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ABSTRACT. We present a step control for continuation methods for curves in two
dimensions that is deterministic in the sense that (i) it computationally but rigorously
verifies that the corrector iteration will converge to a point on the same curve as the
previous point (i.e. the predictor / corrector iteration will never Jump across paths),
and (ii) each predictor step is as large as possible, sub Ject to verification that the curve
is unique with the given interval extension. We use interval analysis techniques that,
particular to two dimensions, result in a more efficient step control than a general
technique we previously developed. We present performance data and comparisons
with a non interval step control method (PITCON version 6.1). Tests using the
Topologist’s sine curve, which has changes in curvature of increasing magnitude,
suggest that this interval step control is very efficient when rapid changes in curvature
occur, and that it is much faster than the non interval step control for such functions,
assuming both step controls follow the curve successfully. Additionally, comparison
of plots obtained from both step controls reveals that a non interval step control
will behave erratically in situations where the interval step control leads to orderly
progression along the curve.

1. INTRODUCTION

We assume a knowledge of continuation methods, as can be found in [2]. We
also assume an elementary knowledge of interval arithmetic, as appears in [1], 5],
or [7]. The reference [7] is particularly appropriate here.

Throughout this paper, we use boldface lowercase letters (such as x) for inter-
val vectors, except H stands for the interval function extension. We use uppercase
letters (such as X) for scalar vectors, and lowercase letters with subscripts (such
as ;) for scalar variables.
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In this paper, we concentrate on following problem:

Compute a sequence of points on the solution
curve

Z={YeR}H(Y)= 0}, where H : R? — R!,

with a guarantee that all the points are on the
same continuous path.

To date, most continuation methods appearing in the literature, such as (3],
are based on non interval step control. Non interval step control methods are
successful and fast when the curve is smooth and isolated, but problems arise when
there are many paths near some points. In that case, algorithms based on non
interval step controls may jump from one path to another, as the numerical results
in §4 show. Also, if rapid changes in curvature occur along the path, a method
based on non interval step control sometimes even erroneously reverses direction.
-However, appropriate use of interval analysis gives us a guarantee that the predictor
algorithm will not jump from one path to another, or, indeed, jump over different
legs of the same path. Also, we have observed the special two-dimensional interval
step control proposed in this paper to be faster at following curves with many close
branches or with rapid changes in curvature, assuming the heuristic parameters
governing the non interval step control are set so it successfully tracks the curve.
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We assume that our algorithms start with a point Xy = (To1,202) € Z C R?
(i.e. H(Xo) = 0). If the gradient vector H'(X) is of full rank at X,, then the tangent
vector B(Xo) can be computed to within length and direction. This information
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can then be used to choose an appropriate parameter coordinate. Following [4], we
choose the parameter coordinate changeably, so that curve following is as fast as
possible and is successful. That is, we choose ig such that

|Bio(X)| = max{|B1(X)|,|B2(X)|}.

We call z;, the parameter coordinate. If sgn(By) = —sgn(By,;;), where i} and
B, are the previous parameter number and tangent vector, respectively, we change
the direction of the current tangent vector B. This action rigorously maintains the
orientation, as is proven in Theorem 3.4 below.

We say the continuation method is successful if the correct orientation is main-
tained and if successively computed points lie on the same path. We prove that
the continuation method presented in this paper must be successful. In particular,
suppose without loss of generality that the parameter coordinate corresponding to
Xp is 71, and suppose that B; > 0. Construct a two dimensional box x containing
Xo on one of its faces and a portion of the curve in the positive direction (defined
by B) from Xg. (See fig. 1 and Algorithm 2.2.) We define the shape of the box
with a width parameter 1 and the predictor step length §. Theorems 3.2 and 3.3
then guarantee that, if 7y large enough and some other assumptions hold, then
the curve passing through X, passes out the face opposite Xy, and otherwise does
not pass through the boundaries of x. Define the faces

(1) - S = {X = (371,.1‘2) l X ex  and To = inf(x2)}

(2) S; = {X = (:L'lax?) l X ex and Iz = SuP(XZ)}

of x. Now consider an interval extension H for the range of H. By Theorem 3.1,
if the interval extensions H(s;), H(s2) and H,,(x) do not contain 0, where H;,
represents an interval extension of the partial derivative of h with respect to z;,
then the curve does not intersect s; and s,, there is at most one curve in the box
X, and the curve cannot have any turning points with respect to z; in x.

