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Abstract. Certain cases in which the interval hull of a system of linear interval equations can
be computed inexpensively are outlined. We extend a proposed technique of Hansen and Rohn with
a formula that bounds the solution set of a system of equations whose coefficient matrix A = [A, A]
is an H-matrix; when A is centered about a diagonal matrix, these bounds are the smallest possible
(i.e. the bounds are then the solution hull). Hansen’s scheme also computes the solution hull when
the linear interval system Ax = b = [b, b] is such that A is inverse positive and b = −b 6= 0. Earlier
results of others also imply that, when A is an M-matrix and b ≥ 0,b ≤ 0 or 0 ∈ b, interval
Gaussian elimination (IGA) computes the hull. We also give a method of computing the solution
hull inexpensively in many instances when A is inverse positive, given an outer approximation such
as that obtained from IGA. Examples are used to compare these schemes under various conditions.
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1. Introduction. We assume familiarity with the elementary properties of in-
terval arithmetic; for an introduction, see [1, 5, 11, 14, 15]. Also, we will not attempt
to survey results on computation of the hull of the solution set of linear interval sys-
tems; the reader may wish to consult [14, Ch. 6] or Rohn’s recent review [17]. We
will, however, introduce our particular notation and some background facts used in
this article.

We will use boldface to denote intervals. We will use underscores to denote lower
bounds of intervals and overscores to denote upper bounds of intervals. Subscripts
will be used to denote components of vectors. For example, we may have:

x = (x1,x2, . . . ,xn)T ,

where xi = [xi, xi]. In general, vectors will be denoted by lower case letters, while ma-
trices will be denoted by upper case. For example, A =

{

[Ai,j , Ai,j ]
}n

i,j=1
will denote

an n by n interval matrix. We use IRn to denote the set of all n dimensional interval
vectors and IRn×n to denote the set of all n× n interval matrices. The quantity 〈x〉
will denote the mignitude of an interval, defined by 〈x〉 = min {|x| : x ∈ x}. Similarly,
the magnitude of an interval is defined as |x| = max {|x| : x ∈ x}.

The radius of an interval x will be denoted by rad(x) = (x − x)/2, and the
radius of an interval vector x or matrix A, denoted rad(x) or rad(A), will be defined
componentwise.

If v and w are n-dimensional interval vectors, then v > w means that the inequal-
ity is valid componentwise, i.e. vi > wi for i between 1 and n. Similar interpretation
is given to v ≥ w, v < w and v ≤ w. Inequalities of interval matrices M > N, etc.
are defined similarly.

If A ∈ IRn×n is a regular interval matrix, we define a matrix inverse of A by

A−1 = 2{A−1 : A ∈ A}.(1)
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That is, A−1 is the smallest interval matrix that contains the set {A−1 : A ∈ A}.
We call an interval matrix A inverse positive if A is regular and A−1 ≥ 0.
An n× n interval matrix A is called an M-matrix iff Aij ≤ 0 for all i 6= j, and

Au > 0 for some positive vector u ∈ Rn.
We use 〈A〉 to denote the comparison matrix of A, with entries

〈A〉ii = 〈Aii〉, 〈A〉ij = −|Aij | for i 6= j.

We call A an H-matrix iff its comparison matrix 〈A〉 is an M-matrix.
Now we state [14, Proposition 3.6.6]:
Proposition 1.1. (Kuttler [10]) Let A = [A, A] ∈ IRn×n. If A and A are

regular and A−1 ≥ 0, A
−1 ≥ 0, then A is regular and

A−1 = [A
−1

, A−1] ≥ 0.

It is known that every M-matrix is inverse positive. Thus, Proposition 1.1 can be
applied to M-matrices.

