Interval Computations
No 2, 1991

PARALLEL COMPUTERS.
ESTIMATE ERRORS CAUSED BY IMPRECISE DATA

Vladik Kreinovich, Andrew Bernat,
Elsa Villa, Yvonne Mariscal

A typical usage of computers in engineering is as follows: we are inter-
ested in some quantity ¥ (e.g., the amount of oil in a given region), that is
difficult or even impossible to measure directly. So we measure some phys-
ical quantities T1,... , Ty, that are connected with ¥ (e.g., conductivity
of different layers) and then compute ¥ from the T;. Measurement errors
in z; lead to an error d in Y. The problem is to estimate d, but methods
of numerical analysis are often too difficult.

It is appropriate to consider solution of this problem within the context
of software engineering because we are essentially concerned with the qual-
ity of the results of our programs. We show that solution of this problem
is feasible, that is, it is possible to write a program that computes both ¥
and its error estimate d from Z;, given the measurements T; and the range
of possible measurement errors.

We show how this method can be parallelized and what parallelization
model fits this problem best.

ITAPAJIJIEJIBHBIE KOMI’II:IOTEPIgI.
OIIEHMBAHME IIOTI'PEIITHOCTEMN,
BBI3BLIBAEMbBIX HETOUHBIMU JAHHLIMUN

Braauk Kpeitmosuu, Duapio bepuar,
Dnb3a Buniaa, Usorr Mapuckad

OBbIYHO KOMIBIOTEPHI B TEXHUKE UCMOIBL3YIOTCA ciieayolmnm o6pa-
30M: MBI MHTEpeCyeMcsi HEeKOTOPOil BeJIMUMUHON Y (HanmpuMep, KOJH-

YeCTBOM He(TM B-3aJaHHOM pervoHe), KOTOPYIO TPYAHO WM Aaxke

© Vladik Kreinovich, Andrew Bernat, Elsa Villa, Yvonne Mariscal, 1991

32 V.KREINOVICH, A.BERNAT, E.VILLA, Y.MARISCAL

HEBO3MOYKHO M3MEPUTBL HerocpeacTBeHHo. [lna aToro Mbi usMepseM
$usnUecKkne BEIMUMHBL X1, . . . y T, KOTOPHIE CBA3AHEI C I (nanpumep,
POBOUMOCTb PA3JIMUHBIX CJIOEB) M BhiuMciseM Y mo I;. Oumbku
u3MepeHuii I; MOPOXKIAAIOT OMIMOKY 6 nna y. Haweit 3anaueii Apna-
eTcs olleHUTh (, HO MeTO bl UMCJIEHHOTO aHAJIN3a YACTO OKa3bIBAIOTCH
CJIMIIKOM CJIOYKHBIMH.

IIpencTaBisieTcA Pa3yMHBIM PAacCMOTPeTh pelleHMe aToi 3anaun
B KOHTEKCTE MOCTPOEHUA CPEeACTB BBIUMCJIMTEJIbHOW TEXHUKH, T.K. IO
CYLIECTBY MBI 3aMHTEpECOBaHbl B KaueCcTBe pPe3yJIbTaTOB HaUIUX Mpo-
rpamMM. MBI MOKaskeM, UTO pellleHMe 3a]aud MOXKeT OhITb HailAeHOo;
TaK BO3MOYXHO HallMcaTh NpOorpaMMy, KOTopas BbIUMCIAET U Y U olleH-
Ky ommn6ku d no T; v No npeesaM BO3MOXKHBIX OIIMGOK M3MepeHMii.

MBI OKa)keM,; KaK 2TOT METOJ MOXKeT ObITh pacnapaJijiesieH U Ka-
Kafl MOJleJIb pacnapaJijieJIMBaHUsi COOTBETCTBYeT Halled 3ajaue Hay-

JAydmiiMm obpas3oM.

1. Introduction

A typical usage of computers in engineering is as follows. We are inter-
ested in some quantity y (e.g., the amount of oil in a given region), and it
is difficult (or even impossible) to measure y directly. So we measure some
physical quantities z1,... ,Z, that are indirectly connected with y (e.g.,
the conductivity of different layers, the results of ultrasound screening,
etc.) and then compute y by applying some known algorithm to these
values z;. This algorithm is actually the numerical method for solving
the equations that connect y with z; (these equations can be algebraic,
integral, differential, stochastic etc).

