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A DERIVATIVE-FREE ARC CONTINUATION METHOD
AND A BIFURCATION TECHNIQUE

by

Ralph Baker Kearfott

ABSTRACT

Algorithms and comparison results for a derivative-free predictor-
corrector method for following arcs of H(x,t) = 9, where H : R x [0,1] — R
is smooth, are given. The method uses a least-change secant update for H',
adaptive controlled predictor stepsize, and Powell's indexing procedure to pre-
serve linear independence in the updates. Considerable savings in numbers of
theoretical function calls are observed over high order methods requiring
explicit H'. The framework of a promising technique for handling general bifur-

cation problems is presented.

key words: arc continuation, quasi-Newton methods, least change secant up-
dates, Brouwer degree, numerical computation, nonlinear algebraic systems,

Powell's method.

1. Introduction

An approach to the numerical analysis of nonlinear systems in Rn is to study
arcs of H(x,t) = g, where H:R" X [0,1] — R" is smooth (cf. e.g., [2], Pp.
39-48). This technique is used, for example, to study nonlinear eigenvalue
problems and to solve algebraic systems for which Newton's method is not glo-
bally convergent. The original such methods, referred to as the '"Davidenko' or

lcontinuous Newton'' methods, have been improved. Present solution techniques

involve integrating the initial value problem:

0
(1) H'(y(s))y'(s) =6, ly'(s)ll =1, vy(0) =y

where H' isthe n by n + 1 Jacobi matrix of H and y'(s) is the component-
wise derivative of y = (x,t) ¢ RIH—1 relative to arclength s.

The integration may be effected by high-order methods [16] or by
predictor-corrector' techniques (e.g., [13], [4], [5], [14]). In the latter, a

n+l

direction bO ¢ R is found té approximately satisfy H'(yo)b0 = g, and the
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predicted value vy( 50) is set to:
0 0
(2) z0 =y + o‘ob .
Corrections to z0 are made by applying Newton's method to the system:

H(z)

(3) G(z) = =9.
0z - 2°)

Note that this corrects zo in a hyperplane perpendicular to the step bO (cf.
[4]). The entire process is repeated to obtain sequences yi, bi, zi, and 6i.
The length 61+1 can be chosen according to the angle between bi—1 and bi
([14]), Dbut in any case must be such that both the algorithm functions efficiently
and the corrector iterations are stable.

Disadvantages of such arc continuation methods include the necessity of
computing H' several times per predictor-corrector step. Also, new
derivative-free techniques to handle multiple bifurcations (i.e., to pass points
y, H(y) = ¢ where the null space of H'(y) is of dimension greater than 1) are
desirable.

Simplicial methods (cf. [2]) are derivative-free and have been applied to
nonlinear bifurcation (see [8] and references therein). However, difficulties
remain in the interplay between the triangulation, mesh, tracing of bifurcation
branches, and the proximity of approximate solution arcs to true ones.

The purpose of this paper is to present a derivative-free arc continuation
algorithm modelled on the predictor-corrector approach. In Section 2 the arc
continuation algorithm is presented and explained. In Section 3 we give some
numerical comparisons. In Section 4 a derivative-free method for bifurcation
problems is presented.

It should be mentioned that Kurt Georg has independently developed similar
derivative-free path-following algorithms, to appear in the SIAM Journal on

Scientific and Statistical Computing [7] and in these proceedings [6]. Georg also

gives a method of handling odd-order bifurcation points. Specific techniques
from those methods and the method given below may be merged to effect

improvements.

2. The Algorithm

The algorithm follows the general pattern outlined above and in [14].
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The techniques herein may be applied to a variety of settings. For explan-

atory purposes, however, we assume H is of the form:
(4) H(z) = H(x,t) =t £(x) + (1 - t) g(x)

where z = (x,t) ¢ Rn X R, f: R" = Rn, and g : Rn - Rn. We also assume
that a root xo; g(xo) = § is known; the object is to find roots of F by following
(possibly bifurcating) arcs of H(z) = 9 from (xO, 0) tothe t=1 hyperplane.

