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Interval Arithmetic Techniques
in the Computational Solution
of Non'inear Systems of Equations:
Introduction, Examples, and Comparisons

R. BAKER KEARFOTT

Abstract. Methods of interval arithmetic can be used to reliably find
all solutions to nonlinear systems of equations and to reliably solve
global optimization problems. Such methods can aiso be used in stud-
ies of the sensitivity of systems to certain parameters or in comput-
ing rigorous bounds on the range of behavior of a system as certain
parameters vary. More generally, properly applied interval methods
can give results that have mathematical certainty, since the effects of
roundoff error are fully taken into account.

Here, for the nonexpert, we cite references and briefly review ele-
mentary aspects of interval arithmetic. We then describe a class of al-
gorithms for finding all roots of nonlinear systems of equations within
a box in n-space. Third, we discuss inherent differences between inter-
val methods and alternate techniques for nonlinear systems. Finally,
to illustrate the applicability of interval techniques, we show how in-
terval arithmetic can be used to make the choice of predictor stepsize
in continuation methods foolproof.

1. Introduction. Interval mathematics and computer algorithms in-
volving interval arithmetic have been much studied. In [12] and|[13],
approximately 2,000 books, journal and conference proceedings articles,
and technical reports on interval mathematics are listed. This interest is
perhaps due to the fact that properly designed and implemented inter-
val methods are rotally reliable in the sense that they give results with
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338 R. BAKER KEARFOTT

mathematical certainty. Here, we will use this property to solve the
problem:

Find, with certainty, approximations to all solutions of|the non-
linear system
(L.1) ﬁ(x,,xz,...,x,,)=0, I<i<n,
where bounds /; and u; are known such that
L <xi<u forl<i<n,

n-vector whose ith component is f; by F(X ).)
An interval algorithm wil| produce a list of solutions whose \coordi-
nates x; are given as smalj intervals of uncertainty. If the proper algo-

rithm (cf. Section 3)is correctly implemented with directed ro

(We will denote the n-vector w£:se ith component is X; by X and the

need to be developed for interval arithmetic.)
In Section 2, we review some elementary definitions of interval arith-

Section 6, to illustrate interval mathematics as a general tool, we explain
how it can be used in stepsize control for continuation methods.

1-3 of [41] or in Chapters 1-4 of [1]. Also see [S4] and [59) if they are
available. A conference on use of interval methods for scientific dom-
puting in general was recently held. This conference brought together
experts in both interval techniques and non-interval techniques; in| the
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proceedings [42], the participants attempt to clarify the role of interval
mathematics. Over the years, experts in the area have also presented
technical details at conferences such as [15], [37], [48], and [49].

Here, we will give an elementary explanation of some of the mbst
important concepts. Throughout, interval quantities will be denoted by
boldface.

Interval arithmetic is based on defining the four elementary arith-
metic operations on intervals. Let a = [a;,a,] and b = [b, b,] be inter-
vals. Then, if op € {+, -, *,/}, we define

(2.1) aopb={xopy| x €aand y €b}.

For example,
a+ b = [a[ + b[,au + bu].

In fact, all four operations can be defined in terms of addition, syb-
traction, multiplication, and division of the endpoints of the intervals,
although multiplication and division may require comparison of sev-
eral results. The result of these operations is an interval except when
we compute 8 / b and O € b. In that case, we use extended interval
arithmetic (cf., e.g., [41], pp. 66-68) to get two semi-infinite intervals
or else the whole real line. For example,

[10,20] / [-2,5] = (~o0, —-5] U[2, o).

A large part of the power of interval mathematics lies in the abil ty
to compute inclusion monotonic interval extensions of functions. If f|is
a continuous function of a real variable, then an inclusion monotonic
interval extension f is defined to be a function from the set of intervals
to the set of intervals, such that, if x is an interval in the domain of f,

{f(x) | x € x} Cf(x)
and such that
x Cy implies f(x)C f(y).
Inclusion monotonic interval extensions of a polynomial may be ob-
tained by simply replacing the dependent variable by an interval and
by replacing the additions and multiplications by the corresponding in-

terval operations. For example, if p(x) = x2 — 4, then p([1, 2]) may be
defined by

p([1,2]) = ([1,2])* - 4 = ({1,4)) - [4,4] = [-3,0].