The program that solves these equations numerically gives us some
value of y, e.g., in the oil example y = 13, meaning that there are 13
million tons. But the measurements are inevitably not precise; so this
“13” is also not precise. An important question for a user is: What is the
possible error of this estimate? If the maximum possible error is 1 then
this estimate is quite reasonable, but if the error caused by the imprecise
data can be as large as 100, then this estimate is senseless.

The traditional approach to answering this question is to analyze the
corresponding mathematical model. Engineers who have gone through
numerical mathematics know very well that this is often an extremely

e inter-
, and it
re some
y (e-8.,
-eening,
0 these
solving
gebraic,

1S some
» are 13

so this
at is the
s 1 then
nprecise

lyze the
through
<tremely

PARALLEL COMPUTERS. ESTIMATE ERRORS ... 33

difficult problem. Even for the simplest case, when y and x; are related
by a system of a linear equations, error estimates are difficult to compute,
and for some nonlinear systems error estimates are not even known. So

these methods are hard to use, and for an engineer, who is jot a specialist
in numerical analysis, it is a very tough (and sometimes ev. impossible)

job.

The ideal solution for an engineer is when the computer itself will
compute these errors. That is, the user chooses (or writes himself) a
program that computes y from z;, tells the computer the results z;, : ¢ =
1,2,... of the measurements and the range of possible errors of these
measurements, and the computer itself produces both the value y and
the error estimate for this value.

If we are planning to produce such an ideal solution, we need a software
device, that would allow us to compute errors of arbitrary programs. This
problem has two aspects: that of mathematics and that of software engi-
neering. The mathematical aspect is to develop new improved methods of
error estimates for different specific algorithms. The software engineering
aspect is of two forms: we are planning to describe a device to compute
these error estimates (some sort of a compiler) in software terms. Further,
our goal is to provide precise numbers, with error estimates, to the user.
Therefore this problem is an example of providing correct information,
which is a problem in software engineering.

2. An illustrative example

In order to understand the models and the solutions better we’ll give an
illustrative example. This example is so simple that it does not constitute
any problem from the computational viewpoint and is given here only for
illustration purposes.

Suppose we cannot measure the voltage V directly, so we decided to
measure it indirectly: i.e., measure the current I, the resistance R and
then multiply the resulting values (i.e., apply Ohm’s law). Suppose the
result i of measuring current is 2.5 (lower case letters represent the actual
measured quantities), the result r of measuring resistance is 4.0; then the
resulting voltage value is v = ir = 10.0. The real value of voltage can be
different from v, e.g., if we know that the precision of both measurements
is 0.1 (the real values of I and R can differ from the measured ones by

34 V.KREINOVICH, A.BERNAT, E.VILLA, Y.MARISCAL

no more than 0.1) then these real values can be, e.g., 2.59 and 4.08, in
which case the real value V of voltage is 10.56.. ., i.e., the error in this
case is 0.56.... In the other cases the error can be smaller or greater.
It is impossible to enumerate all possible values of I and R (there are
infinitely many), therefore the problem of estimating all possible values
of error is sometimes non-trivial.

3. Mathematical formulation of the problem

To make our arguments easier to understand we’ll start with a natural
formulation of this problem. Then we’ll show why this formulation is not
very adequate to the user’s problem and how to modify it.

3.1. Denotations and motivations for the mathematical formu-
lation. By n we denote the number of all measurement results. The
result of it* measurement will be denoted by z;; the real value of the
measured quantity will be denoted by X;. The difference between x; and
X; will be denoted by d; and called the error of the ith measurement.

By f(z1,.-- ,%») we denote a value of the quantity y that corresponds
to the values z; of the measured quantities. The analytical expression for
the function f may not be known, but there must exist a program that
computes the value of f for any input data. So the real value Y of the
desired quantity equals to f(Xi,... , X,), the valye y that is produced
by the given program equals to f(z1,... ,Zn). The difference between
them d = y — Y is called an error of the resulting indirect measurements
of y.

In the above example n = 2,21 = 1,22 = T, f(z,y) = zy. X1 is the
real value I of current, R = X5 is the real value of resistance, v = ir is
the result of our indirect measurement procedure and V = IR is the real

voltage.

3.2. Two kinds of errors. We are also supposed to know the estimates
D; for d;. and from them we want to compute an estimate D for d.