The main modifications of the general scheme ([14] and above) are: (1) use
of a least-change secant update to M [3] instead of complete evaluation of B
(2) use of Powell's indexing ([15], pp. 133-138) to assure accuracy in H'; and
(3) special choice and adjustment of the stepsize to assure stability and accurate
H'. The least-change update is given in Algorithm 2.1, Step 8, and is docu-
mented in [3], while the Powell indexing procedure is given in Algorithm 2.2
(infra) and is documented in [[15].

Several parameters in Algorithm 2.1 are chosen to control the inner itera-
tion and stepsize. These include the initial predictor stepsize 50, the maximum
allowable predictor step 6max’ the criterion <, for doubling the stepsize, and
the criterion <4 ff)r ha:lving the stepsize. As in [4], .0 < .Cd < c, < 1, where
6, ~ 25, if B e sty c;p but o, ~6/2 if b' o bi-l < cqr (I all tests,
the algorithm functioned well with cq = - 95 and e, = 99 &)

Additional parameters include the predictor function magnitude tolerance
56, the maximum number of inner iterations Ni’ the singular matrix indicator
8mat" the inner iteration convergence criterion ey, the t =1 convergence
criterion & the relative stepsize for finite differences A, and the eigenvalue
criterion R Upon taking a predictor step: z ~— y + éb (Steps 5-6 of Algorithm

2.1), 6 is halved and z is revised if:

(5) IH(z) ”(n+l)1/2 /I1H M & €y

where | . ”F is the Frobenius norm. If the number of inner iterations between

successive predictor steps exceeds Ni +n+ 1, H' is reinitialized using finite
differences, ¢ is halved, and the initial predictor step is revised. In solving
(3) during the inner iteration, it is necessary to solve G'X = -G repeatedly; if,
after normalizing G', a maximum Gaussian elimination pivot element of

magnitude less than € is found in partial pivoting, G' is considered singu-

at
lar. In that case, the technique in Section 4 can be used to continue. The

1/

2
inner iteration is terminated when ITHI(n + 1) / I H ”F < Ey , whereas
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1 = _ ) i
. Il It -1 < & The additional

parameter €, is used to determine when eigenvalues of I—I'tH' are approximately

outer iteration is terminated when [y

equal to 0; this will be explained in Section 4. MZ is an estimate of the maxi-

mum magnitude of any point on the arc.

2.1 Algorithm

1
0. Input the dimension n, the function H : Rn+ — Rn, 6., O » C.,

Cd’ 8 i’ "mat t
1. Set y — yo; compute H < H(y) and compute H' < H'(y) using finite

e, N, & s €, €, A, € ,and M .
y e z

differences with stepsize |yl A; initialize the Powell vectors:
dt — el, i=1,...,n+l, where e' is the i-th coordinate vector in
i
Rn+ , and w = l, i=1,...,041; set flag f1 ~— 1. (fl =1 indicates

H' has just been initialized.)
2. Initialize b so that H'b =g . (cf. [4].)

3. (Initialization of the stepsize and counter for outer iterations) ¢§ «— 60 5
nit — 1.
4. (Initialization of the counter for inner iterations) ninit «— 1.
5. (Take predictor step) s <« gb; zo ~—~y+s; z+— zO; Hold = H.
6. H -« H(z).
7. (Halve predictor step if new H value is too large in magnitude)
If [HI(n + 1)1/2/ I1H' "F > 86 , do the following:
(a) H - Hold 2
(b) 6~ o/2.

(c) Return to Step 4.
Otherwise, continue.
8. Make a 'least change'' (Broyden) update to H':

H' <« H' + (H - Hq° H's)st/llsllZ :

1d
9. (Powell's checking procedure applied to the predictor step)

(2) Compute the inner products: a, = (s/1llsll) e dl, it=1,...,n04l.

