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ON A GENERAL TECHNIQUE FOR FINDING DIRECTIONS
PROCEEDING FROM BIFURCATION POINTS

Ralph Baker Kearfott

Various quite satisfactory analytical and numerical techniques
are available for analysing bifurcation points when something about the
structure is known & priori. The author previously introduced a method
applicable when such information is not present, or when the arcs intersect
tangentially. That method is discussed here, with particular emphasis on

avenues to improvement in efficiency and reliability.

1. Introduction and Background

We consider the solution sets of the parametrized nonlinear

system
(1.1) H(y) = H(x,2) = 0

where H R X R — R". of interest are the bifurcation points
(x }\ ) where rank (DI—I(y )) <n, and where two or more arcs in the
solution set of (1. 1) intersect.

Due to the ubiquitous occurrence of bifurcation in physical
processes, specific techniques for finding y* and following paths away
from y* are well developed. These techniques are applicable when the
bifurcation point is simple (only two arcs intersect), when y* = (0, X*)
(bifurcation from the 'trivial" solution), when symmetry can be used, when
unfoldings ([5]) are easily computed, etc. These,described in other papers
in this volume and elsewhere, are usually quite efficient, and are to be
preferred for the specific problems they are meant to solve.

Other methods are meant to be more general. Perhaps the two
salient ones are (1) use of simplicial discretizations, possibly in conjunction
with "artificial bifurcation' (cf. [16]), and (2) solution of a system of poly-

nomial equations such that the degree of each equation equals the order



211

p > 1 of the first non-zero higher-order derivative tensor (see [12] and
also [11]).

Simplicial methods are mathematically equivalent to replacing
H by a perturbation which has no bifurcation points, for which the paths
can be followed. Typically, paths intersecting A = 0 are followed until
they diverge or intersect A = 1, but not all paths corresponding to a bifur-
cation point may correspond to simplicial paths intersecting at t = 0;
artificial bifurcation and other ad hoc techniques are used to connect these
paths. Such techniques would be harder to apply when large numbers of
arcs intersect.

In the Keller/Langford method ([12]), solutions of the system of
polynomial equations correspond to normalized tangent vectors to arcs
emanating from y*. The solutions are in a one-to-one correspondence with
the arcs, provided there are no multiple solutions (arcs do not intersect
tangentially) and provided the solutions are isolated on the intersection of
any sufficiently small sphere in RR”  about the bifurcation point. (This
follows from arguments in [12] and [11].) These equations have not been
extensively employed since the coefficients depend on the p-th order partial
derivatives of the components of H. However, if H is polynomial, these
derivatives can be computed analytically at compile time ([17]). In such
cases, the numerical techniques described below might be successfully
applied to the Keller/Langford equations (though below a different polyno-

mial system is used).

2. The General Method

An implementation of the basic method is discussed in [8]. The
technique depends on the fact that arcs bifurcating from y* can be approxi-
mated by arcs in the k-dimensional affine space H(y ) through y and
with directions defined by the null space %(D(H)(y )) of D(H)(y ). In
partlcula.r for sufficiently small o solutions to H(y) = 0 on a sphere

d (y ) of radlus 6 about y correspond to minima of llHIl im

d (y ) N l'I(y ) (throughout, [* |l means Euclidean norm); a precise
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one-to-one correspondence can be shown under rather general transvers-
ality conditions on the tangent and normal vectors at y* ([10]).

In [8] minima of [[H| in gfd(y*) n H(y*) were found directly
by using the simplex method of Nelder and Mead. Since an unspecified
number of starting points was required to insure at least one such point
occurred in the domain of attraction of each minimum of |H|, the pro-
cedure involved a heuristic. Also, the efficiency of the overall implemen-
tation left something to be desired.

Here, we discuss potentially more efficient procedures which in
addition are less heuristic. The first of these, presented below, depends
on the fact that all solutions to a polynomial system of equations can be
approximated by homotopy methods. The second, explained briefly at the
end of the paper, is based on a deterministically driven search similar,
but not identical, to that used for computing the Brouwer degree of maps
(7.

Let H be represented by a column vector, and define
oly) = HT(y)H(y) = [ H(y) Il 2. Then the minimization problem is:

(2.1) min _ ¢ly) subjectto y e J(S(y*).
yell(y™)
Let %(DH(Y*)) = sp i{vl, . ,vk} sothat y e l'[(y*) =y =y(a) =
y(al, % #ha ,uk) =y + 3 a,v,; let Va(p represent the gradient of ¢ with

4 =1
respect to a, and set J = DH(y). Then:
V? T
(2+2) Vacp =1 . J " H(y).
T
Yk

Applying the Lagrange multiplier technique to (2. 1), we thus conclude that

ail solutions of (2. 1) are solutions to the system:
T [ 220
h j 4% k

T + s ¢ |=0, © Zoa -6 =0

'\_2‘1;1( ) -

(2. 3)

v

T
k
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of k +1 polynomial equations in the k + 1 unknowns Qprevesp, Ae Let
Y =(a,...,a,A) and define F ; REE B b cruatittie de@iband
sides of (2.3). Then finding paths bifurcating from y reduces to finding
all solutions to the polynomial system F(Y) = 0.

Various homotopy algorithms will give, in theory with proba -
bility one, all solutions to F(Y) =0 (cf. eg. [2],[3], [4],[14],[15]). We
discuss these briefly in the next section; here, we use an example to observe

properties of (2. 3).

Consider:
(2.4) H,(x,2) = x[x4 - (2x - 1)2],

the solution set of which occurs in Fig. (2.1). Corresponding to a degener-
ate case exhibiting symmetry (see [6]),
the bifurcation point at (0, 1/2) has two
branches intersecting tangentially.