Following the traditional engineering approach (see, e.g., [1] [2]), we'll
consider two kinds of errors: systematic and random errors.

Systematic errors. By saying that an error is systematic we mean
(from the mathematical viewpoint) that the only thing we know about

PARALLEL COMPUTERS. ESTIMATE ERRORS ... 35

the error d; is that it belongs to a certain interval [—Dj;,D;]. In this
case the possible values of X; form an interval [z; — d;,z; + d;]. The
resulting possible values of Y also fill the interval, and the estimate we

are interested in is, in this case, the maximum possible value D of |d| =
ly - Y.

Random errors. Another typical situation in engineering applications
is when the error is random, which means that d; are random vari-
ables, and we know their probabilistic distributions. These distribu-
tions are usually considered to be independent; the average value of
an error is 0; we know the mean square deviation D; and assume that
the probabilistic distribution is Gaussian. In this case the resulting
error d is also a random variable, and we are interested in the mean
square deviation D of this variable, i.e., Dy = E(d?) = E((y —Y)?) =
E((f(z1,...,2s) — f(X1,...,Xn)?), where E means mathematical ex-
pectation.

3.3. First mathematical formulation. Now we are ready to formu-
late the first natural mathematical formulation of this problem.

The input data for our desired software device should include the fol-
lowing;:

(1) an integer n; the number of measurement results

(2) a program f that, given n real numbers z,,... ;2,, computes
the value y; the result of applying this program will be denoted
by f(z1,...,2n)

(3) n real numbers z;,: ¢ =1,2,...,n; the measurement results

(4) n positive real numbers D;,: i = 1,2,... ,n; the estimates of the
measurement errors .

(5) a Boolean variable b; if b = true, the errors are systematic; if
b = false, the errors are random.

In case b = true, we want to know the maximum possible value D of
the expression |d|, where

d= f(zy,...,2n) — f(X1,...,X3) (1)
and each X; takes all possible values from the interval [z; — D;, z; + D;].

In case b = false we want to know the value D = (E(d?))%, where
d is defined as above, X; = z; + d; and d; are n independent normally

36 V.KREINOVICH, A.BERNAT, E.VILLA, Y.MARISCAL

distributed random variables with average value 0 and standard deviation

D;.

The above formulation seems to comprise what the engineers really
want. Its only drawback is that it is intractable or, using the precise
mathematical term, NP-hard (Garey, Johnson, 1979). In other words, if
we could solve this problem in reasonable computation time at least not
exceeding some polynomial of the length of the input, then we would be
able to solve all discrete problems in polynomial time, which is generally
believed to be impossible.

It is intractable not because we permitted arbitrary programs for f.
Rather the problem remains intractable even if we restrict ourselves to
the case when the function f is a polynomial and b = true (so the errors
are systematic) ([4] [3]).

4. A new approach to ensure feasibility

In order to make the problem feasible let’s take into consideration the
fact that the value D that we are looking for is just the error estimate, so
there is no need to compute it with great precision. A statement that “the
precision of this measuring device is 10.3%” sounds crazy to an engineer;
if we measure with precision about 10% (just 1 decimal digit), there’s no
sense to argue about the third decimal point in the error.

Engineers and physicists normally express this idea by saying that we
can “neglect” terms quadratic in errors d;. In computational terms this
means that in order to compute any function F of d; we expand the
function in a Taylor series and neglect all quadratic (or higher order)
terms, so that only linear terms remain.

In our case we are interested in the function d, that is described by
equation 1. The values z; are given, so the only thing that depends on
d; is X; = z; — d;. Substituting this expression into equation 1, we get
d= f(z1,... ,2n) — f(@1 —d1s. oo s Tn = d,,). Expanding this expression
into a power (Taylor) series with respect to d; and retaining only terms
that either do not contain d; at all or are linear in d;, we conclude that

d=f’1d1+---+f,ndn \(2)

where f; means partial derivative of the function f with respect to the
variable z; and evaluated at the point (1, -- T I

N = T o=

PARALLEL COMPUTERS. ESTIMATE ERRORS ... 37

How does this representation help to solve the computational problem
of finding the value D?

Let’s first suppose that the values of the derivatives f; are already
known. Then the expression 2 is just a linear combination of the values
d; with known coefficients. In this case both the maximization problem
(in case of the systematic errors) and the problem of finding the mean
square (in case of random errors) become easier to solve.