(b) If w, >2(n +1) and Zlall < 1 do (i)-(vi); otherwise, continue to

1
Step 9(c). (Here, a special correction update is made to H' if
necessary.)
(i) s <—Adl; zZ <~z +8.
(ii) Hold — H; H -~ H(z) . . ,

- H's)s /sl .

(ili) H' — H' + (H - H_,

(iv) a;~— (s/lsll) e d, i=1,...,n+l
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(v) H«Hold; zZ<+— 2z -5,
(vi) Proceed to Step 21.
Steps 10-23 involve refinement of the Predictor step (i.e., inner iteration).
(c) Update the Powell indices w, and di, i=1,. .,n+l.
10. (Reinitialization if maximum number of inner iterations has been
exceeded) If ninit> Ni +n+ 1, do Step 11; otherwise, continue to
Step 12.
1L, (Reinitialization)
(a) 6+ ¢/2.
(b) H — H(y) .
(c) In.itiali'ze the Powell indices and Powell vectors: e 1,
dl<— el, 1=y 00,0l
(d) Set H' ~— H'(y), where H'(y) is computed using finite differences.
(e) Set the initialization indicator flag : fl -~ 1.
(f) Return to Step 4.
12. (Storage of convell‘sznce criteria) T 'sn+1 13
T, IHI(n + 1) /”H'”F-

13. Compute a new corrector step: s « -(G') "G, where

H
G = and G' =
bt(z - zo))

o
bt
14, Ifa singular G' is detected in Step 13 (cf. the explanation of £mat
above) then do the following:
(2) (Reinitialize if the singularity is possibly due to the update
pProcess) If fl =0, goto Step 11; otherwise, continue to (b).
(b) Compute and store direction vectors b,y, 6, and nit via
Algorithm 4, 1,
(c) Retrieve a direction vector b,y,6 and nit via Algorithm 4. 2,
(d) " nit — nit + 1,
(e) Go to Step 4.
Otherwise, continue.
15. (Execute Powell's special step if independence is not maintained)
If @ >2(n+1) and 2 lall <1, goto step 9(b); otherwise,
continue to Step 16,
16. (Termination of inner iteration if convergence has been achieved)

If T, < gy and 1 < |z [/10 or ninit =1, goto Step 24;

1 n+l



L7,

18.
19.
20.

21.

22.
23
24.

25

26.

27.
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otherwise, continue. (Convergence inthe t variable is tested
separately in case of poor scaling. )

(Reinitialize if the ratio of magnitudes of the corrector step to the
predictor step is too large) If [s|/ 6> 2(1 - C<Zi)/cd’ go to Step 11;
otherwise, continue.

a, = (s/lsl) o d', i+1,...,ntl.

(Take the corrector step) z «~ z +s; H — H; H «— H(z).

old
(Make a Broyden update as in Step 8 and reset initialization indicator
flag)

(a) H' - H' + (H - HO - H'S)st/ IISIIZ.

(b) £, — o.

1d

Update the Powell indices w; and the Powell vectors di,
i=1,...,n+l via Algorithm 2. 2.

(Advance counter for inner iterations) ninit « ninit + 1.
(Do another inner iteration) Return to Step 10.

(Reset initialization flag in case no inner iterations were necessary)

fl == 0y

The remaining steps consider possible reasons for ending the outer
iterations.

(Divergence or a return to the t = 0 hyperplane) If B oad <0 or if

z > MZ, then do the following:

(2) Print an appropriate message.

(b) If there are no more bifurcation branches to be considered, then
stop; otherwise, continue to step (c).

(c) Retrieve a vector b, y, §, and nit via Algorithm 4. 2.

(d) nit < nit + I; go to Step 4.

(Termination if the t = 1 hyperplane has been successfully reached)

If |z . -1]<eg

. do the following:

n+l

(a2) Store z.

(b) If there are no more bifurcation branches to be considered, then
stop; otherwise, continue to Step (c).

