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1. Introduction

Suppose H: Rn+1 — Rn, and suppose the n by n + 1 Jacobi matrix

J(H)(y) is nonsingular over the set ,(f: {y | H(y) = on}, sothat £f is equal
to a disjoint union of arcs and circles.

Numerically tracing the arcs and circles in of has been the subject of
much study (cf. e.g. [11] pp. 230-239, [1], and [5] for surveys). One might put
applications into two broad categories: (1) models of systems in which the (n+1)-
st parameter occurs naturally, and in which a so-parametrized family of solutions
is desired, and (2) systems of equations in which the (n+1)-st parameter is intro-
duced artificially, as an aid to solving a system F(x) = ben, where F: R — Rn.
For example, H(x,t), xe Rn, t e R, may be defined by:

(1. 1) H(x, t) = F(x) - (1 - t)F)

(0)

)s

for some x € Rn; the problem of finding x* such that F(x") = sn is then

(0)

solved by follawing the path H(x,t) = 0, starting at (x °,0) and ending at (x*, 1).

In theory, this technique is always applicable when J(H)(y) is nonsingular over
R (cf. [11], p. 231).

Recently, such homotopy, or continuation methods have been applied to non-
linear least squares problems (cf. e.g. [12]), where F : R —~ Rm, m >n, and
a least squares solution of F(x) = 0 is desired. For example, the Newton
homotopy (1. 1) may be used, so that H(x,t) : Rn+1 — Rm, and a one-parameter
family of problems is solved. Alternatively, the n by n Hessian matrix
Z(¢)(x), where ¢(x) = % FT(x)F(x), may be numerically singular, so that it is
appropriate to think of the least-squares solution to F(x) = §,, 2asa curve in R™.
These cases correspond to the previously mentioned artificial homotopy and
naturally occurring parametrized system, respectively.

The usual methods for solving non-parametrized nonlinear least squares

problems include the Levenberg-Marquardt methods and implementations of
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quasi-Newton updates in conjunction with model trust regions or ''doglegs'' (cf.
e.g. [3]). Im these.methods, the special structure of the nonlinear least squares
problem is exploited.

In this paper, we describe some logical ways of incorporating nonlinear
least squares structure in a general continuation method. In Section 2 we review
our basic continuation method. In Section 3 we indicate how nonlinear least
squares structure can be incorporated. In Section 4 we give some numerical
results. We draw conclusions and indicate directions for further investigations

in Section 5.

2. The Basic Method

The basic method is described in [9], [7], [8], and in previous works
appearing as references therein, so we merely outline it here. Suppose
1
y(s) CRn+ is a solution component, parametrized in terms of arclength s, of

H(y(s)) = 0, and suppose H is sufficiently smooth. Then:

(2.1) JE(y(s)y(s) = 6, (s, = 1.

0) (0)

1 0
If, in addition, y( € Rn+ is known with H(y (0)

) = gn, then (2.1) and y de-
fine an initial value problem which, in principle can be solved by any good O. D. E.
software. We, however, prefer the predictor-corrector approach outlined here,
since error control is localized, since it is easier to take advantage of structure

in the problem, and since empirical results indicate it competes favorably in

efficiency, in certain cases (cf. [70.

Given y™® ¢ R*! with my™) = 6, we first find %) with
J(H)(b(k)) = Gn, Il b(k) Il2 =1, and we define:
5.3) 9 09 0,

k .
for some predictor stepsize 6k We then correct z( ) in a hyperplane approxi-

k+1
mately perpendicular to b(k); that is, we take y( il to be a solution to:

(k+1)
(2.3) ay™) = Hom ) )

(b(k))T(y(kH) _ Z(k))

(See [7] for illustrations.)
It is sometimes advantageous not to simply compute the n by n+l matrix

J(H)(y) at each point needed in (2.1), (2. 2), and the iterative solution of (2. 3),
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but to obtain approximations to it via, say, Broyden updates ([7]). In this context,
J(H) may be approximated rea sonably well without substantially more evaluations
of H by performing occasional special Powell correction steps (ibid.). For
dense J(H), the updates may be computed in O(nz) operations on a factored

form of J(H), and can be applied appropriately to sparse or banded systems.

3. The Nonlinear Least Squares Structure

As explained above, the (n+l)-st parameter in parametrized nonlinear least
squares problems may occur naturally, artificially, or implicitly in problems
with a singular Hessian matrix. For simplicity, let us assume here that
H: Rn+1 — Rm, and that it is required, for fixed t e R, to find a least squares
solution over x ¢ R" of H(x, t) = 6 (The case where 2/(¢) is numerically

singular, i.e., where the parametrization is implicit, will be treated elsewhere.)