In case of systematic errors we know that d; belongs to the interval
[-D;, D;]. The term fid; is an increasing function of d; if f; > 0 and
a decreasing function if f; < 0. Therefore if the derivative is > 0, then
the maximum of this term is attained when d; equals to the maximum
possible value D;, and the value of this term is then f:D;. If the derivative
is negative, then the maximum possible value of this term is attained
when d; takes the smallest possible value —D;, and the correspondent
value of this term is —f;D;. Both cases are covered by one expression

| f:|Ds.

The whole sum d = fidy + ...+ fndy attains the maximum value
if all its terms are maximal possible. Thercfore the maximum D of this
sum equals to the sum of the maxima of all these terms, i.e., ‘

D=|f,1|D1+"'+|f,n|Dn (3)

Let’s now consider the case of random errors. In this case d; are
independent random variables, with average E(d;) = 0 and mean square
E(d?) = (D;)?. The fact that they are independent means, in particular,
that E(did;) = E(d:)E(d;) = 0. Therefore the standard deviation D of
the total error can be determined by applying the more or less standard
statistical computations:

D? = B(d?) = E((fadi + - -+ fndn)®)
= B((f1)2d2 + ...+ (fa)’ds + (faf2)dadz +)
= B((f1)2d) + .+ E(fa)?d2) = (fa)? DI+ (f.n)*D2

Therefore in this case

(NI
—_~
N
~—

D = ((f,l)zD%—*-"‘“(f,n)zD?l) :

38 V.KREINOVICH, A.BERNAT, E.VILLA, Y.MARISCAL

Notice that in this case we do not need the supposition that the random
errors d; are normally distributed. This fact is very important, because
in reality the probabilistic distribution of errors can be different from the
Gaussian law.

The bottom line is that if we known the derivatives then it’s easy to es-
timate D. So only one problem remains: How to compute the derivatives

of f?

In case f is given by an analytical expression (as in the Ohm’s law
example), then by differentiating this expression we get an expression for
the desired derivative, e.g, for Ohm’s law f; = 22 =r and f2 = 71 = 1.
But what to do in the more difficult case, when f is given as a program
and no mathematical expression for f is known? For example, when we
analyze the geophysical data we apply different filtering procedures to
the huge array of inputs. Of course this transformation (corresponding
to some kind of Kalman filtering) can be viewed as a function, but no
explicit expression for this function is known.

This problem may seem difficult to solve at first glance, but actu-
“ally the same idea of “neglecting” second order terms helps here as well.
Namely, when we assume that we can neglect the terms that are quadratic
in errors, then from the engineering viewpoint we mean that not only the
squares of the errors, but the squares of any numbers of the same order of
magnitude are negligible. Therefore, if we take any n small real numbers
$1,... ,5, (small means of the same order of magnitude as possible er-
rors d;), then in all the expressions containing s; we can neglect quadratic
terms. In particular, just like for d;, we conclude that

= ~

f(xl + $1,... ,$n+3n)_f(x17-'- alxn) :f,151+---+f,nsn (5)

Therefore, substituting into the program f initial arrays z; + s; for
different s;, we can compute linear combinations of the unknown deriva-
tives, from which we can compute the derivatives themselves, e.g., in
order to compute f; we can use the values sy = s, 52 =... =8, =0 for
some small s. Then the right-hand side of equation 5 becomes f s, and
we obtain the following expression for fi:

fi=(flay +5,29,...,2,) = f(z1,22,... ,Tn))/s (6)

PARALLEL COMPUTERS. ESTIMATE ERRORS ... 39

When s tends to 0, this formula turns into the definition of the partial
derivative; actually this formula is used in numerical mathematics for
computing partial derivatives.

Now we are ready to present the final mathematical formulation of our
problem.

4.1. Final mathematical formulation. The input data for our de-
sired software device should include the following:

(1) an integer n; the number of measurement results

(2) n real numbers z;, : i=1,2,...,n; the measurement results

(3) n positive real numbers D;,:i = 1,2,...,n; the estimates of
the measurement errors; we say that real numbers s1,. .., S are
small if for every i the value |s;| does not exceed D;;

(4) a program f that, given n numbers real numbers Ti,...,Zn,
returns some real result; the result of applying this program will
be denoted by f(z1,-.-,2n) : _

(5) a program that, givenn real numbers z1, ... , Ty and n small real
numbers 81, . .. , Sn, returns the value f(z1, ... X))+ fasi+...+
f.nSn, where f; means the value of i'* partial derivative of the
function f (i.c., the function computed by the program f) at the
point (z1,... ,%n); :

(6) a Boolean variable b; if b = true, the errors are systematic; if
b = false, that the errors are random.