We emphasize here that the result of an elementary interval opera-
tion is precisely the range of values that the usual result attains as we
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let the operands range over the two intervals, However, the value
interval extension of a function is not precisely the range of the

of an
func-

tion over its interval operand, but only contains this range; we hope to
construct interval extensions whose values differ from the range as little
as possible. For example, if we write p above as p(x) = (x - 2 (x+2),

then the corresponding interval extension gives
P, 2]) = ((1,2] - 2)([1,2} + 2) = (-1,0](3,4]
=[~4,0],

which is not as good as the previous extension. See [58] for a discussion

of efficient ways of formulating interval extensions,
We may use the mean valye theorem or Taylor’s theorem i
mainder formula to obtain interval extensions of transcendentpl

th re-
func-

tions. For example, suppose x is an interval and g € x. Then, |for any

Y € x, we have X
sin(y) = sin(a) + (y - a) cos(a) - [(y — a)?/2] sin(c)

for some ¢ between g and y. If a and y are both within a range where

the sine function is nonnegative, then we obtain
sin(y) € sin(a) + (x - a) cos(a) — (x — a)?/2.

The right side of this relationship gives the value of an interval exten-

approximations in cases where the function does not have a Ta
ries; if the function is approximated in the uniform norm, then
bound the error by a constant interval. See (58] for details.

sion of sin(x), albeit a somewhat crude one. We may also use g

tional

lor se-
¢ may

Several computer packages (as in [§], (6], [35], and [72)) are available

for interval extensions of the elementary functions. -
Mathematically rigorous interval extensions can be comput
finite-precision arithmetic via the use of directed roundings. Let x

ed in
and y

be machine-representable numbers, and assume op is one of the fpur el-
ementary operations +, —, x, or /. Normally, x op y is not representable
in the machine’s memory, and there are various schemes of rounding.

less than x op y, or we may always round up to the nearest machin
ber greater than xopy. In interval arithmetic with directed rou
if

For example, we may always round down to the nearest machine n{mber

Xxopy = [c,d],

num-
ding,

then we always round the value for ¢ down, and we always round the

value for d up. In such computations, we first apply directed rou
to the initial data in order to store it.

nding
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Machine interval arithmetic with directed rounding does not involve
deep concepts, but it can be quite powerful. For example, if interval
arithmetic with directed rounding is used to compute an interval exten-
sion f of f,

[c.d]) = f([a,]]),
and [c, d] does not contain zero, then this is a rigorous proof (regardless
of the machine wordlength, etc.) that there is no root of f in {a, b].

In [34), Kulisch and Miranker carefully present concepts of directed
rounding and machine interval arithmetic. They include discussion re-
lated to producing interval extensions of functions which yield intervals
that are as close as possible to the range of the function.

Various precompilers and compilers exist which support the interval
datatype. See [27], etc., for details.

3. Interval methods in solving nonlinear systems of equations and in
nonlinear optimization. Here, we discuss the problem (1.1) of finding
all roots of a nonlinear system of equations subject to upper and lower
bounds on the variables. We also discuss the related problem:

Find, with certainty. the global minimum of the nonlinear ob-
jective function
3.1 D(xy, X3,...,X,)
where bounds /; and u; are known such that
I, <x <u for 1 <i<n,

The problem (1.1) may be solved via generalized bisection in conjunc-
tion with interval Newton methods. This general technique is described
in Chapters 19 and 20 of [1] and in Chapters 5 and 6 of [41). An early
paper on the technique is {14]. Other papers include [16], [25], [26],
[39], [40], [45), [47], [50], and [62]. ‘

In what follows we denote the box in n-space described by

{X =(x1,X2,...,%,) |, £x, <y, for 1 i< n}

by B. Similarly, we denote vectors whose entries are intervals by capital
boldface letters.

In interval Newton methods, we find a box X, that contains all solu-
tions of the interval linear system

(3.2) F (Xo) Xk — Xi) = - F(Xy),

where F'(X,) is a suitable interval extension of the Jacobian matrix of
F over the box X, (with Xy, = B), and where X, is some point in X,.
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(An elementwise interval extension of the Jacobian matrix is suitable.)
We then define the next iterate Xis1 by

3.3) Xer1 =Xi N Xk.

The scheme based on solving (3.2) and performing ( 3.3) is termed an
interval Newton method. The convergence rate of an interval Newton
method is defined in terms of the ratios of the widths of the component
intervals of X; ., to the corresponding widths of X, .