(c) Retrieve a vector b, y, §, and nit via Algorithm 4. 2.

(d) nit < nit + 1; go to Step 4. I

(Interpolation if the t = 1 hyperplane has been passed) If z =1,

n+l
do the following:

(2) Find the point q = (ql, EPIRRE ,qn+l) on the line connecting y and
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29.

30.
3L,
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z such that g = 1.
n+l 0 nyl

(b)y<—q;s-—y-z;z-—y;z<—z;b<—e ;5 H < H(y).
(¢) (Refinement of the interpolation at the t = 1 hyperplane by inner

iteration) Go to Step 8.
In the remaining steps, § is adjusted and a new b is computed for
further outer iteration.

~— b; -— = - s ~— 2z,
b 14 b—(z-y)/llz-yl; y—=z
(Adjusting the stepsize according to the angle between the previous
and present direction)

() If bo b >c,, set g- 26.
o i

1d
(b) If 6> ¢ , set §— §
max m
(c) If bo bold < <y
(Increment counter for number of outer iterations) nit «— nit + 1.

ax
set §-— §/2 .

(Do another outer iteration) Go to Step 4.

The following algorithm, given and explained in [15], pp. 133-138, is for

keeping track of the directions in which generalized secant updates are made.

It is repeated here for convenience.

Algorithm 2.2 (Powell's indexing)

0.

g ok W

Input the vectors s and dl, i=1,...,n+l and the scalars wi and
a; i=1,...,n+l from Algorithm 2. 1. Kk
2
Set m equal to the smallest k: 1 <k <n +1 suchthat = a, > 1/4.
=1
wj—wj+lforj:1tom—l. :
wj‘—wj_'_l-l-l for j=m to n.
-~ 1.
“nt1 m i i-1 i
d1 —d; d -— d for i =2 to m; d — d , for
new new new

i=1 to m.

i =2 to m; a; < a i=1 to m,

a —a_; a. — @y s s
1, new m i, new i-1 i, new

Set r‘—al and Ui«—O, for i =1 to n + 1.

Repeat the following in sequence for i =2 to n + 1:
2.1y 2
(a2) denom « (r(r + ai)) / .
(b) For j=1 to n+1:
. i-1
(i) 0.~ 0. + a. 2
§ - E=d
(i) at-1 < (rd} - a;0,)/denom.

C - F 4+ @,
(c) o]
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5. @ s fya].

10. Return to Algorithm 2. 1.

3. Numerical Results

Introduction of the Broyden update with special Powell steps, the choice of
predictor direction, and special control of predictor and corrector step lengths
have these ends: (1) provision of an arc-continuation algorithm applicable where
derivatives are difficult to obtain; (2) provision of a more efficient algorithm;
and (3) provision of a more reliable algorithm. To test the achievement of these
ends, we have made comparisons on the following four problems used by Watson

in [.12]: -

(1) fk(x) :xk—(l/Zn)(E x3+k), k=1 to n;
i=1
k+1 3
(2) f (%) =.01( = x.+1), k=1 to n;
k ; i
i=k-1
n
(3) f (x) =exp (cos (k £ x.)), k=1 to n;
k i
k=1
n n
(4) fl(x) =% - (i1:[1 X - 1), fj(x) = Xj - (i?l % +xj -(n+1)), j=2 to n.

In all cases, the homotopy used was H(x,t) = (1 - t)x + t(x - F(x)), where
F(x) = (fl(x), fZ(X)’ Cens fn(x)) -and the object was to find fixed points of F.

The results for these functions are presented in Tables 1 to 4, respectively.
In each case, the dimension, the number of function evaluations, the number of
inner iterations, and the number of function evaluations per inner iteration are
given in columns 1 through 4. ''Equivalent'' function evaluations, given in the
fifth column, are computed for Watson's test runs by multiplying the number of
Jacobi matrix evaluations Watson's algorithm required by the dimension. The
ratio of equivalent function evaluations to function evaluations is given in the last
column.

