NARROWING OF INTERVALS BY PARTIAL DERIVATIVES
Eldar A.Musaev
Here 1s a review of methods to reduce a growth of
intervals using an estimation by Taylor expansion.
The comparison of these methods with traditional
interval arithmetics, Including the experimental
results ohtained by author, 1s made too.

CYXEHVE MHTEPBAJIOB ITPY TIOMOIW YACTHHX MPOUSBOIHHX
‘ "~ 3.A.MycaeB
Huxe IpuMBOIMTCA O©OC30P METONOB CHUXSHUA POCTa
UHTEPBAJIOB IIp¥ TOMOmR pasjioxemma Telnopa. Taxwe
NpWBENEHO CPABHEHME STHX METOINOB C TPaIMIMOHHON
- MHTEpBaJbHOM .apufMeTHKOA, B TOM WCJIEe HA
[OJIyYeHHHX aBTOPOM SKCHePUMeHTAJbHHX pe3yJbTaTax.

- It 1s supposed that a potential reader is famillar with
the basic 1deas of the interval analysis. If not, this
information can be found, for example, in [1].

It 1s well known, that the main problem of interval
computations 1s the fast growth of intervals. One of the
reasons 1s hidden in the fact that

X -X={XX | X:% ¢ X3
instead of
) X-X={xx]}xeX)}

There are many ways to decrease this effect.and one of
them 1s based on the idea of estimation by the first order
derivatives, 1i.e.

F(X) € 1(xg) + P'(X) (X-xp)

'Any program 1s considered here as a functlon of Input
variables. Of course for every set of input values 1t will
be continmious except divislon-by-zero cases. The values of
partlal derivatlves are necessary here to estlmate the
result. The firgt way to compute them described by E.Hansen
in [1] is a generalized interval arithmetic (g.l.a.). G.1.a.
proposes to compute these derivatives simultaneously with
the computation of f(x). The idea itself is yery simple. Let

- 86 -~

us have an Interval data type Seg and a generalized interval
type

Type GSeg = Record v : Seg; d : [NISeg End
where N is a number of input values, v 1s an estimation for
~the value, and dfi] 1s an estimation for the i-th partial
derivative. It is evident that for i-th input value

d=(0, 0,..., 0, 1, Oyuees 0)
index = 1 2 11 1141 N
Any numeric program consists of four arithmetic
operations(wlthout mentioning integer operations), combined
by different operators. All these operations can be
redefined in an accordance with elementary rules of
differentiation, for example
A+B= (A.v+B.v, A.d[11+B.dl1], ..., A.QINI+B.dIN])

This method ylelds sufficiently good results, but
Increases computational complexity of arbitrary algorithm in
proportion to the number of iInput variables. Moreover it
Increases both time and memory complexity. So computation of
determinant 2; the n-th order matrix by Gauss method
required 0(n“) E}me and 0(n) memory in traditional
arithmetic and O(n°) time and O(n*) memory in g.i.a. Taking
Into account the fact, that the approximation used in g.1.a.
1s not always better then traditional i.a., this cost is too
high for the most of the practical tasks. But if an
algorithm has few Input varlables then g.l.a. can be used
independently of the number of output ones. Note also that
traditional 1.a. results are never better than g.1.a. ones,
because g.1l.a. Includes traditional computation.

Another way to compute partial derlvatives was proposed
as an apostericry interval analysis (a.l.a.) 1in [3] by
Yu.Matijasevich. It was proposed to use a fast computations
of partial derivatives described In [4] and [5] (in [4] this
was used for a simllar aim but without Interval computations
and guaranteed estimation). The main 1dea of fast
computation of partial derivatives 1s not very complex. As
1t has heen mentloned above, any program on any input data
set could be represented as a sequence of simple assignments