If each row of F’ contains all possible vector values that that row of
the scalar Jacobian matrix takes on as X ranges over all vectors in X,,
then it follows from the mean value theorem that all solutions jof (1.1)
in X; must be in X, ,. If the coordinate intervals of X, are|smaller
than those of X, then we may iterate (3.2) and (3.3) until we obtain
an interval vector the widths of whose components are smaller than a
specified tolerance.

If the coordinate intervals of X1 are not smaller than those of X;,
then we may bisect one of these intervals to form two new boxes; we
then continue the iteration with one of these boxes, and push the other

one onto a stack for later consideration. After completion of the|current
box, we pop a box from the stack, and apply (3.2) and (3.3) to it; we
thus continue until the stack is exhausted. As is explained in (40}, [25),
and elsewhere, such a composite generalized bisection algorithm will
reliably compute all solutions to (1.1) to within a specified tolerance.
The efficiency of the generalized bisection algorithm depends on

(1) the sharpness of the interval extension to the rows of the Jaco-
bian matrix;

(2) -the way we find the solution X; to (3.2); and

(3) how we select the coordinate directions in which to bisert.

In particular, iteration with formulas (3.2) and (3.3) should pxhibit
the quadratic local convergence properties of Newton’s methad, but
repeated bisections are to be avoided if possible. We are thus interested
in arranging the computations so that X, has coordinate intervals that
are as narrow as possible.

An early method of solving (3.2) was the Krawczyk method, in which
X, is given by

G4 R =KXi) =X - YeF(X,) + (I - YeF (X)X — X,

where Y, is a preconditioner.matrix that is sometimes taken to|be an
approximation to [F'(X,)]~'. Moore observed in [39] that the Krawczyk
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method converged (without bisection)
(3.5) provided |7 - NF(X,)l <1,

where the norm is the usual one for interval matrices, (See [1] or [41].)
Condition (3.5) also serves as part of a computational existence and
uniqueness test. Various researchers have subsequently weakened this
condition. In fact, for many methods of solving (3.2), researchers have
shown that

if Xy is strictly contained in X,, then the system of equa-
tions in (1.1) has a unique solution in X, and Newton’s

(3.6) method starting from any point in X, will converge to
that solution. Conversely, if X, NX, is empty, then there
are no solutions of the system in (1.1) in X;.

(See [20], [45], and [82].)
An interval version of the Gauss-Seidel method, with extended ip-
terval arithmetic, can also be used to bound the solution set to (3.2)
(see, for €xample, (19)). In such a method, we often multiply both sid
of (3.2) by the matrix Y; before dividing by the diagonal element; thj
ensures local convergence, and results ip a method that is often superio
to the Krawczyk method. We will denote the ith component of X b
Xi, the ith component of Y, F(X;) by k;, and the entry in the ith ro
and jth column of YiF'(X,) by G;;. The step for the ith row of the
intervaj Gauss-Seidel method then becomes

Xi=x, - ki-)"gG, (X - x;) /Gi.i;
(3.7) ,};. / /
J#i
x,* = X;NX,.

(It is understood that, if ; > 1, we replace X; by X! for j < i when we
define x,.)
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such cases, an interval generalization of diagonal dominance ensures
convergence of repeated application of (3.7) when Y, is the identity.
An excellent exposition of this technique appears in [67),
Techniques for computing the rows of ¥, explicitly to minj
widths of the intervals x* (and thus maximize convergence rate)
in [31]. These techniques involve solving linear programmin prob-
lems for the elements of Y:; these linear programming problems ex-
press optimality conditions for the width of X,. Performance res Its for
an interval Newton method using these techniques and for an i terval
Newton method with Y, = (F'(X)]~' appear in [31). Though the lin-
€ar programming step is a major contributor to computation time, the
technique is applicable to ill-conditioned and singular systems, and the
linear programming problem can be altered to take account of st cture
or sparsity. Also, further study is yielding ways of making solutjon of
the special linear programming problems arising here more efficient.
An alternate technique for applying interval Newton methods when
the Jacobian is ill-conditioned or singular near the roots appears in [30].
The global nonlinear optimization problem (3.1) can be solved by
solving (1.1), where the Jf; are the components of V., However, we may
use the objective function directly to increase the algorithm’s efficiency.
If pand q are intervals, we say that P > qif every element of p is greater
than every element of q. Suppose that X and Y are interval vectors in
the stack described below (3.2), and let ® be an interval extensi n to
®. Then, if P(Y) > ®(X), we may discard Y from the stack.
Papers and reviews on solution of the global optimization problem
include (4], [17)], [21], (23], [50). [56], and [60). Walster, Hansen, and
Sengupta report performance results on their global optimization aj-
gorithm in [69]. Researchers not expert in interval mathematics also
occasionally rediscover the exclusion principle just described without
explicitly using the machinery of interval arithmetic.

