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ON SOME TWO-SIDED METHODS
FOR SOLVING SYSTEMS
OF ORDINARY DIFFERENTIAL EQUATIONS

Boris S. Dobronets

In. this paper, we discuss ideas to overcome the so-called “wrapping
effect”. The methods are based on a posteriori error estimates, bounding
the solutions by polygons, pretransformation of the ODE’s, and sensitivity

analysis. An illustrative example is given.

HEKOTOPLIE ABY CTOPOHHUWE METOIbI
PEIIIEHNA CUCTEM OBBLIKHOBEHHBIX
I[I/IQQEPEHI_II/IAJIBHBIX YPABHEHUN

B. C. Io6poren

B paGoTe paccMaTpMBalOTCA pa3/IMUHble MOAXOABI AJA MOCTpoe-
HUA ABYCTOPOHHMX pellleHUu#, Ny THU npeo‘,uonem/m “asddexTa ynaxkoBsl-
Banua”. PaccMaTpuBaloTca MeTOAbl, OCHOBaHHbIE HA AllOCTEPUOPHBIX
OlleHKaX MOrpeniHoCTH, OlleHKaX MHOrorpaHHMKaMM MHOXXeCTBa pellle-

HMii, npeobpasoBanuu cuctem OJ1Y, aHaiM3e UyBCTBMTEJILHOCTH.

Introduction

In this paper, some ideas connected with overcoming the so-called
“wrapping effect” are discussed. In the literature on the subject, the
wrapping effect is often also called the bootstrapping effect or Moore’s
effect. This effect manifests itself in extreme growth of the width of the
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two-sided solution of a system of differential equations relative to the true
solution. Various methods have been proposed to overcome this effect.
Among these are:

— automatic transformation of coordinates [11];
- — transformation of a system of ODE’s to a convenient form [17];

— bounding the solution set by parallelepipeds, ellipsoids and domains
of other forms [3], [13];

— Analytical solution of a System of ODE’s and subsequent construc-
tion of an interval extension [16];

The wrapping effect is also discussed in [10], [12], [14], [15], [17], [18] and
other works,

A detailed survey on interval methods for the solution of systems of
ODE'’s is contained in [15]. The monograph [8] considers two-sided meth-
ods based on the decomposition of an operator into isotone and antitone
components. Also in [§], two-sided methods based on a posteriori esti- .
mates of an error are considered.

1. The problem statement and principal definitions

Let R™ be a space of n-dimensional vectors. In what follows, we denote
interval numbers a = [g, a] with bold font: a, b, ¢, f. Similarly, R" is
a space of n-dimensional interval vectors, while wid(x) = Z — z, | (x) =

(z + z)/2 and abs(x) = max(|Z|, |z|)-

Consider the following system:

- f(taxa k)? te (07l)7
37(0) = "1.;07

where f = {f;}" 1,fz fi(t, =, k)

(1.1)

the initial values vec-

" n pi
s tor, T¢ € Xp;
the vector of parame-
k mo_
. ters, k € k; '
reR” — the vector of unknown

variables.
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We shall assume that z is a function of ¢, k and z:.
z = z(t, k, o). (1.2)
Denote by v*(t) the set of solutions of a system of ODE’s
v*(t) = {z(t, k, zo)|zo € X0,k € k}.

Definition 1.1. A two-sided solution x* of the problem (1.1) with min-
imal width is called optimal.

Let the real functions [9] F'(#1,. .. s Yn, 21,--- » 2n),! = 1,2 exist such
that the following inequalities hold for y < 7, 2 < z:
FY(t,y,2) < FY(t,7',2), v=12, i=1,...,n (1.3)

where 7 = (71, Ji-1,--- 2 Y Jik1s e v e Un)- Also assume that the inequal-
ities
FXt,z,2) < fi(t,2,k) < FZ(t,2,z) (1.4)

hold for these functions.

Theorem 1.1. [9]. Suppose that the vector functwns z,T € R™ satisfy
the following relations.

' < F'(t,z,%), te(0,1),

' > F3(t,z '

x S ( ’x7£)? (1-5)
—14‘(0) S gOa

Then any solution x of the system (1.1) with initial condition z, < z(0) <
To satisfies the estimates

j 2(t) S 2(t) < &(2), te(0,1).M

Note that according to (1.3)
Fl(t,z,z) < inf f(t,z,k), F*(t,%,z) > sup f(t,. k).