Imer = X3, Omet T

Xi = xdi 01 in

¥ 5% Xn 5%y On T
where o4 18 +, -, * Or /, for Vi=m+1..n Ji,li<1. and for i<m
Xy 1s an Input variable. We need in values of 8y/d0xy,...
8y/0x,. Let us suppose that Vi xy = xy(0), and x4(%) is an
arbitrary ¢! function. Then

y'(x1....xm)=6y/6x1 X+ ... +0y/0%, Xp
but x4(%) 1s an arbitrary function, so the equatlon

d1x1'+...+dmxl;, =y'
has the only decision dy/0xy, ..., 0y/0x;. Now let us
consider a more common task
d,x;+...+dkxﬁ = y', where m<k<n
But for k=n there 1s an evident decision (0,0,. .,0,0,1),
because y=Xx,. Let us suppose that we already have a dec1sion
for some k. How to compute decision for k-1 ? We know that
Xy = xj Oy xlk. jk.lk<k

S0 we can substlitute xk by (xj °k x1k> and get the other

decision with zero coefficlent a* xk, so it 1s the decision
for k-1 task. Starting at the decision (0,0,...,0,1) for k=n
we can get by this way some declsion for Xk=m. But guch

decision 1s unique, so that is the values of 9y/9%y,...

8y/ 0%,

The complexity of aposterlory interval analysis does
not depend on the pumber of input variables, but depends on
the number of output ones (increases proportionally). So the
complexity of determinant computation by Gauss method is the
same for traditional and aposteriory versions., but already
that's not so for the matrix inversion.

Another problem of a.i.a. 1s a requirement to have all
auxiliary results, because computation of derlvatives could

start only when the last value 1s computed. Moreover, cycles
and reassignments in normal programs allow o Increase the
number of auxiliary variables so dramatically that

- 88 -~

computations may becomes Impossible. . Solution of this
problem was found and described in [6). All auxiliary
results are obtained there during the inverse phase of the
program, where auxiliary and Input values are computed from
output ones. An algorithm for such inversion of an arbitrary
program 1s described in the same paper. Thus the source
effectiveness of a.i.a. -1s achleved for the case of normal
programs with possible cycles, conditionals, reassignments
" etc. The very idea of this inversion is in the extension of
the output data set of a source program to make 1t
invertible.

Sometimes the combination of g.l.a. and a.l.a. seems to
be rational. Suppose we have many input values and compute a
few auxiliary values, and later we compute a lot of output
values from these auxiliary ones. In this case 1t 1s
rational to compute these auxiliary values by a.i.a. (does
not depend on the quantity of the input variables), and
to finish computations by g.i.a. with auxiliary values as an
input ones (does not depend on the quantity of the output
values). '

It 1is theoretically predicted that the traditional
method would be better both by time and preciseness in the
case of great source errors, while generalized arithmetic
would be more precise in the case of small source errors.
Aposteriory version will be nearer 10 generalized by
preciseness and nearer to traditional by time.

Wishing to check these predictions and find the ways of
realization of aposteriory interval system (originally it
was aimed only for a linear program without reassignments)
the author creates a system of arbitrary precision
arithmetic, a specilal language for INterval COMputations and
three compilers from INCOM to Turbo Pascal - traditional,
generalized and aposteriory versions. These realization
enables to make numerous numerical experiments. In
particular such examples were tested as sums of rows, matrix
operations (determlnant, Inverslon), computations of
Integrals etc. Here are some results of testing on different
examples (the relative error and time are shown for every

- 89 -

test).