2. ALGORITHMS

Algorithm 2.1. (Overall continuation method)

1. Input the known point X, on the curve, the function H (and its partial deriva-
tives), the stepsize § and parameters émax, 7, Nmin, Tmax, 71 19, and initial
orientation B. Also set

1M < NMmin and
B1 — B. .

2. Compute the new tangent vector B and orient it so that the parameter coor-
dinate of By has the same sign as the parameter coordinate of B.

3. Construct the box x according to Algorithm 2.2.

4. If 0€ H(s,),0€ H(sy),or0¢ H; (x), where j # iy and i, is the parameter
index, then

n «— 2n.
If » > Nmax then
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6 —6/2
endif
Goto step 3.
endif
5. Using the traditional Newton’s method, compute an approximation to the
point on the curve on the face s; of x opposite the face containing X.
6. If some stopping criterion is met, then
Stop
else
6 «— 104,
If 6 > bmax, then
6 +— Omax-
endif
Nmax — 10|B;| and
Nmin — 0.1|B;|, where i is not the parameter coordinate index.
N < NMmin-
Goto step 2.
endif

Algorithm 2.2. (Use the known point X, and tangent B(Xy) to construct the
box shape.)

1. Input 6, n, X¢ and B(Xy).

2. If 1 = 19, then

Xi = { (:1701',370:' + 6) if B,’O > 0 and
z (zoi — 6,70:) if B;, <0.
else
p1 = zoi + Bid —né
P2 = To; + Bié +né
and
(21’0,‘ —p27p2) if To: < pi1,
x; = (p1,2z0i —p1) if Zoi > p2, and
(p1,p2) otherwise.
end if

3. MATHEMATICAL THEOREMS

Assumption 1. Assume H : R? — R! has continuous derivatives. Assume z;,
is the parameter coordinate chosen in Algorithm 2.2. For notational simplicity
but without loss of generality, throughout this section assume that the parameter

coordinate 9 = 1. Also assume that —— = H;, # 0 in the box x.

0X,
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Theorem 3.1. Suppose Assumption 1 is true. Also assume that H(s;), H(s;)
and H,,(x) do not contain 0. Then there exists a unique smooth curve contained
in the box Xx.

Proof. Since EXe # 0 in the box x, the implicit function theorem implies that,
2

for any z, € x1, there is a point (z1,z2(z;)) on the curve, and this set of points
constitutes a continuous curve. Since the range of H over s; is contained in the
interval extension, i.e.

{H()() [ X e S,'} C H(S,‘),

the assumption implies that 0 is not contained in the range of H over s;, i.e. the
curve will not intersect s;.
If there are two different curves in x, then must exist an z; and z} and 2 in
X4 such that
H(z1,73) = H(zy,22).

By the mean value theorem, there must exist a £ € x, such that
Hzg(:l:l’&) = Oa

where x; is the first coordinate of the interval vector x. This implies that the range
of H,, over x contains 0, and thus 0 € H,,(x), contradicting the assumption. [J

Theorem 3.2. Let x be the box described in Algorithm 2.2. If Assumption 1 is

true and if
OH
0X,

for all X € x, then the curve starting at the point X, on the face (1) of the box x
will pass out of the box x through the face (2).

OH
X4

Umin — 1 > M = max

?

Proof. Without loss of the generality, assume B; > 0 so that

Ty = iﬂf(xl) = To1,

where x; is the first coordinate of the interval vector x. Since is non zero at

H
0X,
Xo, the implicit function theorem implies that there is a dx, such that there is a
unique continuously differentiable path

(3) {(z1,22(21))T |21 €%}, H(21,29(1)) = 0}

in the interval X} = [z¢1,Z01 + 6x,]. By the chain rule,
dzy _ _OH OH
dzy 00X, 0X,’

and by Assumption 1, H has continuous derivatives and 1s non zero in X.