In view of the above arguments the second program can be imple-
mented simply by using z; + s; as an input of the first (main) program.

In the case b = true, we want to know the value given by equation 3;
in the casc b = false, we want the value given by equation 4.

Our formulation is already final and consistent, but does represent
a mixture of pure mathematics and engineering assumptions. This ap-
proach may be validated using the techniques of nonstandard numbers
6], but this approach provides only a non-algorithmic justification and
we need a computer algorithm, which we derive below.

5. Algorithms that estimate errors

5.1. Estimation using partial derivatives. This idea is very simple:

40 V.KREINOVICH, A.BERNAT, E.VILLA, Y.MARISCAL

we have explicit formulas allowing us to compute D in case we know the
partial derivatives, and we have a method to compute these derivatives,
so we compute them, substitute the result into equation 3 or equation
4 and get the desired answer. Since it is already a working tool, let’s
describe the algorithm step by step:

(1) We assume that the value y = f(z1,... ,Tn) has already been
computed, in other words, the data processing algorithm f has
already been applied to the input data z;. _

(2) Computing partial derivatives. For every i from 1 to n do the

following;:
(a) compute the vector (s1,...,sn) With coordinates sy =
Sg=...=8i—1 =841 =...= S, =0 and s; = D;;
(b) substitute z; + s1,... ;Zn + S, into f, thus computing

yizf($1+sla""xn +‘Sn)

(c) compute f; = (yi — y)/si
(1) (3) compute D from D; and f;, using equation 3 or equation 4,
as appropriate

If n is small (like n = 2 in the Ohm law example) this algorithm works
fine. But in some cases we need to process a lot of data in order to get the
desired value y. In this case n is big, and the data processing program
f takes a lot of computer time. The above-described algorithm calls the
function f n times (once for each of n partial derivatives), therefore its
running time is n times greater than the already (possibly) large running
time of f itself (and n is also big!).

For the case of random errors there is a good way out: computer
simulation of these errors, or the Monte-Carlo method. The idea is that
we use the computer’s (pseudo-)random number generator to generate s;
which are distributed according to the Gaussian law with 0 average and
standard deviation D;. (Actually the pseudo-random generators return a
value that is normally distributed with standard deviation, so we have to
multiply this value by D; to get the desired s;). Then we substitute x;+s;
into f, and compute the difference between the resulting value and the
value y = f(z1,...,2s), that was obtained from the mitial data. This
difference d = f(x1+581,. .. »Tn+sn)—f(@1,. - Jxn) = fasi+. ..+ fasa
is a linear combination of the normally distributed independent random
variables, and therefore its probabilistic distribution is also Gaussiai.

PARALLEL COMPUTERS. ESTIMATE ERRORS ... 41

with standard deviation D = ((£1)2D? + ...+ (f.n)?D2)? equal to the
desired value. So if we repeat this experiment several (V) times, then the
resulting values di, ... ,dn are distributed according to this Gaussian law

and therefore we can use the standard statistical formula to determine
D:

D = ((dy)? + -+ (dn)?)/(N = 1))? (7)

The precision of this formula is determined by the size N of the sam-
ple (and thus does not depend on n), e.g., if we want to estimate D with
relative precision 20% (that is quite sufficient from an engineering view-
point, since 1.2% precision is actually the same as 1%) we need N = 25.
Therefore we need only 25 calls of f; for large n this is smaller than the
n calls of the first algorithm. So we arrive at the following Monte-Carlo
algorithm for random errors:

For k = 1,2, ..., N = 25 we repeat the following:

(1) use the random number generator to generate n numbers r; that
are normally distributed with 0 average and standard deviation
01

(2) substitute z; + D;r; into f and compute di = f(x1 + Dir1,--- 5
Tn+ Dprn) — f(21,..- ,%n)

(3) compute D = (((d:)? + ..+ (dw)2)/(N = 1)

That we can use the Monte-Carlo approach to estimate random errors
is not very surprising. It’s interesting that we can use it for systematic
errors as well! (For the detailed exposition and practical application
examples see [5]).

