
Advice for Mathematically Rigorous Bounds on

Optima of Linear Programs

Jared T. Guilbeau
jtg7268@louisiana.edu

Md. I. Hossain:
mhh9786@louisiana.edu

S. D. Karhbet:
sdk6173@louisiana.edu

R. B. Kearfott:
rbk@louisiana.edu

T. S. Sanusi:
tss9743@louisiana.edu

Lihong Zhao:
lxz6134@louisiana.edu

University of Louisiana, P.O. Box 4-1010, Lafayette,
Louisiana 70504-1010 USA

October 30, 2016

Abstract

We discuss problems we have encountered when implementing algo-
rithms and formulas for computing mathematically rigorous bounds on
the optima of linear programs. The rigorous bounds are based on a 2004
idea of Neumaier and Shcherbina. In a note in the Journal of Global Op-
timization, we pointed out two minor, correctable but consequential and
hard to find errors in the original 2004 article. Here, we discuss separate
problems implementers may make if they do not take care when interpret-
ing results that are supposed to be mathematically rigorous, or when they
reformulate particular problems. Along these lines, we present a catalog of
formulas, derived using the Neumaier / Shcherbina idea, from which prac-
titioners may choose when implementing mathematically rigorous bound
computations for specific classes of linear programs.

This report is meant to be a companion to [4], where we corrected certain
hard-to-find minor but consequential errors in the seminal paper [5] by Neumaier
and Shcherbina. We first review the corrected formulas from the Neumaier and
Shcherbina. We then point out items of caution for implementers. Finally, we
give a catalog of variations of the original Neumaier / Shcherbina formulas.
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1 The Neumaier / Shcherbina Formulas

The first formula in [5] is

Primal:


minimize cTx, c and x ∈ Rn

subject to Aex = be, Ae ∈ Rme×n, be ∈ Rme ,
0 ≤ x.

Dual:

{
maximize bTe y,

subject to AT
e y ≤ c.

(1)

The most general formula in [5] is is

Primal:

{
minimize cTx, c and x ∈ Rn

subject to b ≤ Ax ≤ b, A ∈ Rm×n, b, b ∈ Rm.

Dual:


maximize bT y − bT z,
subject to AT (y − z) = c,

y ≥ 0 and z ≥ 0.

(2)

The general procedure for computing mathematically rigorous bounds is the
following:

1. Assume we have bounds x = [x, x] on the optimal solution of the primal.

2. Use an LP solver to compute approximate Lagrange multipliers λ = λb−λb
for (2), where λb ≈ y and λb ≈ z

3. Compute interval bounds on the dual residual r = [r, r], where the dual
residual is ATλ− c.

4. Take the lower bound on the solution to the primal of (2) to be

µ = inf(λT b− rTx) (Formula (10) in [5]), (3)

For Formulation (1), we may use

cTx ≥ yT b−max{r, 0}Tx, (4)

in place of (3).

2 Notes of Caution

Here, we point out some errors implementers can make.
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2.1 Misinterpretation of Results

The underlying idea is to obtain a bound on the optimum of a linear program (a
lower bound if minimization and an upper bound if maximization) that is sharp
if the solver returns a good approximation, but is a bound regardless of what
the solver returns. Without care, this can easily lead to incorrect conclusions.
Here, we outline errors implementers can easily make.

Example 2.1 Consider

maximize 2x1 + 3x2

subject to x1 + x2 = 1,
x1 − x2 = 2,

0 ≤ x1, x2 ≤ 2.

A mathematically rigorous lower bound on the optimum can, in principle, be
computed using Formula (16) that we present in §3.6. However, this particular
problem is clearly infeasible, and, indeed, many solvers will return with an error
flag set. Nonetheless, in such problems, a solver may return finite values for
the Lagrange multipliers. Suppose such a solver returns λub = (0,−1700)T ,
λlb = (−1700, 0)T , λe = (0,−1700)T . Applying (16) then gives an upper bound
on an optimum of ν = 0.004.

This example illustrates that, in these computations, the upper bound ν that
is computed is a mathematically rigorous upper bound on the optimum
only provided an optimum exists. However, separate, related computa-
tions, as in [5, §4] can sometimes be used to prove a problem infeasible.

2.2 Pitfalls Associated with Particular Forms

In formulation (1), implicit upper bounds x are utilized to compute the lower
bound µ on the primal optimum, while both implicit lower bounds x and x are
utilized in formulation (2). However, such bounds must be interpreted carefully,
as the following example shows.

Example 2.2 Consider formulation (1) with c = (−1, 10−10)T , Ae = (10−10, 1)
and be = 1.