Suppose that A ∈ IRn×n is a regular interval matrix and b ∈ IRn. We refer to
the set

Σ(A,b) = {x ∈ Rn : Ax = b for some A ∈ A, b ∈ b}(2)

as the solution set of the interval linear system

Ax = b.(3)

In Neumaier [14] and elsewhere, it is shown that the hull AHb of (2), that is, the
smallest interval vector that contains Σ(A,b), obeys

AHb = 2{xD : |D| = I, inf(D(AxD − b)) = 0}.(4)

We will speak of the quantity AHb as the hull of the interval linear system (3), or
the solution hull of the interval linear system. In general, computation of the hull (4)
requires solution of the 2n equations

inf(D(AxD − b)) = 0,(5)

where D ranges over all D with |D| = I. In many special cases, however, not all 2n

vectors xD, (|D| = I) are needed. We give a method to compute the exact hull of
Equation (3) when A is centered about a diagonal matrix. We also consider how to
compute the hull of Equation (3) when A is inverse positive. Our results extend and
amplify results of Neumaier, Hansen and Rohn.

We state [14, Theorem 3.6.7] as follows.
Theorem 1.2. (Beeck [3]) Let A ∈ IRn×n be inverse positive. Then

AHb = [(A(1))−1b, (A(2))−1b] = [x, x]

where A(1), A(2) ∈ A are defined by

A(1)
ik = Aik if xk ≥ 0 and A(1)

ik = Aik otherwise,

A(2)
ik = Aik if xk ≤ 0 and A(2)

ik = Aik otherwise.
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In particular,

AHb = A−1b =











[A
−1

b, A−1b] if b ≥ 0,
[A−1b, A−1b] if 0 ∈ b,
[A−1b, A

−1
b] if b ≤ 0.

In [6], E. R. Hansen proposed a scheme to estimate the hull of a preconditioned
linear interval system. Suppose that

A = Ǎ + [−1, 1]rad(A) ∈ IRn×n

and b = [b, b] ∈ IRn. Consider the equation

Ax = b.(6)

Multiplying on the left by Ǎ−1, we obtain the preconditioned equation

Mx = r,(7)

where r = Ǎ−1b and M = Ǎ−1A = I + [−1, 1]|Ǎ−1| rad(A) = I + [−1, 1]Q is
centered about an identity matrix I, where Q = |Ǎ−1|rad(A) ≥ 0. As proposed in
[6], the scheme required solution of 2n systems of linear equations sharing the same
coefficient matrix. In [16], Rohn proposed and improvement that requires only a single
floating point matrix inversion1.

To unify the presentation, we present versions of Hansen’s and Rohn’s formulas
with modified hypotheses. In particular, in Hansen’s original theorem, it was assumed
that M was regular; this was assured by assuming M = [M, M ] = [I −Q, I + Q] was
diagonally dominant. In Rohn’s theorem, it was assumed that the spectral radius
ρ(Q) < 1. In contrast, in both results, we assume that M−1 ≥ 0. The condition
M−1 ≥ 0 implies ρ(Q) < 1, which in turn implies M is regular: Since Q ≥ 0,
the Perron–Frobenius theorem ([14, Theorem 3.2.2]) implies that there exists a real
nonnegative eigenvector x 6= 0 with Qx = ρ(Q)x. Since Mx = (I−Q)x = (1−ρ(Q))x,
x = (1 − ρ(Q))M−1x. From this, since x ≥ 0, x 6= 0 and M−1x ≥ 0, 1 − ρ(Q) > 0,
so ρ(Q) < 1. Combining this with [14, Proposition 4.1.1] then implies M is strongly
regular, and a fortiori, regular.

Thus restated, Hansen’s result is
Theorem 1.3. (Hansen [6]) Suppose M = [M, M ] of Equation (7) satisfies

M−1 ≥ 0.(8)

Let

s(i) =
{

ri for j = i
max{−rj , rj} for j 6= i; j = 1, . . . , n(9)

t(i) =
{

ri for j = i
min{rj ,−rj} for j 6= i; j = 1, . . . , n(10)

and

ci =
1

2(M−1)ii − 1
.(11)

1 with appropriate rounding-out to maintain rigor
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Then the hull of Equation (7) is

MHr = [x, x](12)

with

xi =
{

cieT
i M−1t(i) for xi ≥ 0

eT
i M−1t(i) for xi < 0

(13)

xi =
{

eT
i M−1s(i) for xi ≥ 0

cieT
i M−1s(i) for xi < 0

(14)

for i = 1, 2, . . . , n, where eT
i is the unit vector whose i-th coordinate is 1 and all of

whose other coordinates are 0.
Rohn’s result, with our hypothesis, is
Theorem 1.4. (Rohn [16]) As in Theorem 1.3, assume M is inverse positive.