2
Therefore, there must exist m, and m such that
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and o

—— > .

|3X2 >m>0
Thus,

112 < ma =M

dIEl - m
on the curve (3). By the mean value theorem,

d
z2(z1) = z2(z01) + %(f)(zl — z01), for some ¢ € xj.
Thus,
Tog2 — .A/I(’El — .’1301) < 1‘2(.’1)1),

and

Toz + M(zy — z01) > z2(21),
Therefore, z,(z1) is contained within the two straight lines
z2 = zo1 + (B2 — n)(21 — z10)

and

T9 =201 + (B2 + n)(zy — Z10),

illustrated as the oblique lines {; and I; in fig. 1. Hence, by the construction in
Algorithm 2.2, z3(21) € X;. Thus, the locally unique curve is contained in the box
x. O

Theorem 3.3. Make Assumption 1, so that there is a curve passing through X,.

Further assume that H has continuous derivatives up to order 2, so that the deriva-
. d2£L'2 . 1
tives Py are continuous-. Assume that
T

for all X € x. Then the curve passes through the faces (1) and (2) of the box x
described in Algorithm 2.2.

Proof. By Taylor’s theorem,

d.Tz

21‘
(4) T2(71) = z2(T01 ) + zl—x—l(ivm)(irl —zo1) + %%ﬁ(f)(ﬂfl —z01)’

for some {(z1), for every z; € X} = [z01,20; +¢]. Comparing (4) to the expressions
for p1 and p; in Algorithm 2.2, and observing that the assumption implies

n > smax (z1zo1)

<

dz?
for all z; € x}, we obtain

p1 < z2(T1) < p2.
Thus, by the construction of x3, zo(z,) C x,. O

e . L d’z .
! Actually, in this situation the chain rule implies that ) ,,2 can be expressed in terms of
2
1

H and its derivatives.
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Theorem 3.4. Suppose 1, By, and B, are as in Algorithm 2.1. Also assume

that the computed tangent vectors B and B, are contained in the set consisting
of normalizations of vectors from (H,,(Xo), —H;,(x¢)). Then, after execution of
Step 3 of Algorithm 2.1, B represents the same direction along the curve as in the
previous step.

Proof. In the previous box, there is a unique curve that can be parametrized in
terms of the previous parameter z; . However, if the ¢;-th component B;; changes
sign within that box, then there must be a turning point with respect to :j), which
contradicts the fact that there is unique curve with respect to i} in the previous box.
Therefore, to maintain orientation, it is necessary and sufficient that sgn(By ) =
sgn(B, " ), provided B and B; are both in the null space of H' at the previous and

present pomts on the curve, respectively.
| We have verified that 0 ¢ H,, (x) in each constructed box x, where z;, is
not the parameter coordinate z;,. However, sgn(B;,) and sgn(By ) either equal
correspondmg values of sgn(H,, ) or sgn(—H z;, ), depending on whether i; = 1
or 23 = 2. Thus, by the assumptlon on the computed values for By and By, i

sgn( By, ) = sgn(B;, . ). O

4. NUMERICAL EXPERIMENTS

A rigorous step control method, interval step control guarantees that the curve
followed is unique, i.e. that it is not possible to jump from one path to another.
Thus, the interval step control follows the curve properly, regardless of how the
initial, minimum, and maximum stepsizes are chosen. In contrast, success of non
interval step controls depends on how we choose these parameters, and we may
need to be overly conservative. The following numerical results illustrate this.

We used FORTRAN-SC ([3]) on an IBM 3090 for the interval step control
experiments. We used the software package PITCON 6.1 on the IBM 3090 for the
non interval step control. We chose PITCON as a readily available high quality
package with a representative non interval step control, although other packages
may have served equally well?.