4. Issues in implementing reliable interval Newton nonlinear equation
solvers. As mentioned in Section 2, there are various language tools
for working with interval arithmetic, and computer hardware supports
interval arithmetic to varying degrees. Likewise, there are libraries of
elementary and special functions for interval arithmetic. Also, it is
possible through automatic differentiation (as in [53], [55], or [66]) or
through symbolic manipulation (as in, for example, [65]) to shift the
burden of programming the Jacobian matrix from the user to either
the compiler or to the executable code. However, these arithmetic land
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differentiation tools are not yet universally available or standardized.
(Future versions of the ForTrAN standard, if implemented, will help.)

Furthermore, there is also not yet a consensus about which interval
Newton method is “best,” nor is it clear how best to precondition|the
Jacobian matrix in all cases. Also, we are still doing practical investiga-
tions related to the choice of coordinate interval to bisect.

Another issue deals with how to handle the case where roots odcur
on or near boundaries of boxes. This problem could degrade the éffi-
ciency of the algorithm in higher dimensions when the root occurs near
a low-dimensional boundary or vertex of the box. We are presently
investigating refining the “expansion™ technique described in [25] not
only to eliminate redundancies, but also to significantly increase the
algorithm’s efficiency. :

We are also pursuing additional work to handle systems where the
Jacobian matrix is singular or ill-conditioned near the root. In such
cases, (3.6) is usually not satisfied, and the predominant mode of the
algorithm can be the costly coordinate bisection process. We are looking
at the preconditioner technique mentioned above and in [31], amang
other ideas.

Finally, as with many numerical tasks, there is an unclear interplay
between the order of approximation used and the overall efficiency |of
the algorithm. For example, we could approximate elements of the Ja-
cobian matrix to high order with centered forms (as in [60]). For mapy
functions, this would allow completion of the algorithm with fewer
function and Jacobian evaluations; however, we would encounter the
additional complication of setting up second-derivative tensors and the
additional cost of evaluating them.

Despite these problems and ambiguities, we have felt it important to
make interval nonlinear equation software generally available. In [29),
we describe a portable, self-contained FORTRAN 77 package for inte
Newton/bisection as in Section 3; we present performance results f. r
an early version of this code in [26], and the abstract structure of t e
algorithm in [25]). We can supply the FORTRAN source code, and also
machine executable code for IBM PC compatibles, on MS-DOS 51 in.

In this code, we have sacrificed some speed and generality for port-
bility and ease of use. Our code is perhaps a factor of 20 slower thap
if interval arithmetic were available directly in the complier. However,
it is still competitive with alternate techniques for many problems; see
[26]. :
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In our code, we have used the interval Gauss-Seidel met od, and

we have preconditioned with the inverse of the matrix of mid

ints of

~ the elements of the interval Jacobian matrix. The interval Gauss-Seidel
method is competitive in many instances (cf. [18] and [19)), while our
choice of preconditioner seems popular and is also relatively |good in
practice. We have used a special scaling technique to choose coordinate

intervals to be bisected; see [29).

Our code simulates directed roundings, given a bound on the max-
imum number of units in the last place by which the result gf an el-

ementary machine arithmetic operation can be in error. It thy
mathematically rigorous results,

s gives

S. Interval Newton/bisection methods and alternate nonlinear equation
solvers. As the topics in this conference indicate, not only are there
various techniques for solving nonlinear algebraic systems of equations,
but the different techniques tackle different problems and have different

goals. The class of interval methods outlined in Section 3 above
suited to

is well

(1) reliably finding a// solutions within a given region of spage (i.e.,

solving (1.1));
(ii) reliable global optimization;

(1ii) analysis of the sensitivity of solutions to certain coefficients or

parameters; and
(iv) the general study of parameter-dependent systems,

(The problem (1.1) is related to the global optimization probler

the latter can be solved by finding all critical points. However,

n since
global

optimization is numerically easier since values of the objective function
may also be used to eliminate some critical points early in the compu-

tation.)