The arc directions are of the form

SR —

(al, az); the Keller/Langford equations

2 2 2 .
are: -?_40.10.2 =04 a + a, = 6 , with
_______ P simple roots (0, §) and (0, -6) and

| with double roots (¢§,0) and (-4,0).
Fig. (2.1) - The system (2.3) consists of a polyno-
mial of degree 9, a polynomial of degree 7, and a polynomial of degree 2,
which in general will have 126 complex solutions, counting multiplicities.
Among these solutions are distinct roots corresponding to the tangentially
intersecting branches, but maxima of [H| and non-real solutions not on
da(y*) also occur. Such solutions must be ignored or rejected early in the
computation for (2. 3) to be practical. Note, however, that in all cases only
first derivatives enter into (2.3), whereas at least second order derivatives

are required for the Keller/Langford equations.

4, A Tentative Method

Here, we consider solution algorithms for (2.3) (or for the

k+1

Keller/Langford equations) involving imbeddings H : ¢ x [0, 1] — Ck+1
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of the complex extension of F, such that roots of I':'I(z, 0) are known and
ﬁ(z, 1) = F(z); roots of F are found by following paths from t =0 to t = LA
([2], [3], [4], [14], [15], etc.). 1Ex-hgenera,l, if the degree of the £-th compon-
ent of F is dp there are ns;l}l d! solutions, and ns corresponding
paths to be followed. Good geéneral continuation method software (see [13],
[14], [18],[19],[20], and also [1]) is available, but, due to the size of ns,
naive implementations will not be reliable.

For example, the minimum distance between desired roots of F
is on the order of P./d_ for some p, depending on the degree of contact at
y* (for (2.4), p =2); the continuation method has been observed to jump
from one path to another when the total stepsize has been allowed to exceed
this value. Also, scaling problems and path-jumping will occur if the roots
of H(z,0) have norms appreciably different from .

Additional problems occur when paths H(y) = 0 intersect
dé(y*) N H(y*) and the tangents at the points of intersection are perpendi-
cular to da(y*); this would happen, e.g., if k =n + 1 and the arcs were
linear rays emanating from y*. In such cases, DF is singular at the
solutions, and the roots are found only with reduced accuracy.

At real solutions of F(Y) =0, llall = 6 and O(A) = % where
q is related to the degree of F. Also, for appropriate I-Nl(z,O), paths
leading to real solutions of F will be within {Y: Yl < M\q/ﬁ—} for some
small M. This allows early rejection of irrelevant solutions.

The method was tested using (2.4), 6 = . 515388, and using
PITCON ([18], [19]). The Garcia/Zangwill homotopy ([2], [14]) was used
since we had initial difficulty implementing the potentially better methods
in [15]. The maximum predictor step was .24, and path following stopped
whenever [z > 5; roots of ITI(z,O) had norms approximately 1. Compu-
tations were done on a Honeywell 68/80 using 27 bit mantissas, and DH
was computed using central differences. In Table 4, 1 paths were oriented
in the direction of increasing t, and the tangent-normal corrector para-
metrization was used. (Rheinboldt's local parametrization gave similar

results with less function evaluations, also jumping paths.) The fifth
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column gives the determinant of the tangent system at F =0, and the

sixth gives the number of evaluations of L for that particular path. Note
that root no. 2 and irrelevant roots 1 and 6 were found twice, indicating
the algorithm left the path it was following. (Note also that the conjugate

of irrelevant solution 3 should have been found but was not. )

Solutions

no x A -y A det nf
1 .5 .125 0 1x 272 80
2 5 -.125 0 3x 273 88(83)
3 -5 . 125 0 4x273 83
4 -.5 -.125 0 3% 272 126
5 0 . 515388 0 3 x 2° 95
6 0 -.515388 0 3 x 2° 88

Irrelevant Solutions
no x A -k A det nf
1 . 515388 0 -.0124 1x 272 96(91)
2 2. 0621 +2.125 0 1 x 230 208
3 2.062i -2.125 0 1x 228 220
4 -.2924 - L4244 -, 2439 2x 2! 87
5 -.2924 .4244 -,2439 1x 2! 117
6 .2924 - .4244 -,2439 2 x 2! 104(106)
7 -. 515388 0 ~OIBE. ) Brxials 87
8  -2.062i 2.125 0 3x 227 253

Table 4.1

5. A Possible Alternative

Adjustments to the above scheme may make it more practical;
it also may be practical when applied to the Keller/Langford equations
instead of (2. 3). However, the problem of finding all solutions to (2.3) has

several characteristics which make an alternative method practical; these
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are (1) the fact that k is small or can be made small by use of symmetry;
(2) existence of large numbers of solutions, distributed more or less
uniformly over [H(y*) ﬂda(y*)] X [-K,K]. Inthis case, use of a general-
ized method of bisection as described in [7] and [9] becomes more
attractive,

In such a generalized bisection method, simplices would not be
further subdivided according to sign changes or whether a topological
degree were nonzero. Instead, an analysis of the values of the components
of F and bounds on the norm of DZF (or more generally, Lipschitz
constants for the derivatives of the components of F) would be used to
indicate whenever a component of F: (i) could not vanish on a simplex,
or (ii) could vanish at most once on any line in the simplex; if (i) held for
one component, if (ii) held for all components, or if the diameter of the
given simplex were smaller than a given tolerance, then triangulation of
that simplex would stop.

Generalized bisection has been considered non-competitive in
general. However, the large number of solutions and need to obtain them
all makes generalized bisection appropriate for their isolation. Details

and convergence proofs will be given in a later work.
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