Solving Example 2.2 using the Matlab release 2014a optimization toolbox func-
tion linprog with lower bounds 0 on x and no upper bounds gives x ≈ (1010, 0)T ,
and an approximate dual variable is computed as y ≈ −1010. Using INTLAB
[7, 8] Version 8, it is proven that r < 0, so the implicit upper bounds on x
are irrelevant, that is, the point linprog returns is exactly feasible1, and For-
mula (4) gives a correct lower bound (given here approximately) of about −1010.
However, if y is infeasible by a distance of, say 10−8, and upper bounds of 2 or
so are assumed for the components x, an incorrect lower bound will be given.
Moreover, the incorrect lower bound would still be close to the optimum, and

1This is understandable, since an interior point method was used.
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the error may be undetected from examining results, until puzzling conclusions
arise from, say, a branch and bound algorithm into which the computation is
embedded.

Furthermore, in an interval branch and bound algorithm, typically we form
a linear relaxation over a box defined by known bounds on x. If an interval
branch and bound algorithm is to compute a lower bound on an objective over
the feasible set in, say, x = ([0, 2], [0, 2]T ), the relaxation of the problem is of the
form (1), and the box x is included only in computation of the lower bound, and
not explicitly in the problem, a pessimistic lower bound may be computed, a
bound may not be available because the problem without the bound constraints
is unbounded, or, if y happens to be wildly infeasible, an incorrect lower bound
on the objective over x could even be computed. Indeed, if we include the
upper bound constraints x1 ≤ 2, x2 ≤ 2 explicitly in the formulation of the
linear program in Example 2.2, linprog returns an optimum of approximately
cTx ≈ −2, and a modification of Formula (4) gives a mathematically rigorous
lower bound close to −2.

Our point here is that, for mathematical rigor, guessed bounds on
variables should not be heuristically provided when the original prob-
lem had none.

3 A Collection of Formulas

As we illustrated in §2, the forms may not be appropriate for particular situa-
tions. Furthermore, the input forms corresponding to popular software packages
for solution of linear programs, such as the Matlab optimization toolbox or com-
mon C++ or Fortran libraries, may not be in one of these two forms, requiring
conversion to interface the output with the formulas; this can be an error-prone
process. Indeed, the input forms in such packages and libraries may also be
different from the internal representations used in the actual computations, and
incorporating rigorous lower bound computation directly into the solver, using
the internal representation directly, is probably the most accurate and least
error-prone. It is for this reason we include a catalog of formulas for specific
situations.

We use consistent notation throughout this section.

3.1 Notation

Throughout, n is the number of primal variables, m is the number of primal
inequality constraints (if present), and me is the number of primal equality con-
straints (if present), so c ∈ Rn, x ∈ Rn, A ∈ Rm×n, Ae ∈ Rme×n. We will
call dual variables corresponding to primal inequality constraints y ∈ Rm, dual
variables corresponding to equality constraints ye ∈ Rme , dual variables corre-
sponding to lower bound constraints ylb ∈ Rn, and dual variables corresponding
to upper bound constraints yub ∈ Rn; we denote corresponding approximate
optimizing values returned by the solver for the dual variables by λ, λe, λlb,

4



and λub, and the nearest corresponding exactly optimizing dual variables λ∗,
λ∗e , λ∗lb, and λ∗ub. We use simply x to denote an approximate primal optimizer
returned by the solver (feasible or not) and x∗ to denote corresponding exactly
optimizing primal variables.

Throughout, we will use

v+ = max(v, 0) and v− = max(−v, 0), (5)

where v is any quantity (subscripted or not), and where it is understood com-
ponentwise if v is a vector.

If the primal is posed as a minimization problem, we denote the mathe-
matically rigorous lower bound on the primal optimum computed through our
formulas by µ. If the primal is posted as a maximization problem, it makes sense
to compute a mathematically rigorous upper bound on the optimum, which we
denote by ν.

3.2 General Techniques

In writing down the dual problems, we have used the simple technique in [2],
since it is general, easy to remember, and its use avoids errors.

In deriving the formulas for the general bounds, we use the general technique
exemplified by [5, Formulas (5) through (9)]. Namely, it is assumed approximate
values λ: (that is, λ, λe, λlb, and λub) for the dual variables have been returned,
and the primal objective coefficients c are written in terms of the dual constraint
residuals at λ:. These constraint residuals are then rigorously bounded with
either directed rounding or interval arithmetic, to obtain a lower bound on
the primal objective values. In [5, Formula (9)], this was straightforward under
implicitly assumed bounds on the primal solution x∗. Other primal formulations
considered here, such as when the dual contains inequality constraints, can be
handled with similar ease.

3.3 A General Form

We begin with the most complete formulation, corresponding to the most general
call in the Matlab optimization toolbox, namely:

[x,fval,exitflag,output,lambda] = linprog(c,A,b,Aeq,beq,lb,ub) (6)

Primal:


minimize cTx,

subject to Ax ≤ b,
Aex = be,

x ≤ x ≤ x.