Among alternate popular methods for finding all solutions are

(a) hybrid techniques (perhaps introduced with [51] and reviewed

in [10], [11], or possibly notes to this conference), which i

nclude

trust region algorithms with Newton’s method or quasi-Newton

methods;

(b) other bisection techniques, such as those involving computation

of the topological degree: and

(c) continuation methods based on mathematical homotopies.
Techniques for solving the global optimization problem include, in

addition to the above,
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(d) schemes with a stochastic component, such as random functjon
sampling, the tunneling method ([36)), and simulated annealing.

Below, we compare each of these four algorithmic classes with inter-
val Newton/bisection.

5.1. Comparison with hybrid methods. Hybrid steepest desce
Newton-like algorithms are very efficient and reasonably (though
rigorously) reliable when we have sufficient knowledge of the problem.
There is a large body of theory, and the methods have been used suc-
cessfully in a wide range of applications; this includes very large prgb-
lems and problems with a special structure. However, such methods are
designed to find just one solution, or just a local optimum; the global-
ization techniques associated with these algorithms refer merely to an
expansion of the domain of convergence of the underlying Newton-like
method. Sensitivity information can be obtained indirectly from the
algorithms’ behavior, or local information can be obtained by decom-
position of the Jacobian matrix at the solution.

t/

ot

5.2. Comparison with topological degree-based bisection. Topologi
degree-based bisection methods do not require interval arithmetic (a
indeed do not need accurate function values), and do not require Jac
bian evaluations. They are thus applicable to general nonsmooth funt-
tions (although interval methods are appropriate in some such case ).
In [68] and elsewhere, Vrahatis has demonstrated that such methods
can also be reasonably efficient.

For certain cases (such as for analytic functions of n complex varj-
ables), the underlying mathematics indicates that the algorithms will
rigorously find all roots. However, computation of the topological de-
gree is sometimes done heuristically, at the expense of reliability. Th
topological degree can be computed reliably when Lipschitz constan
or moduli of continuity are used to bound the range of function com
ponents. (See other notes to this conference.) However, such rangf
bounds can be viewed as values of an interval extension to the func
tion, and thus are an example of application of interval techniques,
Further investigation of the interplay between interval methods and the
topological degree may yield discoveries of value. '

In topological degree-based bisection methods, our goal should bg
perhaps merely to compute starting points for fast local methods. In
interval Newton/bisection methods, once the box is small enough, the
interval Newton method will exhibit quadratic convergence, and several

d

¥ w [
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mechanisms (including the intersection in (3.3)) can
of the box before then. In contrast, pure bisection without y
kind of higher-order information is apt to be only linearly ¢
Also, interval Newton methods have been applied to relat; ely large
systems; in contrast, most topological degree-based algorithms exhibit
either computational or storage requirements that are €xponential in the
number of unknowns. (We do not claim this is an inherent property,
though.)

the size
of some
nvergent.

5.3. Comparison with continuation methods. Continuation methods
ctn do a good job of solving (1.1) in some cases. In particular, the theory
and practice of finding all solutions to moderately sized polynomial
systems is well developed. See [43] for an introduction, and see other
b{e’\ure notes to this conference or [44], etc., for examples of recent

rk.

One cannot say without additional information about the problems
that continuation methods or interval Newton methods will be better
suited to solve (1.1). There is abundant convergence theory|for ho-
motopy techniques only for polynomial systems; for other systems, ho-
motopies may need to be constructed in an ad hoc fashion. (Interval
Newton/bisection algorithms can be applied to any functions that have
interval extensions.) In practice, the homotopy/continuation al rithms
must find all complex roots to find all roots within a certain regi
number of such roots is equal to the total degree of the system,
the product of the degrees of the individual components, but is some-
what less when the system has an m-homogeneous structure. (
notes to this conference or [44].) Thus, the algorithms may ine: ciently
compute large numbers of complex roots that are not of inte t. Fur-
thermore, unless most components are linear, or the system has a special
structure, the total degree and amount of work will increase ex nen-
tially with the number of variables and equations.