Thus, we can take the bounds of interval extensions of functions f;
for F}, provided those extensions are inclusion monotonic. In fact, let
f(t,x;,k) = [f(t,x,k), f(t,x,k)] be an interval extension (3[ the function
f, where x = [z,Z]. Then the functions f and f fully satisfy condi-
tions (1.3) and (1.4). Condition (1.3) holds since the interval extension is
inclusion monotonic, while (1.4) holds because f is an interval extension.

83
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Definition 1.2. A function [ is called isotone if the following condition
holds: '
z<y= f(z) < f(y).

It is called antitone if
z<y= f(z) 2 f(y).

A function is called monotone if it is isotone or antitone.

Remark 1.1. Let the function f(z,y) be isotone with respect to z and
antitone with respect'to y. Then the interval extension f(x,y) has the
following form:

f6y)=f(z,9) and f(x,y)=f(z,y)

We can rewrite the system (1.5) in the following form:
z; < f.(t,x1=L %), te (0,1,
> fit,x®l k), i=1,2,... n,

z(0) < zo,
z(0) > Zo,

(1.6)

~

where x*i] means (X1,X2, .., Xim1, T, Xig1, . .y Xp).

Generally, solving the above system gives a two-sided solution that is
wider than optimal. However, in some special cases, the solution of the
system (1.6) furnishes the optimal bounds. C0n31der the following cases.

. Let the system (1.6) be of the following form:

117’ = f(t7£a kl)) te (Oa l)7

N (m kz)’ (1.7)

z'
Z
T

v \./
Il
Hl

(0
(0
where k; € k. In this case z and 7 are particular solutions of the initial

system; and are therefore optimal.

Let us formulate sufficient conditions for representing the system (1.6)
in the form (1.7).
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. Lemma 1.1. Let the following conditions hold:

Ui k)20, i#d Hi=L2...,n. (1.8)
a:L‘J' . .

sign %(m, k) = Cj, j:widk;) #0,k €k, z €x. (1.9)
j

Then the system (1.6) has the form (1.7).

Proof. In fact, conditions (1.8) and (1.9) combined with the monotonicity-

of f with respect to z and k guarantee that an interval extension of the
function f can be represented in the form (1.7). W

Consider the example:

:17’1 = —-klarl, $1(0) = 1,

.’17'2 = kl.’l)l - kz.’l)z, 11,‘2(0) = 0.

This system of ODE’s simulates a simple chemical reaction. Conditions
(1.8) hold for chemical kinetic equations [2]. But conditions (1.9) are not
valid as a rule. The system of ODE’s for a two-sided solution has the
following form:

zy = ~kizy, z;(0) =1,
zh =k x;, — kazy, 25(0) =0,
Ty = —k Iy, z;(0) = 1,
7 = k13 — koT2, 2(0)=0.

The constructed system decomposes into independent subsystems, but
since the condition does not hold, the two-sided solution is wider than the
true one. In this example, the width of the two-sided solution depends
on wid(k;), and we get the optimal bourids for the set of solutions if
Wld(kl) = 0.

In general, it is impossible to solve the system (1.6) analytically. Hence,
we use numerical methods to find z and Z. In cases in which errors in the
integration method may be neglected, the system (1.6) mpy be solved by
the method most convenient for the given problem. If guaranteed esti-
mates are needed, one can use the available a posteriori error estimates
for the numerical solution.

[ S~ R o R - R e |
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2. A posteriori error estimates

Let us formulate the problem (1.6) in the following form:
@.',z =ii(t,x[£i]7k), te (O,I)’
zi = fit,x®l k), i=1,2,...,n

z(0) = z,
5(0) = Tp.

(2.1)

Suppose that the problem (2.1) is solved numerically using some inte-
gration method with accuracy p on the mesh

wp=2z;, Jg=12,...,N, N,\an integer.

This results in the approximate solution z?(x), Z?(z), = € wn at the
mesh points. Using equation (2.1), one can calculate approximate values
of the derivatives z}(z) at the nodes of w,. Using the calculated values,
we construct Hermitian splines S; and S; of degree r — 1 passing through ;
the points z"(z), Z*(z), = € ws.

Theorem 2.1. [11]. Let S interpolate the approximate solution z".
Then there exists a constant C independent of h and 2" such that

I (2" — §)/de" ||qo,g< C(B™™ || 2 lwr fo.g +HP), v =0,1,2.M

We shall search for the solution of the system (1. 6) in the following
form:

= AR i (2.2)
where a and @ are constants.