Then min ¢(x,t) occur at x for which:
x

(3. 1) J':‘(H)(x, t)H(x, t) = en,

where JX(H) is the m by n Jacobi matrix of H with respect to the first n

parameters x. Define:

(3. 2) B, 4y = J':(H)(x, HH(x,t) : & R%,
The n by n+l Jacobi matrix of H is then:
(3.3) TE)Gx, 0 = I (), OIE)(x, 8) + S(x, 1),

where J(H)(x,t) is the full m by n+l Jacobi matrix of H and where S(x, t)
is 2 matrix whose entries depend on the second-order partial derivatives of the
components of H.

In our procedure, we will compute J(H), and hence J'X(I—I), "precisely"
with finite differences, and we will approximate S(x,t) with quasi-Newton up-
dates. Specifically, suppose Ve Rn+1 and y+ =y +s. (The vector s may
represent a predictor step akbk as in (2. 2), a corrector step in the iterative
solution of (2.3), or a special Powell correction}) Suppose S (as in (3.3)) is
the old approximate second-order part of the matrix J(H), and denote the new
approximate second-order part of J(H) by S+. Here, we will compute S+ by

performing a Broyden update:

(3. 4) S+:S+vsT/IlSH§,
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where
(3.5) v = [ @) - e HE

(cf. formula (3. 2) in [4]).

The parametrized nonlinear least squares method will consist of the continu-
ation method applied to ?I, with J(ﬁ) approximated as indicated.

Updates other than (3. 4) which take better advantage of the natural scaling
inherent in the first n parameters have been suggested ([2]). They will be

reported on elsewhere.

4. Software Tools and Numerical Experiments

The numerical experiments appearing here were run using a preliminary
version of a modular software package for solving general classes of general con-
tinuation and nonlinear least squares problems. In this package, the basic
predictor-corrector method is defined in a controlling module, while all matrix
operations and various other application-specific tasks are performed in external
modules the names of which are passed to the controlling module as arguments.
These tasks include adjustment of predictor stepsize, choice of predictor direc-
tion, detection of non-convergence of corrector iteration, computation of correc-
tor iteration, computation of corrector iterates, detection of bifurcation points,
and determination of directions and stepsizes for following arcs away from bifur-
cation points. Thus, the package provides a controllable environment for research
into and comparison of various matrix updates, corrector iteration processes,
adaptive stepsize control, bifurcation techniques, etc. Additionally, the package
will be able to efficiently handle sparse or specially structured problems.

n+l

In our first experiments, H : R R” was defined artificially via (1.1).

Two test problems have been published in this context in [12]; they are defined as
T
follows, where F(x) = (fl(x), fz(x), % 18 55 fm(x)) :

m =24, n =4, ukz.l(k-l

X = (60.137, 1.371, 3.112, 1.761)T
- up

fk(x) =x;x, sin (x3uk + x4)

(4.1)

f,x) = (=) - £ &),

and
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m =16, n=>5, uk:.l(k- 1)
x = (53.81, 1.27, 3.012, 2.13, .50T)
(4.2) w %o
fk(x) = X%, [tanh (x3u.k) + sin (x4uk ]cos (uke )

£,(x) = f”k(x) - Fk(Q).
(0)

In [12] four starting vectors x(o) were tried for (4.1) and sin x were
tried for (4.2). The method employed there consisted of choosing, a priori,
equally spaced t: t, = 0, t; = l/p,...,tp_1 =(p - /ps tp =1 (p =10, p =20,
or p =40). Then, (1.1) was solved as a non—para.metrized problem in Rn for
successive tj, using the solution at the tj-l level as the starting vector for the
t. level. (This corresponds to the inelevator!'' predictor with constant stepsize
(cf. [14], pp. 310-311). The Newton-Raphson method (with explicitly computed
Hessian matrices) and the Gauss-Newton method were used for corrector itera-
tion; in both cases, steplengths were damped and line searches were employed.

Here we compare the methods in [12] to the continuation method outlined in
Sections 2 and 3, using roughly the same tolerances as in [12]. Differences
include parametrization with respect to arclength, adaptive stepsize control, and
use of quasi-Newton updates. Additionally, we employed no line searches or cor-
rector step bounds, since we felt such might be unnecessary in the presence of
careful stepsize control. We did not do special Powell correction steps, since
preliminary experiments indicated these did not appreciably affect the algorith-
mic behavior.