Double precision was used in the Fortran program on a Honeywell 68/80
= o1, ci:.99, and c, =.95. The

0 d
maximum predictor steplength 6max was not limited except in the fourth pro-

(36 bit word length). In all cases, §

blem, for n =10, n =20, n =25 and n =45. This was necessary since H'
is ill-conditioned in the fourth problem near t = 1.
In all results listed, the fixed point of F was found to at least 12 signifi-

cant digits.
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Except for the extremely nonlinear function (Table 3) and except for certain
runs with the ill-conditioned function (Table 4), the derivative-free method
showed a definite advantage. In many cases, the total number of function evalua-
tions for an outer iteration was less than that required for a single Jacobi matrix
evaluation. Furthermore, roundoff and truncation possibly accumulate in
Watson's direct high-order scheme, but such errors are corrected in general
predictor-corrector methods.

It should be pointed out that it is often possible to compute an n by n +1
Jacobi matrix with less than the equivalent of n evaluations of H. For this
reason, our method of comparison would be most valid for complicated functions
and functions which are difficult to encode.

In this preliminary version, G' was not updated directly; hence,

(n + 1)3 were required per inner iteration to solve the algebraic system

given in (3).

n eval. nit eval. /nit eq.eval. eq.eval. /eval.
10 32 4 8. 500 15.6
20 46 5 9.2 800 17.4
30 57 5 11.4 1020 17.9
40 67 5 13. 4 1840 275
50 76 5 15.2 1800 237
60 86 5 17.2 2280 26,5
70 95 5 19. 3500 36.8
80 105 5 21. 4320 41.1
90 114 5 22.8 5040 44,2

100 132 6 2.1, 3400 25, 8

n
Table 1. f (x) =x_ - (1/2n)( Z x_3 +k), k=1 to n.
k k i=1 *
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n eval. nit eval. /nit eq. eval. eq. eval. /eval.
10 52 4 L3, 360 6.9
20 57 4 14.3 720 12.86
30 72 4 18. 1080 15
40 82 4 20.5 1440 17.6
50 89 4 22,3 1800 20.2
60 99 4 24.8 2160 21.8
70 109 4 27.3 2520 23.1
80 119 4 29.8 2880 24.2
90 129 4 32.3 3240 25.1

100 139 4 34.8 3600 25.9
k+1 3
Table 2. fk(x) =, 01(. z x; +1), k=1 to n.
i=k-1
n eval. nit eval. /nit eq. eval, eq.eval. /eval.
2 7l 7 10. 88 1.2
3 536 32 16.8 663 1.2
4 840 56 15, 892 1.1
5 1485 93 16. 2565 1.7
6 1787 117 15.3 7272 4.1
7 3039 183 16.6 13860 4.6
8 4849 294 16. 5 23792 4.9
9 5950 371 16. 33210 5.6
10 8078 476 17. 46440 5.7
n

Table 3. fk(x) = exp (cos (k = Xi))’ k=1 to n.
i=1
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n eval. nit eval. /nit eq. eval. eq. eval. /eval.
5 115 6 19.2 260 2:3
103 451 38 11./8 740 1.6
15 424 14 30.3 1455 3.4
20% 1320 62 19. 4 1460 159§
25% 1371 67 20. 5 2025 1.5
30 1000 17 58.8 3240 3.2
35 898 17 52.8 4235 4.7
40 851 16 532 4840 5. T
45% 3419 370 9. 2 5535 1.6
50 897 17 52..8 6450 7.2
n
Table 4. fl(x) =x - (I x, - 1),

=]

f(x) =x, - (2 xi+xj—(n+1)), j=2 to n.
i=1

Special parameters were used for the starred dimensions

(see text).