This method is based on the following property of a special distribution
law called Cauchy law, with a probabilistic density p(z) = const z/ (2% +
p?), where p is called the scale parameter of this distribution. This prop-
erty is that if 2y, ... , 2, are independent random variables, and each of z;
is distributed according to the Cauchy law with parameter p;, then their
linear combination z = c121 + ...+ cnzn also distributes according to a
Cauchy law, with a scale parameter p = letlpr+. . -+len |pn. Therefore, if
we take s; that are Cauchy distributed with parameters D;, then the value
d= f(z1+51,..- Tn45n)—f(T1,...) =Fas51+.. A+ f.nsn is Cauchy
distributed with the desired parameter D = |f1|Dy + ...+ |fn|Dn. S0
repeating this experiment N times, we get N values dy, ... ,dy that are

42 V.KREINOVICH, A.BERNAT, E.VILLA, Y.MARISCAL

Cauchy distributed with the unknown parameter, and from them we can
estimate D.

There are two questions to be solved:

(1) how to simulate the Cauchy distribution
(2) how to estimate the parameter D of this distribution from a finite
sample

Simulation can be based on the functional transformation of uniformly
distributed sample values: s; = D; tan(w(r; —0.5)), where r; is uniformly
distributed on the interval [0, 1].

In order to estimate D we can apply the Maximum Likelihood Method
p(d)p(d?)...p(d") — maz, where p(z) is a Cauchy distribution with the
unknown D. When we substitute the above-given formula for p(z) and
equate the derivative of the product with respect to D to 0 (since it is a
maximum), we get an equation

1+ (@ /D) +...+ 1+ (@ /D)) = N/2 (8)

The left-hand side is an increasing function that is equal to 0(K N/2)
for D = 0 and > N/2 for D = max(d*), therefore its solution can be
found by applying a bisection method to the interval [0, max(d¥)].

The precision of this estimate again depends only on N (20% precision
is achieved for N = 50), so this method uses N = 50 calls of f, and in
the case n > 50 it saves a lot of computation time.

Thus the Monte-Carlo algorithm for systematic errors:

"For k=1,2,...,N = 50 repeat the following:

(1) use the random number generator to compute n numbers r;, : 1 =
1,2,...,n, that are uniformly distributed on the interval [0, 1];
(2) compute s; = D; tan(w(r; — 0.5))
(3) substitute x; + s; into the function f and compute di = f(z1 +
S1yeev Tn 4+ 50) — f(21,-.- 1 Z0)
(4) compute D by applying the bisection method to solve the equa-
tion (14 (d'/D)?) — 14 7+ (1+ (a¥/D)*)~! = N/2
If we have f as a program say in Pascal it’s easy to implement all these
three methods as Pascal programs that call f as a subroutine. We have

PARALLEL COMPUTERS. ESTIMATE ERRORS ... 43

actually implemented these algorithms into two working tools that create
the error estimation programs from the programs in Pascal and Fortran.

6. The use of parallel processing

6.1. Why parallelization is possible and helpful here. All these
error estimating algorithms consist of running the given data processing
program f with simulated data z; + si, and then in transforming the
results d, of applying f into the desired estimate D (e.g., in the first
algorithm this simulation helped to compute the partial derivatives of f,
from which we computed D).

‘Computations that lead to s;, and the computations that get D from
d;, are rather easy, the most time-consuming part of these algorithms is
calling the program f for various simulated data. Therefore the natural
time-saving idea is to make all these calls in parallel. In case we have
sufficiently many parallel processors (n for the first algorithm, 25 and 50
for the 2" and the 3™), then all these calls can be made in parallel, so
we can reduce the computation time of the error estimate practically to
the computation time of the data processing itself, i.e. in addition to the
processed data get its error estimate practically in no additional time (at
the expense of using additional PIOCessors)«

In case we do not have that many processors, we can still distribute the
jobs between the available processors, thus diminishing the total compu-
tation time from T to approximately T/ P, where P is the number of the
processors, e.g., if we use the first algorithm for a program with n = 20
input data, and 4 processors are available, then we can make the first pro-
cessor compute the partial derivatives with respect to the variables z;_s,
the second for zg_10, the third for z1;-15 and the fourth for x16—20, thus
(diminishing the total running time for error estimate from 20Ty (where
T; is a running time of f itself) to 5T. In the Monte-Carlo methods we
can distribute 25 (or 50) repetitions between those processors, with the
samec time-saving effect.