In [12] numbers of evaluations of ¢, numbers of Jacobi matrix evaluations,
and numbers of Hessian matrix evaluations are given, while numbers of evalua-
tions of H were counted in our algorithm. We assume an evaluation of ¢ 1is
equivalent to an evaluation of H, and we compare our evaluations of H to the
equivalent evaluations'' given in [12].

The results for (4.1) and (4.2) appear in Table 4. 1 and Table 4. 2, respec-
tively. In each, the first column gives the starting vector x(o), the second
(NEQV) gives the number of equivalent evaluations from [12], and the third
column (NEV) gives our number of evaluations of H.

Table 4.1 does not include results for our method for the second starting
point. This is because the arc diverges to «. (See Figure 4.1 where a graph
of x, versus t appears for this starting point.) We assume success was
reported in [12] because the corrector iteration scheme was a descent method,

and the corrector iterates jumped to another arc somewhere between t =.35
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and t=.4 .
-2
In [12] a relative tolerance of 10 was used for determining convergence

6

of corrector iteration at intermediate points, while a relative tolerance of 10~

6

’

was used at the t = 1 hyperplane. We used tolerances of 10-4 and 10~
respectively, since these stricter tolerances actually led to less function evalua-
tions. These are not strictly comparable, however, since we checked both the
domain and range, and we used more sophisticated scaling.

In [12] more than one try, with different parameters, was reported for each
entry in Table 4.1 and Table 4. 2. We reported only those tries most favorable to

the method in [12], though there was a wide variation.

5. Conclusions

We have presented a continuation method for nonlinear least squares using
quasi-Newton updates, careful adaptive stepsize control, and parametrization
with respect to arc length; we did not use model trust regions, line searches, or
damping in corrector iterations. Such a method can be viewed as an alternate
procedure for globalizing the algorithm; we feel the stepsize control and efficiency
vis-a-vis alternate methods should be further investigated.

The numerical comparisons were somewhat disappointing with regard to
total number of function evaluations. However, we feel the arcs were reliably
followed, and indications are that improvements in stepsize control will make a
large difference. Furthermore, the problems in [12] were zero-residual
problems at the t = 1 hyperplane, and the most efficient method reported in [12]
was the Gauss-Newton method. The update technique described in Section 3 of
this paper is specifically for problems with non-zero residuals, and should
perform relatively better on such problems. In [12] difficulties were mentioned
for problem (4. 2), and a special parameter g, altering (1. 1), was introduced.
We encountered no such difficulties. We were also able to determine more of
the structure of the arcs,

We have also done preliminary tests using the homotopy (1. 1) and the 18
nonlinear least squares problems and starting points described in [10]. In several
instances. the arcs defined by (1. 1) did not reach the t = 1 hyperplane, indicating
that (1. 1) cannot always be used naively (see also [13]). In other instances the
approximate Hessian matrices became singular to working precision, indicating

possible bifurcation points, or at least a need to use a more sophisticated
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corrector iteration. In other cases, the predictor stepsize went to zero, indica-
ting a need for better stepsize control. Over half of the 54 cased tried, however,
were successful with a reasonably small number of function evaluations.

Our experience with the general continuation method and with continuation
methods for nonlinear least squares leads us to believe the nonlinear least square
problems are inherently more difficult. Better use of the natural scaling in the
first n variables may lead to updates better able to handle such ill-conditioned
problems ([2]).

The method holds promise for parametrized nonlinear least squares
problems where the parameter occurs naturally. Results concerning this will be

reported elsewhere.
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=9 NEQV  NEV
(1.0, 8.0, 4.0, 4,412) 672 3324
(1.0, 8.0, 8.0, 1.0) 758 s
(1.0, 8.0, 1.0, 4.412) 263 1464
(1.0, 8.0, 4.0, 1.0) 583 1980

Table 4. 1: Results for function (4.1).

ﬁ NEQV NEV
(45.0, 2.0, 2.5, 1.5, .9) 197 1008
(41.0, .8, 1.4, 1.8, 1.0) 307 1463
(45.0, 2.0, 2.1, 2.0, 0.9) 197 952
(45.0, 2.5, 1.7, 1.0, 1.0) 405 2051
(35.0, 2.5, 1.7, 1.0, 1.0) 381 1764
(42.0, 0.8, 1.8, 3.15, 1.0) 977 5054

Table 4.2: Results for function (4.2).