4. Bifurcation

Corrector iteration in Algorithm 2.1 fails when H' becomes illconditioned

or singular, i.e., when the null space of H! effectively has dimension greater

b3

than 1. Indeed, at such (and only such) points y*, H(y ) = 9, the manifold
structure of H—l(o) may break down, and two or more arcs of H~1(0) may
intersect.

H.B. Keller [13] has proposed several procedures for following all such
arcs emanating from y*. However, these involve evaluation of second partial
derivatives of H or other drawbacks. Here, we outline a different general
technique which will always work in theory and which can be expected to function
reasonably well when the effective dimension of the null space of H' is 5 or
less.

Suppose that the solution arcs {y(s)}= Rn.l_l of H(y) = § are smooth
except at bifurcation points y*. It can then be shown that all such arcs inter-
secting at y* must be tangent to the tangent space II to y::< generated by the

null space of H'(Y>'<)- Lk {Zl, ZZ, TR Zk} is a basis for the null space of H'(Y':I:)

5 k
and §> 0, consider Hdz{y +v |v= 3 u.zl, -6§Qi<_6}. For §

izl *
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sufficiently small, the local minimum points {ml, mz, ey mq} of [[H[ | e8I
correspond to points on solution curves bifurcating from yﬁt. Thus, predictor

directions for such curves at yh are given by:
B i g i 3% .
(6) b =(m" -y )/Im -y I, izl te q.

When k <5, finding the rni involves searching 2k cubes of dimension
4 or less. That can possibly be done by using numerical computation of the
topological degree and a generalized x:ﬂethod of bisection to find roots of
grad (IHIl) within the low dimensional parameter space [9], [10], [11]. This
approach will find all such rni since the Kronecker index of any continuous
grad (¢) # 0 at minima of ¢, where its sign depends upon the dimension k
of the space. Furthermore, grad (IHI) need not be approximated with high
accuracy for-proper functioning of the bisection algorithm.

Algorithm 4. 1 uses the above approach. It consists of two phases:
(1) computation of an orthonormal basis for the null space of H'(y*); and
(2) computation of the direction vectors bi in (5) and their storage, along with

other information necessary to continue Algorithm 2.1 from yqz.

The first phase may be executed by computing the eigenvalues and eigen-

t i 1
vectors of the symmetric matrix H' H'. First, the eigenvectors {ul}?jl and
1 ik N
corresponding eigenvalues {Ai}?_-l—l are computed; the basis {vl}i—l for the

tangent hyperplane is then obtained by selecting those u' for which Ixil < g, -
Three interrelated parameters from Algorithm 2.1 govern the selection of

{Vl}F H) s & » and g . If all bifurcation points are to be found, ¢
i=] mat e

max i mat
must be sufficiently large, since the iterates y cannot be expected to be closer
than § N /2 to bifurcation points; likewise, €, must be sufficiently large to
max

detect the approximate null space. On the other hand, if € and e, are too

at
large, false directions may be given or Algorithm 4.1 will be invoked repeatedly
in the vicinity of a bifurcation point, reducing efficiency or causing redundant

tracing of a single arc. In such cases, all three of 6m s €

and & ma
ax’ “mat’ e y

need to be reduced.

The second phase can be executed by computation of the topological degree
and a generalized method of bisection. (In the case k = 1, H' is not really
singular; b «— ivl without further computation.) A good bisection method is
documented in [10]; details will not be given here. Search of the (k-1)-

dimensional parallelopiped:
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y .k
(7) O ={ytov + 2 o, -6<a, <6}
6, i e B =
J_
i

is begun by computing the Brouwer degree of grad (IHI) at g relative to a

canonically shaped simplex S containing II . ; if this degree is 0, no relative

6, j‘
minima exist on H(S i Otherwise, "Whitney' bisection (ibid. ) is applied to S,

each iteration of Which yields simplexes with the same shape as S but with
diameters equal to Precisely half that of S, A sufficient number of such itera.
tions is done to reduce the diameter, nominally, to . 15, while all simplexes
having non-zero Brouwer degree are considered. The mi are set equal to the
resulting barycenters.