S, and S; are the splines interpolating a numerical solution of the
followmg system of ODE’s:

LN
I
M :

(0£,(8,%)0z;)z; + (£,(S, k) — 5')_

.
I
=

(0F:(S,X%)0%;)%; + (i(S, k) - §0),

t\ll
I
[7:

.
Il
=

Jae
N
o
SN
Ny
~
)
S—

=0
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where

g = { B 520, (f)__={fif f<0

0 otherwise 0 ofherwise.

Substituting (2.2) into (1.6), we see that @ and @ must satisfy the following
system of inequalities:
(S +aS,)i < £,(IS+aS;, 5 +a8=L k), te(0,0)
(5 +a51); > fi([S + a51,a8, k), i=12,...,n
(§+a$5;)(0) < 2
(8§ +a5)(0) > z-0.

This system of inequalities can be rewritten as the system of nonlinear
equations with respect to a and a:

®;(a;a)
<I>2(g, C_l).

I

a
a

The system of nonlinear equations constructed in this way is easily solved -
by the simple iteration method:

Qiy1 = ®,(a;, @)

- 2.3
aip1 = Po(ay, a;). (23)
The initial approximation can be chosen as follows:
g_o, 5,0 = 1.0- (2.4) R

Lemma 2.1. The iteration process (2.3) with the initial approximation
(2.4) converges for | small enough.®

The following inequality gives a bound on the width of the constructed
two-sided solution for k = k and zo = To [4].

p(t) < Cmax {(F"~" || 2 lwg o +h")Sa (1),
(" || & ||we o) HRP)S1(1)} (2.5)
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Theorem 2 2 Let the system of ODE s (1.6) be represented in the form
(1.7), and let x* be the optimal solution. Then

|lz(t) — 2*(t)| < Ch7
|Z(t) — z*(t)| < CR°,

where ¢ = min(r — 1, p).
Proof. The proof follows directly from (2.5).18

This allows us to avoid the wrapping effect if the system (1.6) is rep-
resentable in the form (1.7). 7

3. Application of sensitivity analysis

The main idea of this approach consists of analysis of the partial deriva-
tives of the solution with respect to the parameters. This approach mostly
coincides with the standard sensitivity analysis, but its realization re-
quires the use of interval analysis techniques. Therefore, we shall call it
the method of interval sensitivity analysis [6].

Suppose that we want to evaluate (9 the upper bound v* with respect
to the ¢-th coordinate of 5:5-?') > x; for all z € y*.

To do this, consider the system of ODE’s

a—;(i) = f(t, -’l_;(i)i k(i))

£0(0) = a:gi)7 (3.1)
Here
k; if xF (1) >0
D=Lk i xb(t) <0
k; ifx5(t)20
and
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Zo; if x3;(t) >0
o) = my; HxY(t) <0

xo if x§; (t) 50,

where xJ;(t) is an interval extension of g_zf(ta k,%o),and x3;(t) is an inter- In
val extension of:%% (, k, Xo). If x§;(t) and x;;(t) do not contain zeros, sif
then the system (3.1) does not contains interval parameters and may sh
be solved by various interval and two-sided methods. For example, if - of

[, 2()"] is a two-sided solution obtained by the method described in
-Sect. 2 with cubic Hermitian splines, then

120 — 2O < Ch3, te(0,1).

The interval functions x5;(t) and x7;(t) may be found by simultane-
ously solving (1.1) and the system of ODE'’s

ik %(t,m,k)xz + %(t,x, k)
Ok;

=1 axl

x5 (0) =0 (3.2)
0 __ i 0
CL'J = 2 %(t,x, k)le
A0 =85 33)
where §;; is the I{ronecker symbol. -
ﬂi_
Theorem 3.1. Let Be
01
0¢g£i_(t,x0,k), i=1,.4..,n; j=1,...,m, and i
3; | . L 1
0¢ ==(t,x%k), 4,k=1,...,n, k#i s1
Oz~
Then there exists to > 0 such that the following conditibns hold: it

0¢xk(t), 0¢xy(t), te(0,t0)M
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Consider a numerical example:

21 =k, * 21(0) =z € [-0.1,0.1]

(3.4
o = —"k.'El, 1'2(0) = T2 € [09, 11], kek= [10,20] ( )
In Fig.3.1, the two-sided solution obtained by the met;hod of interval sen-
sitivity analysis and the exact solution are compared. As this comparison
shows, the proposed method gives optimal bounds in practice for the set

- of solutions, up to time t ~ 0.71.