Theoretically the more processors we have the quicker are the results.
But in real parallel systems a lot of time 1s consumed on communication
protocols, information exchange, waiting in the queues, etc. The more
processors we have, the more time-consuming all these communication
procedures hecome, and they seriously impact the whole computation

44 V.KREINOVICH, A.BERNAT, E.VILLA, Y. MARISCAL

process. So if we implement our parallelized algorithms on real parallel
systems with many processor, this additional time will add to our running
time and thus worsen our theoretical estimates.

The “overhead” of additional time wasting is difficult to avoid if we
really want several processes to send each other a lot of information during
the computational process. But in our case during the main (“calling f”)
stage no communication between the processors is necessary, and the only
communication we need is:

(1) sending the values z; and D; to the processors before that main
stage, and

(2) sending the resulting values dj from the processors to one pro-
cessor which will compute D from these values

There are no communication conflicts, so we don’t want to waste time
on protocols.

The fact that we need to send the same values to all the processors
means that we need small shared memory. The second communication
task can be also solved by a small shared memory if we allocate 1 word
for every processor (at the expense of maximally 50 additional words).
In this case there can be no attempts to write contradictory data into
this common memory, so we can implement it in the easiest possible
way, e.g., we can choose one of the processors (that actually reads z;)
to be the Coordinator. In the memory of each processor we select two
small pieces: for drop and for pick. In the beginning the signal is picked
from the Coordinator and dropped consequently into the “drop” part of
all other processors. At the end the same consequent process can be
used to “pick” the results from the processors and drop them into the
Coordinator’s memory. So what we need is to connect all the processors
by a loop and organize a continuous pick-drop process: a signal is picked
from the pick locations and dropped into the Coordinator’s memory.

Such a simple loop system has been produced by Septor Electronics
for use in machinery control applications (7] [8].

We have implemented the above-described algorithms on a system
based upon the Septor Electronics boards and indeed achieved the desired
speedup: P times if we use P processors. Figure 1 displays sample results.

e O ~r (0 ~ =+

ow oo oo

111

»d

PARALLEL COMPUTERS. ESTIMATE ERRORS ... 45

100 T T T T -
80 — A'o' =
T/Tt 60 — "': —
j ! B

(0 I 20 40 60 80 100

Number of Variables

Figure 1: Efficiency on Parallel Processors. Notation is: T, exccution
time for error estimates; Ty, time to compute a function; n, number of
variables; A, estimation using partial derivatives; B, sequential Monte
Carlo method; C-E, 5 processor Monte Carlo method with C' and D for
differing algorithmic complexity and E the theoretical limit.

Acknowledgements. This work has been supported by a grant from
The Institute for Manufacturing and Materials Management and by an
equipment donation from Septor Electronics.

References

1. Clifford, A. A. Multivariate Error Analysis, J. Wiley & Sons, New York, 1973.

46 V.KREINOVICH, A.BERNAT, E.VILLA, Y.MARISCAL

9. Fuller, W. A. Measurement Error Models, J. Wiley & Sons, New York, 1987.

3. Gaganov, A. A. Computational complezity of the range of a polynomial in
several variables, Cybernetics, 418-421, 1985. (In Russian; this journal is translated
into English.)

4. Garey, M., and Johnson, D. Computers and Intractability: e Guide to the
Theory of NP-Completeness, Freeman, New York, 1979.

5. Kreinovich, V. Ya., and Pavlovich, M. I. Error Estimate of the Result of In-
direct Measurements by Using a Calculational Ezperiment, Measurement Techniques,
28, 201-205, 1985.)

6. Robinson, A. Nonstandard Analysis, North-Holland, Amsterdam, 1966.

7. Roberts, R. AI Enhanced Transfer Lines, Programmable Controls, May, 105—
108, 1989..

8. Hardin, J., and Taylor, J. A Distributed Parallel Processiﬁg System Can
Solve Today’s Complex Automated Machine Control Problems, Proc. 19t* Annual
International Programmable Controllers Conference, 1990.

Computer Science Department
The University of Texas at El Paso
El Paso, TX 79968, USA