Then the hull of Equation (7) is MHr = [x, x], where

xi = min{xi
˜

, cixi
˜
},

xi = max{x̃i, cix̃i},

where

xi
˜

= −x∗i + (M−1)ii(ř + |ř|)i

x̃i = x∗i + (M−1)ii(ř − |ř|)i

x∗i =
(

M−1(|ř|+ (r − r)/2)
)

i,

ci =
1

2(M−1)ii − 1
∈ (0, 1],

and ř, the midpoint vector, is that vector whose i-th component is (ri + ri)/2.
In [16], Rohn also proves some interesting comparisons when the scheme is used

to solve linear systems or invert interval matrices.

2. The theory. We extend the aforementioned techniques and results here.
Theorem 2.1. Suppose that A ∈ IRn×n and b ∈ IRn. Assume D is a real

diagonal matrix with Dii 6= 0 for i = 1, 2, . . . , n, M = D−1A, and r = D−1b. Then
the solution set of the system

Ax = b(15)

and the solution set of the preconditioned system

Mx = r(16)

are the same, i.e.

Σ(A,b) = Σ(M, r).(17)
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Proof. The proof rests on the fact that subdistributivity does not occur, since D
is diagonal. By the assumption on D, we have

D =











D11

D22
. . .

Dnn











.

Thus,

D−1 =











D11
−1

D22
−1

. . .
Dnn

−1











.

For any x ∈ Σ(A,b), there exists an A ∈ A and a b ∈ b such that

Ax = b.(18)

Multiplying both sides of the system (18) on the left by D−1, we obtain the system

D−1Ax = D−1b.

Since D−1A ∈ M and D−1b ∈ r, we have x ∈ Σ(M, r). Hence

Σ(A,b) ⊆ Σ(M, r).(19)

Similarly for any x ∈ Σ(M, r), there exists an M ∈ M and a r ∈ r such that

Mx = r.(20)

Multiplying both sides of the system (20) on the left by D, we obtain the system

DMx = Dr.

Since D and D−1 are diagonal real matrices, we have

Mij =
{

[Dii
−1Aij , Dii

−1Aij ] for Dii < 0
[Dii

−1Aij , Dii
−1Aij ] for Dii > 0

(21)

and

rj =
{

[Dii
−1bj , Dii

−1bj ] for Dii < 0
[Dii

−1bj , Dii
−1bj ] for Dii > 0

(22)

for i, j = 1, 2, . . . , n. Multiplying the above two equations by Dii, we obtain

DiiMij = [Aij , Aij ] = Aij

and

Diirj = [bj , bj ] = bj
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for i, j = 1, 2, . . . , n. This means that

DM = A

and

Dr = b.

Hence DM ∈ A and Dr ∈ b. This implies that x ∈ Σ(A,b). Thus we have

Σ(M, r) ⊆ Σ(A,b)(23)

Combining (19) and (23), we have

Σ(A,b) = Σ(M, r).

Theorem 2.2. Let An×n be an H-matrix, b a right hand side,

u = 〈A〉−1|b|, di = (〈A〉−1)ii

and

αi = 〈Aii〉 − 1/di, βi = ui/di − |bi|

for i = 1, 2, . . . , n. Then AHb is contained in the vector x with components

xi =
bi + [−βi, βi]
Aii + [−αi, αi]

.(24)

for i = 1, 2, . . . , n. Moreover, if the midpoint matrix of A is diagonal, then AHb = x.
Proof. Since A is an H-matrix, 0 6∈ Aii. First assume Aii > 0. Let

D =











Ǎ11

Ǎ22
. . .