In PITCON, we set the absolute error tolerance to 10~14 and relative error
tolerance to 107!!. We did not request the algorithm to locate limit points. We
supplied a subroutine with an analytic representation of the Jacobian matrix, rather
than using finite differences. Furthermore, we allowed the program to choose the
parameter coordinate. Finally, we configured PITCON to reevaluate the Jacobian
matrix after each step of the corrector iteration3.

Behavior on the topologist’s sine curve not near z = 0. The- topologist’s
sine curve is defined as

{(z,t) = (z,sin(1/z)) | = # 0}.

?See [8] and [9] for an explanation of the original version of PITCON.
3That is, we configured PITCON to use the classical Newton’s method as its corrector
iteration.
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Table 4.1 shows the CPU time for interval step control is comparable with the CPU
time needed by PITCON, when smooth parts of the curve are followed and when the
parameters in PITCON are set to ensure that it succeeds. The table was obtained
by running Algorithm 2.1 and PITCON on the topologist’s sine curve from various
starting points, proceeding forward in z to the target value z = 10.0. The CPU
time and average step size are given. For both algorithms, the maximum allowable
step size was set to 0.1. Here, making the starting z smaller than 5.0 x 10~2 caused
PITCON to lose its orientation.

Controls Start pt. Aver. § CPU
Non interval 1.0 x 1090 0.10 x 1Q9° 0.10
Interval 1.0 x 1090 0.97 x 101 0.09
Non interval 1.0 x 10~! 0.10 x 10° 0.18
Interval 1.0 x 107! 0.69 x 101 0.61
Non interval 5.0 x 1072 0.99 x 1071 0.26

Interval 5.0 x 102 0.43 x 101 1.14

Table 4.1. Results for the topologist’s sine curve not near z = 0.

Behavior on the topologist’s sine curve near z = 0. The curve has a severe
oscillation near z = 0, causing non interval curve following algorithms to “skip”
or lose orientation. We obtained the graphs in Figure 4.2 by runming Algorithm
2.1 and PITCON with starting point (0.019,sin(1/0.019)). In PITCON, we used
initial stepsize 0.1, minimum stepsize 0.05 and maximum stepsize 0.5. The interval
algorithm with the same initial stepsize and maximum stepsize as we used in PIT-
CON proceeds successfully past the point where PITCON 6.1 started to “skip.”
This is because the interval step control guarantees that there is only one point
on the curve in the slice of the box perpendicular to the parameter coordinate.
Therefore, when the algorithm approaches a point where the curvature is larger, it
decreases the stepsize as much as necessary, then increases the stepsize after passing
this point. But non interval step controls do not always correctly anticipate such
points.

The heuristics in PITCON dictate that the stepsize be increased whenever the
corrector iteration converged on the previous step. Since portions of the topologist’s
sine curve are nearly linear, this strategy results in a stepsize near the maximum.
The algorithm thus cannot detect the numerous turning points and rapid changes
in curvature, and it loses its orientation. If reliable curve following is necessary
in this context, then a correspondingly smaller maximum step size is required as
t becomes smaller. Unfortunately, how small the maximum step size should be
is hard to predict. But this is not a concern in the interval step control. The
interval step control algorithm always follows the unique curve, and never loses the
orientation. It increases the step size in regions of small curvature, and.decreases it
otherwise. This makes the interval step control more efficient than the non interval
step control for curve with similar properties. Table 4.1 contains CPU times as a
function of ¢, assuming both step controls are successful.

Table 4.2 presents comparisons of Algorithm 2.1 and PITCON for the topol-
ogist’s sine curve near t = 0. We started the algorithms at 1.0 x 1072, and chose
the direction of decreasing z as the orientation. The CPU time for PITCON is the
CPU time up to the point where PITCON loses its orientation, and the CPU time
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for the interval step control is the CPU time over the same interval. The column
labeled “stop pt.” gives the point where PITCON loses its orientation, for the
corresponding maximum step size.

Controls Max 6 Stop pt. CPU
Non interval 1.0 x 1073 6.56 x 103 36.1

Interval 1.0 x 107! 6.56 x 10~3 8.8
Non interval 1.0 x 10™¢ 4.99 x 102 199

Interval 1.0 x 107! 6.56 x 10~3 1.14

Table 4.2. Results for the topologist’s sine curve near z; = 0.