Dual:


maximize [bT , xT , −xT , bTe ][yT , yTub, y

T
lb, y

T
e ]T

subject to AT y + yub − ylb +AT
e ye = c,

y, yub, ylb ≤ 0.

(7)
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Assuming an approximate dual solution (λ, λlb, λub, λe) and writing

c = ATλ+ λub − λlb +AT
e λe − r (8)

where r is the dual constraint residual, we obtain

cTx = [ATλ+ λub − λlb +AT
e λe − r]Tx

= [λTA+ λTub − λTlb + λTe Ae − rT ]x

= λTAx+ λTubx− λTlbx+ λTe Aex− rTx
∈ λT b + λTubx− λTlbx+ λTe be − rTx
⊂ λT b + λTe be + [λTub − λTlb − rT ]x,

where x = [x, x] and b = [inf(Ax), min(sup(Ax), b)]. Therefore,

cTx∗ ≥ µ := inf
{
λT b + λTe be + [λTub − λTlb − rT ]x

}
(9)

where r denotes a mathematically rigorous enclosure for r, such as can be
computed with interval arithmetic applied to the point equation (8).

If λ, λe, λlb, and λub are feasible, we may alternatively define µ as

λT min {sup(Ax), b}+ λTe be + λTubx− λTlbx− sup{rTx},

Note that no “guesses” need to be made for this problem, since bounds x are
explicitly given, and since the lower bound on b, although not given as part of
the primal constraints, is a mathematically rigorous one. Also, note that, since
the dual variables are constrained to be non-positive, the possibly pessimistic
lower bound inf(Ax) normally would have little effect on the lower bound for
cTx∗ if the dual variables are approximately feasible.

3.4 A Classical Standard Form

Primal problems of this form are commonly found in explanations of the basic
simplex method (such as we do in [1, §9.4]), and may also be the internal form
used in the computations in some simplex-method-based software. Furthermore,
there are numerous elementary explanations on how to convert linear programs
into this form.

Primal:


maximize cTx

subject to Aex = be,

x ≥ 0

Dual:

{
minimize bTe y,

subject to AT
e y ≥ c,

(10)

Note the usual convention in presentations of the basic simplex method is to
pose the primal as a maximization problem. In the context of maximization,
we compute an upper bound ν on the optimum objective value cTx∗.
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Suppose λe is an approximate optimizer of the dual, and

r = ATλe − c,

that is, c = ATλe − r. In this case, we must assume we have an implicit
upper bound x, such that x ≤ x and x∗ ≤ x, and we define x = [0, x]. We then
have

cTx = (ATλe − r)Tx = λTe Ax− rTx = λTe be − rTx
∈ λTe be − rTx.

(11)

Also,

rTx =

n∑
i=1

ri,+[0, xi]−
n∑

i=1

ri,−[0, xi]

≥ −
n∑

i=1

ri,−xi = −rT−x.
(12)

so (combining (11) and (12)) we have

cTx ≤ ν := λTe be + rT−x. (13)

If λe is feasible, this reduces to simply λTe be.
Also note the bound depends in general on the quantity x that is not ex-

plicitly part of the problem. We thus recommend this form be used primarily
when the solver returns feasible dual solutions λe, or when the λe returned by
the solver can be easily adjusted to be feasible. In those cases, ν is particularly
easy to compute as λTe be. If not, we encounter the pitfall of estimating x.

3.5 Modified Classical Standard Form

If we replace “maximize cTx” by “minimize cTx” in (10), we obtain the formu-
lation of [5, (2) and (3)], covered in [4].

3.6 Bounded Classical Standard Form

Here, we modify the classical standard form by inserting explicit bound con-
straints x ≤ x ≤ x. It is in this form that the problem is likely to occur in the
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bounding process in branch and bound algorithms. We obtain

Primal:


maximize cTx

subject to Aex = be,

x ≤ x ≤ x.

Dual:



minimize (xT ,−xT , bTe )

 yub
ylb
ye

 ,

subject to (I,−I, AT
e )

 yub
ylb
ye

 = c,

yub, ylb ≤ 0,

(14)

where I is the n by n identity matrix. Note that, besides adding an upper bound
x, we have slightly generalized the classical standard form by allowing x to be
an arbitrary value, possibly less than 0. Note also that this form can be easily
transformed into the classical standard form by well-publicized techniques.

Suppose (λTub, λ
T
lb, λ

T
e )T is an approximate dual optimizer, and define the

dual constraint residual r

r = (I,−I, AT
e )

 λub
λlb
λe

− c.
Solving this equation for c and substituting into cTx gives

cTx = [(λub,−λlb, ATλe)− r]Tx
= λTubx− λTlbx+ λTe Ax− rTx
= λTubx− λTlbx+ λTe be − rTx
= λTe be + (λTub − λTlb − rT )x

∈ λTe be + (λTub − λTlb − rT )x.