These data fully confirm the

'§ T or Ne10 5 CPK | por net0
k=p KT K2 K
7 95 |0'06.0" T| 38.|0'04.2"
1000+1 |G| 32 |0'25.2"| 100:10 |G 8 |gr10.7"
Al 35 [0'29.0" Al 11 |o'o8.2"
_g|T| 10 |0'06.0" _4|T|110000(0"04.0"
1000:1%107°|G| 03 [0'25.3"[1000+1x107*|G| 6458[0ti1.1"
Al 03 |0'29.4" Al 20000|0'08.2"
Determinant A~ xBx@
1001 1 1 {r| sloro3z.7| 1 1 1 (| 29lov11.5"
1 100+ 1 |G| -Tlo'45.0"f1211 11 1 |G 6|3749.1"
1 1 100+1|al Tlo'22.5ml44141 21 1 |A| 243|2'20.5"
100:1 100+1 100+1|T| 22[0'03.7"| 1 21 441:1|7|o0000|0°07.4"
1001 1 1 |c| "slor42.9"] 1 11 121+1|G| 1292|2'09.0"
1 100t 1 |A| 22|o'18.47] 1 1 17 |A| 3494|1+11.2"
404011 10201+1 1|T[312|0'04.5"] 1 1 17| e766|0"14.1"
201 101 11G/303]1'04.4" 102011 101 1]|C 8l4t09.8"
1 1 114|303|0'40.6" (4040121 201 1|A| 1188]2'25.5"
! 6 36:1|T| 11|0’01.1"[1 201 40401:1|T| 3668|0'08.6"
1 5 25:1(G| 9|0'17.0"(1 101 10201+1|G ol2via.7n
1 1 1 |A| 42{0°08.3"1 1 17 |a| 22|1'14.8"
[4X°-3%°+2K-1 OX + 1,|[f T(-1)"" "X (3K -2)+1K,
B B _ 0_ N+ A
Xy=1» %g=0+100e-4 X9=1, X%-O_100e 4
0= || 923| 0'13.0" T{2560| 0'32.7"
O+1e-4|G| 817| 0'58.8"[0s1e-4|G|1172| 6'43.5"
N=20 [A| 829] 1'09.3"| N=20 |A|1172| 2's8.7"
T|2514] 0'05.9" rlessa| 0'16.2"
N=10 [G|2628| 0'36.7"| N=10 |G|3976| 3'20.4"
Al2613| 0'10.2" Al3976| 1'38.7"
| v{1105| 2'00.7" m4508| '5'30.1"
=200 |G| 728|12'22.4"[N=200 |G|1128[1:11'02.3"
Al T47|11'30.6" Al1128| "25'98.0"

theoretical predictions

and expected effectiveness of the a.l.a. The theorectical

-~ 90 -

conditions for.application both a.il.a. and g.i.a. are also
confirmed. Both ways are really useful in the case of small
Input errors. In these experiments 'small' means about 1-3%.
In the case of great number of input variables a.i.a. 1s
preferable. In these experiments 'great' happens to be about
3-4 variables. Of course these number greatly depend on the
realization. E.g. the slow realization of the external stack
In a.i.a. will increase the number of variables when a.i.a.
1s better than g.1.a. Any change of precision will influence
the permissible error level. Anyway, new generations of
computers will make these ideas more practlcal and precious.

References

1.Moore R.E. Interval analysls. - Prentice Hall, 1966.
2.Hansen E. A generallized interval arithmetic. // Ilect.
Notes in Comp. Scl. - Springer-Verlag, 1975 - V.29 - P.7-18
3.MatijJasevich Y. A posteriory interval analysis. // EUROCAL
85, Vol.2: Research Contribution. - ILect. Notes in Comp.
Scl. - Springer-Verlag, 1985 - V.204 - P.328-334

4.Baur W., -Strassen V. The complexity of partial
derivatives. // Theoretical Computer Science - 1983 - V.22 -
P.317-330

o.Linnainmaa S. Taylor expansion of the accumulated rounding
error. // Bit - 1976 - V.16, N 2. - P.146-160

6.Musaev E. The inversion of arbitrary programs for the
tasks of aposteriory interval analysls. // Proc. of_ the
Soviet-Bulgarian seminar on the Numerical Processing,
Peweslavl-Zalesskl, USSR, 19-24 October 1987 - Inst.of the
program systems, 939 - P.100-109 (in Russian)

USSR 191 011 Leningrad
Fontanka 27 LOMI AN USSR
(Mathematical Institute)