Computing the Brouwer degree requires either choice of a heuristic
parameter or coding of a bound on the modulus of continuity of the components of
grad (IH|l) whenever k > 2.

When an m:.L and bi are computed, y*, bi, nit, and ¢§' are stored in a
stack. Here, nit, Y, and § are from Algorithm 2.1, while 6' =206 We
need ¢' so large that the next iteration of Algorithm 2.1 will not encounter an
effectively singular H', but small enough so that the arc can be followed. (The

factor of 20 was found to be satisfactory in test cases.)

Algorithm 4. 1
0. Input n, H', y; nit, ¢, b, and €,
t
1. Compute the n + 1 by n + 1 matrix H''Hg'.
2. Compute the eigenvalues and orthonormal set of eigenvectors of H'tH'.
i,k
3. Store those eigenvectors {vl}_ 1 whose corresponding eigenvalues
1.3
A. satisfy [A.| < g .
i i e
4. If k=1, do the following:
(a) 6+ 205.
1 1 . 1
(b) If v’ e b> -7, b+ v; otherwise, b « -y,
(We make this check to avoid going in the direction opposite to
that Algorithm 2.1 traversed to get to y:'(.)
(c) Store 4, mnit, y, and b in stack 2 .
(d) Return to Algorithm 2. 1.
5. If k>1, do Steps 6-9 for i=1 to k and sgn = -1 and sgn = 1;

6. p~— sgn. v,
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7. Set WJ<—VJ, j=1to i-1 and set WJ_1<—VJ, j=1i+1 to k.

8. Using X = (xl,xz, i ’Xk—l)’ find roots of ¢(X) = grad (IIH(ZX) ),

k-1 j
where =y + + X W
Zy =Y + 6P 2
JEl
9. S L Loy (x3, x3 by th ts found
. Suppose (xl,xz,...,xk_1 5% %40 Xl'XZ""’Xk-l) are the roots foun
in Step 8. Define:
k-1 5 k-1 0
Z £ j L 3
b=(6p+2xjw)/[lé‘p+>3 xjwll, =1 fo g. If b b > -u%
j=1 j=1

store 204, nit, y, and bl in stack ,J, for 1 =1 to q.
10. Return to Algorithm 2. 1.
The stack &f is expanded whenever bifurcation points are encountered in
Algorithm 2.1. Algorithm 2.1 follows an arc until it is determined to diverge,
terminate at t = 1, or terminate at t = 0. Upon such termination, the algorithm

continues with values of §, nit, y, and b retrieved from ef via the following:

Algorithm 4.2 (Retrieval)
0. Let of be the stack of 6, nit, y, and b.
1. If of is empty, stop.
Retrieve ¢, nit, y, and b from o .
z <y +b.
Initialize the Powell indices: w; 1, di “— ei, i=1 to n.
H' ~— H'(z), where H' is computed using finite differences.
H - H(¥).
Return to Algorithm 2.1 .

PC- NEEET S (VRN ]

Actual detection of the bifurcation points may be effected by monitoring
any of several determinants. For example, the determinants of G(z) (formula
3) could be averaged over sequences of 2n + 3 iterations to obtain approximate
values. Alternatively, the reciprocals of the condition numbers of H' (i.e.,
the ratios of the smallest to largest singular values of H') could be computed
directly. The condition number of H' may even be approximated in o(nz)
operations [1].

Detailed algorithms for approximating and refining even-order bifurcation
points, in addition to specifics on finding the m(i) in the general tangent hyper-
plane setting, appear in [12]. There results of several numerical experiments

involving bifurcation are given. These results look promising with regard to

the handling of arbitrary types of bifurcation points, even in cases where the
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arcs intersect tangentially; it is feasible to apply the techniques to various
classes of problems. However, the algorithms in [12] are subject to improve-
ment; also, additional tests on realistic problems and comparisons with other
methods are needed to determine the practical value of each of the individual

techniques.
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