W

Fig.3.1
1 — exact solution, 2 — method of interval sensitive analysis

4. Construction of domains -
containing the sets of solutions

Denote by R the set of all n-dimensional domains. The elements of this
set will be denoted the same way as interval numbers. We shall consider
only those x € R that can be uniquely described with a finite set of
parameters. - For example, ellipsoids, polyhedra and any parallelepiped
may be given by some vertex O and n edges emanating from it: e;, 7 =

1,2,...,n. Therefore, a vector of parameters 2p is associated with each
such element x € R. |

To construct the map x(t) : R — R containing the set of all solutions,
it is essential to construct the map ~v*:

YTk, x0) D {a(t+ 7, k,20) | k € k.
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This map can be constructed approximately using numerical infegration
methods, such as Euler’s method

(¢, 7, k, o) 2 {zh (4T, k, zo)|z" (t+7, k, T0) = :ro—l;Tf(t, zo, k), k €k}

In this case, the bounds v* and v differ by O(r). Therefore, knowing
x(t,k, %) at some time ¢, one may construct the domain x(t + 7,k,Xo)

 x(t+7,k,%0) 2 {7t 7 k, 20)|20 € x(t,k,%0)}-

Given the vectors zp(t) and zp(t+T) respectively, one can construct the
system of ODE’s describing the behaviour of zp:

"L'pl -~ fp(t,_.’L‘, k)
zp(0) = zpo.

(41)

If we construct the system of ODE’s (4.1) in such way that one can
reconstruct the trajectories z(t, k; o) from zp(t), we can try to establish
optimal bounds on the set of solutions. ; '

Consider some numerical examples. The following system describes a
simple chemical reaction [2].

ah = —kizy, z1(0) =1,
zy = kyxy — Koo, 22(0) =0,
Eiek = [05,10], ko € ko = [15,20]
~

Fig. 4.1 displays bounds on the set of solutions at different time points
by parallelepipeds. '
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0.25

0.2

0.15

0.1

0.08
0.06
0.04

t=1.0

1

Fig.4.1

Fig.4.2

We illustrate how polyhedral domains are used with the following sys-
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tem of ODE’s.

.’17’1 =T,
.’17’2 = —kl.’I)l - kg.’.l)g,
ky €k, =[0.25,1.0], k2 € ko =[0.0,0.6].

The initial conditions for this problem are the intervals [—-0.5,0.5] and
[0.5,1.5]. Introducing one more parameter k € k = [0.0,1.0], we can
represent the initial conditions in the parametric form

-0.5 1.0
z(0) = k .
=(0) ( 0.5> 3 (\1.0)
Since the domain is not uniquely represented as a polyhedron, two differ-
ent polyhedra are used to represent the set of solutions. They are chosen
in such a way that some their vertices always lie on the bound of the set
of solutions. Thus the intesection of these polyhedra follows the set of

solutions. In Fig. 4.3, the intersections of the polyhedra at times t = 0.5
and ¢t = 1.0 are shown.

bez = =
t=0.5 . t=1.0
1.5' B 1.5 B
1.0 } 1.0 b
0.5 E 0-5 B
O'O B J 0.0 o
1 1 1 1 » T

Fig.4.3

As Fig 4.3 shows, although each polyhedron ‘has a large size, their
intersection has ho wrapping effect.

5. Transformation of a system of ODE’s

As was shown in Section 1, the best case occurs when the system (1.6)
is representable in the form (1.7). This can be attained in different ways.
In particular, one of possibilities is a change of variables.

—

(I

1 I w T . /.'\

—t
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Let

# r=2x(y), .k=k(p). (5.1)

Then, by Substltutlon of these relations mto the system (1.6), we get the
transformed system of ODE’s

¥ = g(y,p),
y(O) = Yo.

The dependencies (5.1) must be chosen such that the function g satisfies
conditions (1.8) and (1.9).

The following theorem concerns a possible choice of the transformation

(5.1).

Theorem 5.1. [1]. In a sufficiently small neighbourhood of a non-
degenerate point zo, the coordinate system (y1, Y2, . .. ,Yn) may be chosen
such that, in this system, equation (1.1) would be written in the form

- on=1,
yéay:,_’n ,y;=0 L

Consider the example (3.4). Make the following transformation:

xy = r cos(¢),

T9 = rsin(¢).
Then, in the new variables, the system (3.4) becomes

¢, = ki ¢(0) = Cop,
r' =0, 7(0) = ro.

It is easy to see that the transformed system has no wrapping effect,
though its solution is slightly wider than the exact one.

Conclusion

The examples show that it is possible to overcome the wrapping effect

in some cases. Combination of the proposed methods successfully defeats
the wrapping effect. '
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