It is evident from Table 4.2 that running PITCON with maximum stepsize
1.0 x 107° until it reached the point where it loses its orientation would be very
expensive. However, when we tried Algorithm 2.1 on IBM 3090, it was able to
reach the point where © = 1.41 x 10™*. To analyze this case, consider the positive
integer n such that . .

—_— << .
(n+1l)r = ~ nnw

This illustrates that two consecutive zeros become very close. The distance can be
estimated as

1 1

nt  (n+ L)
< 1
“(n+1)2rx

2

dn =

< 7z

<70x1078,

Also, the distance between two legs of the curve near the maximum and minimum
points of this function becomes even smaller. Using Algorithm 2.1, we found the
smallest stepsize taken near the maximum and minimum point to be roughly 10~16,
near r = 1.41 x 10~*. The floating point accuracy prevented the algorithm from
proceeding past this point.

Behavior on a parametrized family of hyperbolas. Define a parametrized
family of functions f(z,t): R? —» R by

f(z,t) = 2% — (t — 0.5)% — p?,

where p is a shape parameter. f = 0 defines the simple hyperbolic curve. The curve
has two disjoint branches, with vertices (—p,0.5) and (p,0.5). As p tends to 0, the
two branches become closer and closer, and the curve degenerates into two straight
lines, as in the left graph of Figure 4.3. The experiment in this figure was done by
setting p = 107° and using starting point (0.5,0), initial stepsize 0.01, minimum
stepsize 0.0001, and maximum stepsize 0.01. Figure 4.3 shows that PITCON jumps
from one branch to the other. In addition we tried p = 1071, with results given in
Table 4.3. In this case, the distance between the two vertices is only 2p = 2 x 10~15.
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However, the interval step control is still successful in that case. We note that 10716
is near the double precision machine epsilon on the IBM 3090.

CPU: 2.177
Aver. 6: 0.1856 x 102
Total steps: 578

Table 4.3. Around a hyperbola’s vertex with p = 10715,

Table 4.4 table gives point coordinates and the stepsize é for selected points
near the vertex (p,0.5), for p = 10715, for our interval step control. This table does
not include all points (z,t) which were computed within this range, but is meant
to show the way that the stepsize decreases harmonically as t tends to 0.5.

z t 6—stepsize

0.48381 x 1012 0.4999999999995161 x 10°° 0.43695 x 1014
0.65608 x 1013 0.4999999999999344 x 10°° 0.34467 x 1014
0.60961 x 10~1¢ 0.4999999999999939 x 10°° 0.51861 x 10~15
0.11914 x 10~14 0.5000000000000006 x 10°° 0.24149 x 1015
0.71785 x 10— 14 0.5000000000000072 x 10°° 0.37734 x 1014
0.25215 x 1013 0.5000000000000252 x 10°° 0.14394 x 10~14
0.26241 x 10712 0.5000000000002624 x 10°° 0.10982 x 1012

Table 4.4. Points near a hyperbola’s vertex, with p = 10~1°

5. SUMMARY, CONCLUSIONS AND FUTURE WORK

We have presented algorithms for interval step control for continuation meth-
ods in R?, along with theoretical clarification that these algorithms are qualitatively
more reliable than algorithms based on non interval step controls. We have pre-
sented several classes of numerical experiments that illustrate the immunity of these
interval methods to certain types of failures. These experiments illustrate that these
methods also can be practical on various problems.

State-of-the-art implementations of continuation methods based on non in-
terval step controls function efficiently and fairly predictably, provided sufficient
knowledge is known about the problem to set the algorithm tolerances appropri-
ately, or provided it is possible to repeatedly redo the computation after human
interaction. However, interval step controls should be considered in cases in which
rigor is critical or in which human interaction with the method is not possible.

Methods to estimate the bounds M and second derivative bounds appearing
in Theorems 3.2 through 3.3 will allow for an even more efficient algorithm that,
besides not giving erroneous results, will always succeed in following the curve,
without human intervention.
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