(15)

This gives us
cTx ≤ ν := sup(λTe be + (λTub − λTlb − rT )x) (16)

where r is a mathematically rigorous enclosure for r and x = [x, x].

3.7 Simple Form

This form corresponds to the simplest way the Matlab2 function linprog can
be invoked, namely,

x = linprog(c,A,b) (17)

2and also Octave [6, 3]
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Primal:

{
minimize cTx

subject to Ax ≤ b,

Dual:


maximize bT y

subject to AT y = c,
y ≤ 0.

(18)

Suppose λ is an approximate solution of the dual, so the dual constraint
residual at λ is

r = ATλ− c. (19)

If we proceed as in the previous lower bound derivations, we obtain cTx =
(AT y − r)Tx, and bounding this expression requires a priori bounds on the
primal variables x. Since the signs of the components of AT y − r are generally
not known in this case, both lower bounds and upper bounds x and x on the
optimal primal solution x∗ to (18) need to be known a priori, a pitfall. If such
bounds are known, define x = [x, x], to obtain

cTx = (AT y − r)Tx
∈ (AT y − r)Tx
≥ µ := inf((AT y − r)Tx). (20)

3.8 Bounded Simple Form

Here, the form (18) is modified by adding explicit bound constraints on the
primal variables x. We have

x = linprog(c,A,b,[],[],lb,ub) (21)

Primal:


minimize cTx

subject to Ax ≤ b,
x ≤ x ≤ x

Dual:



maximize
(
bT , xT ,−xT

) y
yub
ylb


subject to

(
AT , I,−I

) y
yub
ylb

 = c,

y ≤ 0, yub ≤ 0, ylb ≤ 0,

(22)

where I is the n by n identity matrix.
Proceeding as in the previous sections, the dual constraint residual is

r = ATλ+ λub − λlb − c, (23)
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and, setting x = [x, x], we may bound cTx by

cTx = (ATλ+ λub − λlb − r)Tx (24)

∈ (ATλ+ λub − λlb − r)Tx (25)

≥ µ := inf
[
(ATλ+ λub − λlb − r)Tx

]
. (26)

3.9 General Form Without Bound Constraints

This corresponds to e.g. the form

x = linprog(c,A,b,Aeq,beq)

in the Matlab optimization toolbox. We have

Primal:


minimize cTx,

subject to Ax ≤ b,
Aex = be,

Dual:


maximize bT y + bTe ye,

subject to AT y +AT
e ye = c,

y ≤ 0

(27)

In the primal, no bounds on x are assumed. Proceeding as in [5] and the
previous sections of this work, the dual constraint residual is

r = (AT , AT
e )

(
λ
λe

)
− c,

so

cTx =

(
(AT , AT

e )

(
λ
λe

)
− r
)T

x (28)

= λTAx+ λTe be − rTx
≥ µ := inf

{
(λTA− rT )x

}
+ λTe be,

where x = [x, x] represents independently obtained lower and upper bounds on
the optimal solution x∗. However, the bounds x and x are often not available.
For example, consider the LP

minimize −x1 − 2x2

subject to

(
1 −1
1 0

)(
x1
x2

)
≤
(

3
3

)
,(

1 2
2 4

)(
x1
x2

)
=

(
0
0

)
.

(29)

The minimum to (29) is 0, but the set of optimizing points is an unbounded ray;
a lower bound on the first coordinate and an upper bound on the second coordi-
nate of x are not obtainable, and any lower bound µ obtained from Formula (27)
could be incorrect or pessimistic.
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4 Summary and Recommendations

We have examined pitfalls of the formulas for mathematically rigorous bounds
on optima of linear programs proposed in [5], and have presented various related
alternative formulas. Which formula is employed depends on which LP solver is
being used and the context in which it is accessed. For example, if the LP solver
is being accessed from Matlab’s programming interface, one of the formulas in
§3.3 or §3.8 is appropriate, while use of the forms in §3.7 or §3.9 could lead to
incorrect results unless rigorous a priori bounds on the optimal solution of the
corresponding LP are known a priori.

When the classical simplex method is used and it is possible to modify the
code to embed computation of a rigorous bound, it may be more problematical,
since one is apt to find the form in §3.4 within the code, but an upper bound x
is not available. In such instances, it would be preferable to approach the task
from a higher level, if the original problem actually had bound constraints, as
in §3.6.

Fortunately, the forms with bounds, that is, the forms in §3.3, §3.6, and §3.8
are the ones most likely to be encountered in solving linear relaxations in branch
and bound algorithms for mixed integer linear programs and global non-convex
optimization.

Other forms can be derived as needed, according to the basic principles from
[5] and those illustrated in this work.
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