z+y)|, and from |f(2)| < 1 we conclude that |f () + f(y) - fla+
Yl =flz+y)l <1
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4. x> 1, x4+ y > 1. In this case, f(z) = f(z 4+ y) = 1, hence |f(z) +
f(y) = f(z+y)| =1|f(y)|, and |f(y)| < 1 follows from the definition of
the function f(z).

So, in all cases, |f(z) + f(y) — f(z + y)| < 1. Now, we are ready to
produce the desired 6': let us take &(&,7) = (6(Z) + 3¢ f(z1)) + (0(7) +
3ef(y1))— (0(Z+4)+3ef(z1 +y1)) (where z; denotes the first coordinate
of the vector #), and 0'(Z) = 6(Z) + 6¢cf(z1). In this case, |®(&, ) —
®(Z,9)| = 3e|f(z1) + f(y1) — f(z1 + y1)], so from the above-mentioned
property of the function f(z) we conclude that |®(Z,7) — ®(Z,7)| <
3¢. Therefore, ®(Z, ) is a possible result of measuring closure phase
with precision e. Likewise, |®(Z,7) = ®'(Z, 7)| < 3¢, therefore, 0'(Z) is
reconstructed from the approximate closure phase.

Now, for z; > 1, we have 6'(Z) — (Z) = 6e. Suppose that 0" (&) is
equivalent to 6(Z). According to Definition 5, this means that 6" (%) =
(&) + k1z1 + kaxo for some real numbers k; and ko. If &y = 0, then for
z1 > 1 and z3 = 0, we have |0"(Z) — 0'(Z)| = |0(Z) — 0'(Z)| = 6e.

If ky # 0, then for x5 = 0 and z; — oo, we have 8”(%) — /(%) =
(07(%) — () + (6(Z) — 0'(2)) = kyzq — 66 — Foo (— +oo if ky >
0, and — —oo if k; < 0). Therefore, for sufficiently big z;, we have
16" (Z) — 6'(Z)| > 6e.

So, in both cases, we proved that there exists an  such that |0"(Z) —
0'(%)| > 6e. Therefore, sup; [0”(Z) — ¢'(Z)| > 6e. Q.E.D.

Proof of Proposition 3. That A and kA lead to the same closure
amplitude is easy to check. So it is sufficient to show that if A and
A’ corresponds to the same closure amplitude, then A’ = kA for some
constant k.

By the definition of the closure amplitude the equality means that
A(Z + AR/ (A@A(T - 7)) = AT+ §A'(2)/(A()A' (7 - 7).

Dividing both sides of this equation by the left-hand side, we come to
the following equality in terms of the ratio k(Z) = A'(Z)/A(%): k(& +
Pk(Z)/(k(£)k(F7 — Z)) = 1. This means that the numerator and the
denominator of this fraction are equal, i.e., k(Z + )k(Z) = k(2)k(§ — 2).
In particular, for # = 0 we conclude that k(Z+7)k(0) = k(2)k(7). This is

o
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almost a functional equation k(& +7) = k(&)k(¥), for which the solutions
are known. To reduce to this equation let’s divide both sides of our

equation by k2(0). Then (k(Z + 7)/k(0) = (k(&)/k(0)(k(7) /k(0)). So for

—+.

the function k(%), defined as k(Z)/ k(0), we derived the desired functional
equation k(Z + ) = k(Z)k(¥)-

By the definition the amplitude function is continuous, therefore k
is also continuous as a ratio of two continuous functions, and therefore
% is also continuous. The continuous solutions of the above functional
equation are enumerated in [Aczel 1966], Section 5.1: they are k(&) =
exp(@Z) for some constant vector d. But by definition an amplitude
function is even; therefore k and k are also even, i.e., exp(d%) = exp(—az)
for all £. This is possible only if @ = 0. Substituting @ = 0, we conclude
that & = 1 and therefore k(Z) = k(0)k(&) = k(0) is a constant. So
A" = kA for some constant k. Q.E.D.

Proof of Proposition 4 follows from well-known properties of the
Fourier transform.

Proof of Theorem 3. Suppose that A is an actual amplitude function,
A’ is reconstructed from the approximate closure amplitude C and 6 < 1.
By C and C’ we’ll denote the closure amplitudes that correspond to A
and A'.

Since C is the result of approximate measurement, then according to
Definition 10 the following inequality is true for all &, 7 and 2"
(1 — 6)2 é(fa g) Z < (1 + 6)2
(43¢ ~CGE7,9) = (1-0F

Since A’ is reconstructed from C, by Definition 11 it means that

(1-— 6)2 C'(Z,9, ) (1+ 6)2
AToF S C@,50 ~ (107

;From these two inequalities we can draw some conclusions about the
possible value of C'/C = (C’/C’)(é/(}) since it is a product of two pos-
itive numbers, and we know upper and lower estimates for both factors,
then the maximum value of this product is the product of two upper esti-
mates and the lower estimate for the product is the product of two lower
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estimates (unlike the phase case, this is a typical interval estimate). So
we conclude that Z=! < C'/C < Z, where Z = (1 + 6)*/(1 — §)*.

Now let’s perform some transformations similar to the ones we did
in the proof of Proposition 3. Substituting the expressions for C' and
C’ in terms of A and A’ into these inequalities and denoting the ratio

A'(Z)/A(Z) by k(Z), we conclude, that
271 < @+ DR/ G@RT - D) < Z

for all #,§ and 7. In particular, if we substitute z = (_j and denote
k(L) = k(Z)/k(0), we conclude that Z~! < k(Z + 9)/(k(2)k(¥)) < Z for
all £ and 7.

This inequality looks similar to the one that we obtained in the proof
of Theorem 1. The only difference is that there we had + and —, and here
we have multiplication and division. So to reduce this new inequality to
the one that we already know how to solve let’s apply the standard trick
that reduces multiplication to + and division to —: logarithms. If we
introduce K (&) = In(k(Z)), then for K the above 1nequahty turns into
the following one: —InZ < K (&) + K(¥) — K(Z + ¥) < InZ, or, that
is equivalent, |K(Z) + K(§) — K(Z + §)| < InZ., This is precisely the
inequality that we know how to solve [Hyers 1941]: the solution is that
|K (%) — dZ| < In Z for some constant vector d.

Let’s now use the fact that k, k and therefore K are even functions, i.e.,
that K(—Z) = K(&). Applying the above inequality for £ and —% and
using this evenness, we conclude that |K (%) — dZ| < InZ and |K(&) —
(—-a%)| < InZ. Therefore by the triangle inequality |67 — (—dZ)| <
| K (&) —dZ|+ |K (%) —dZ] <InZ+1In Z = 2In Z. In other words, |2d%| <
21In Z for all Z. In particular, if we substitute £ = Ad, we conclude that
A% < In Z for every positive ), therefore @2 = 0 and @ = 0.

Substituting @ = 0 into the above inequality, we conclude that | K(2)] <
InZ, ie., that —-InZ < K(&) < InZ for all £ We want to deduce
some inequalities for k. Since K = Ink, k = exp(KX). And because
exp is a monotonic functlon we get the following inequalities for k:
exp(—InZ) = Z71 < k(:z:) < exp(lnZ) = Z. But k(&) = k(&)/k(0)
and k(Z) = A'(Z)/A(Z). So the resulting inequality means that Z=! <
A'(Z)/(A(&)k(0)) < Z, and so for the amplitude function A”(Z) = k(0)-
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A(Z), that is evidently equivalent to A, we get the desired inequality.
Q.E.D.
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