On the other hand, the width of an interval image of a component
f;(X) will depend both on the number of arithmetic operations and the
way that these operations are arranged. This could make interval New-
ton/bisection algorithms impractical for certain functions that have a
large number of naively arranged operations. Higher-degree polynomi-
als generally have wider interval values than lower-degree polyn
However, this phenomenon is different from that of total degree, and
the class of problems for which it occurs is neither contained in nor
contains those for which the tota] degree is high.
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Reliability is a second qQuestion. The underlying theory guarantees
that the homotopies will Jead to all roots to polynomial systems off €qua-
tions, except if we are unlucky enough to choose certain parameters
from “bad” sets of measure zero or of finite cardinality. The continya-
tion methods themselves, however, can involve heuristics or can suffer
from the effects of rounding errors. For example, if the predictor| step-
size, which is usually heuristically chosen in predictor/corrector meth-
ods (see [2] for an introduction), is too large, then the steps may Jjump
from one homotory path to another. This results in roots listed more
times than their multiplicity, and in some roots being totally missed, We
have observed this behavior with some software ([24]). However| our
experience with the code in [43] has convinced us that properly tuned
and implemented algorithms can be very reliable in practice. Further-
more, we have a priori knowledge of the total number of solutiO{s to

a polynomial system, and we may check this against the number actu-
ally found and against rank deficiencies. Nonetheless, such reliability is
qualitatively different from the mathematical rigor that can be achieved
with interval Newton/bisection methods,

In Section 6, we describe a new use of interval arithmetic to control
the stepsize in continuation methods, With that scheme, we believe we
would have a rigorous guarantee that the predictor/corrector iteration
would not jump from one homotopy path to another.

Both continuation methods and interval arithmetic techniques |are
useful in the study of sensitivities. In interval Newton methods, [the
studied coefficient or Parameter would be separate from the unknown
variables; it would appear in the formulas for evaluation of the fiasa
constant interval. Iteration of (3.3) would then result-in convergence -
not to a point solution to the nonlinear system, but convergence to a
box in n-space. That box would contain the set of all solutions to the
system as the parameter ranged over its interval; the sharpness of the
containment would depend on details of the interval extension.

With continuation methods, we can treat the studied parameter as a
homotopy variabe, We can then observe solutions to the system as we
trace the homotopy paths. Using this technique, we successfully studied
the amount of information that can be obtained with certain models pf
evoked cerebral potentials; see [28].

Both continuation methods and intervaj mathematics can be uséd
in the study of physical systems in which a parameter naturally varies.
For example, Keller and others (e.g., [32)) study fluid flows as Reynolds
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number (or velocity or viscosity) varies. In this application pf contin-
uation methods, discretizations of partial differential equatipns result
in very large systems. Researchers can take advantage of stnE:ture and
sparsity since the predominant computation in such instances is the
analysis of linear systems of equations in standard floating-point arith-
metic; techniques for bordered systems, as in (7] or [33], have |also been _
inspired by this application,

Homotopy paths can also be resolved via interval Newton techniques;
see [46). However, large parameter-dependent systems have not yet been
tackled.

5.4. Comparison with methods with a stochastic component, In con-
trast with hybrid methods, probabilistic methods make an effort to find
a global optimum instead of just a single local one. However| none of
these techniques can give mathematical assurance of their results, and
random function evaluation can converge slowly even in a probabilistic
sense. It may, however, be possible to use them on some very large or
complicated optimization problems for which interval Newton methods
embodying the present state-of-the-art would take too many operations
to be practical.

The tunneling method is interesting since it combines a clever deter-
ministic component with a stochastic component; see [36]. Thi%::thod

is able to “tunnel” under very large numbers of local minima on its way
to the global minimum. However, interval Newton based methods also
perform fairly well on some of these problems; see [69].

6. An interval arithmetic stepsize control for continuation ethods.
We describe here a criterion for a foolproof stepsize control fo predic-
tor/corrector continuation methods, We first give an abstract algorithm
(which would allow various predictor and corrector schemes) within
which we can embed the stepsize control.

Let H: R**! — R” denote the homotopy, and let ¥, € R"*! be such
that H(Y;) = 0. We then compute an approximation Y?., to another
point on the zero manifold of containing Y by

(6.1) Ylf+l =Y, +5/¢Bk.

The direction vector B, (||B, ll2 = 1) may be obtained in a number of
ways, while we will adaptively adjust and reset dx with our stepsize
control. We then correct Y.\ to obtain a point Y;,, that is more nearly
on the manifold. (See [2] for an introduction.) In other words, we have
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ALGORITHM 6.]. (A SINGLE PREDICTOR/CORRECTOR STEP).
(1) Compute q predictor step direction By and an injtig) predi
steplength §,.

(2) Compute Y2, by (6.1).

(3) Choose a corrector manifold r,(Y), where T : R™ R opg
n(¥,) =0

- (4) See if corrector iteration (step 5) will converge starting with
present YP .

(@) If it will not, then decrease &, and repeat steps 2, 3, and
this step.

(b) If it will, then perform step §.
(5) Find Y., by using a convergent method to solve the (n+1)

ctor

the

by
(n+1) system of equations

Fyy = | *(Y)] _
(6.2) F(Y)-[H(Y)]-O.

Generally, the corrector step is checked (step 4) using heuristic crit
na; see [3]), [22], [64], etc. In such instances, if J, is chosen t
the corrector iteration could converge to a point that
manifold from that of Y,; see Figure 1.

e-
00 large,
is on a different

HYy=0 Yea?

FIGURE |.

Even though the corrector iteration converges, iterates of the
predictor/co

rrector algorithm may jump from cne path 1o another.
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In contrast, we may employ an interval Newton method in step (4),
and use (3.5) or (3.6). If we include values of the Jacobian |matrix
over the entire line segment between Y, and ¥{, , then it is possible 1o
construct an algorithm for which the phenomenon in Figure | cannot
occur. In fact, with such interva arithmetic, the negative result lin [64)

is in many cases not relevant.

some implicit assumptions when

To construct the stepsize test,

(We do note, however, that wa
we use interval extensions.)
we first select a function q(d) sud

make

h that,

for all sufficiently small § with IY = Yill2 = & and Y on the manifold
of H(Y) = 0 that contains Y, the tangent of the angle that the line
segment with Y; and Y as endpoints makes with B, is at mot q(d). We
also require that 9(6) ~0as d — 0. For example, if there is a fixed

¢ > 0 such that
Bio(Y-Y)
== T Tk
1Y = Yill2
=J"¢foranye> 0 will do; see Figure 2.

2,

then ¢(d)

[ 958 — |

8By

FiGure 2. 4(dy) is defined so that tan(a) < ¢(4;)
for all sufficiently small S.

For simplicity, we assume that 7,(Y) = 0 defines the linear mani-
fold through Y,f'+l perpendicular to B,. Then, in the interval Newton
method, we will extend the Jacobian matrix to contain values of the
scalar Jacobian matrix over a box that contains the line segment |be-
tween Y and ¥/, , and the portion of T(Y) = 0 within distance d of
¥ take the point X, in (3.2)

; again refer to Figure 2. We may then
or in (3.7) to be Y?,,. Our interval Newton method will operate (on
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the manifold defined by r,, so that it will solve a square n-by-n isys-

tem. However, in order to ensure that path-jumping as in Figure 1 will

not occur, the interval iterations will, in a sense, include all interval

iterations corresponding to steplengths between 0 and 4;.
To illustrate, let us examine

- H(Y)=H(y|,}’z)=,vz(y.2—4)+(l-Yz)(yuz-l)-

Let us take ¥, = (1,0)T, and try Bo = (0,1)T and &y = 0.1. We will Lise
n(Y)=Byo(Y - Y?.|). We first characterize the manifold r,(Y) = 0
for 6 = &y by

{(x1,0)|x; e R}. ,
We may then solve F (Y) = 0 by solving F(x,) = 0, where
F(xi) = H(x,8) = 8(x} - 4) + (1 - 8)(x? — 1),
Simplifying, we obtain
Flx))=x{-(1+35), so F'(x)= 2x).
We make an interval extension to F by letting J range in the interval
[0, 0] = [0,.1]; we use the function g then to define the interval for x,

to be
X =[.68,1.32);

we may take X = | and &, = 0.1 to compute Y. (Throughout this
example, we use directed roundings to represent quantities to two digits
of accuracy.) We use (3.7) and (3.6). We then have

F(X) =1[0,.3],

where we get an interval value because we use an interval for do. We
also have

F/(X) =[1.36,2.64], Y = 3, and G= [.68,1.32].

Finally,
k=[0,.15] and X=[1,123]cX

Since the inclusion is strict and since we have used intervals for do in
the values of F and F', we believe we can conclude that there is a unique
solution to (6.2) for each value of d between 0 and d9, and that Newton’s
method starting at X will converge to that solution; the analysis would
be similar to that in [30].

Since we may control the stepsize, generalized bisection can be en-
tirely avoided. Thus, the method should be applicable to problems in
high-dimensional spaces.
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A complete analysis, generalizations, and more invoived numerical

examples of this technique will appear elsewhere.
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