Ǎnn











,(25)

where Ǎii = (Aii + Aii)/2, and

P =





















rad(A11) |A12| |A13| · · · |A1n|
|A21| rad(A22) |A23| · · · |A2n|
|A31| |A32| rad(A33) · · · |A3n|
· · · · ·
· · · · ·
· · · · ·

|An1| |An2| |An3| · · · rad(Ann)





















.(26)

Then

A ⊆ D + [−1, 1]P.(27)

Hence

Σ(A,b) ⊆ Σ(D + [−1, 1]P ,b).(28)
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Letting M = I + [−1, 1]D−1P and r = D−1b, it follows from Theorem 2.1 that

Σ(D + [−1, 1]P ,b) = Σ(M, r).(29)

Therefore

Σ(A,b) ⊆ Σ(M, r).(30)

Since

M = I −D−1P = D−1(D − P ) = D−1〈A〉,(31)

and 〈A〉 is an M-matrix, we have

M−1 = 〈A〉−1D ≥ 0.(32)

Theorem 1.3 then implies that

MHr = [x, x](33)

with

xi =
{

cieT
i M−1t(i) for xi ≥ 0

eT
i M−1t(i) for xi < 0

(34)

xi =
{

eT
i M−1s(i) for xi ≥ 0

cieT
i M−1s(i) for xi < 0

(35)

for i = 1, 2, . . . , n, where

s(i) =
{

ri for j = i
max{−rj , rj} for j 6= i; j = 1, . . . , n(36)

t(i) =
{

ri for j = i
min{rj ,−rj} for j 6= i; j = 1, . . . , n(37)

and

ci =
1

2(M−1)ii − 1
.(38)

Noting that

s(i) = |r|+ (ri − |ri|)ei = D−1(|b|+ (bi − |bi|)ei),(39)

t(i) = −|r|+ (ri + |ri|)ei = D−1(−|b|+ (bi + |bi|)ei),(40)

and

ci =
1

2(〈A〉−1)iiǍii − 1
=

Aii − αi

Aii + αi
,(41)
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we have

ei
T M−1t(i) = ei

T 〈A〉−1(−|b|+ (bi + |bi|)ei)
= −ui + (〈A〉−1)ii(bi + |bi|)
= (−βi + bi)/(Aii − αi)

(42)

and

ei
T M−1s(i) = ei

T 〈A〉−1(|b|+ (bi − |bi|)ei)
= ui + (〈A〉−1)ii(bi − |bi|)
= (βi + bi)/(Aii − αi).

(43)

By (34) and (35), we have

xi =







[(−βi + bi)/(Aii + αi), (βi + bi)/(Aii − αi)] for xi > 0,
[(−βi + bi)/(Aii − αi), (βi + bi)/(Aii − αi)] for 0 ∈ xi,
[(−βi + bi)/(Aii − αi), (βi + bi)/(Aii + αi)] for xi < 0.

(44)

That is,

xi =
bi + [−βi, βi]
Aii + [−αi, αi]

.(45)

It follows from (30) that

AHb ⊆ MHr = x.(46)

If the midpoint of A is diagonal, then

A = D + [−1, 1]P.(47)

By (29), we have

Σ(A,b) = Σ(M, r).(48)

Hence

AHb = MHr = x.(49)

For a general H-Matrix A, let En×n be a diagonal matrix with

Eii =
{

−1 for Aii < 0,
1 for Aii > 0.

By Theorem 2.1, we have

Σ(A,b) = Σ(EA, Eb).(50)

Since 〈EA〉 = 〈A〉, |Eb| = |b|, (EA)ii = EiiAii > 0, and EA is also an H-matrix,
using EA and Eb instead of A and b respectively, it follows from the above proof
that

((EA)H(Eb))i ⊆
(Eb)i + [−βi, βi]
(EA)ii + [−αi, αi]

(51)
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for i = 1, 2, . . . , n, and equality holds in Equation (51) if the midpoint of A is diagonal,
since

(Eb)i + [−βi, βi]
(EA)ii + [−αi, αi]

=
(b)i + [−βi, βi]
(A)ii + [−αi, αi]

= xi.(52)

By (50) , (51) and (52), we have

AHb ⊆ x(53)

and equality holds in Equation (53) when the midpoint of A is diagonal.
Theorem 2.3. Suppose that A ∈ IRn×n and b ∈ IRn. Assume A is inverse

positive and b = −b 6= 0. Then the hull of the system

Ax = b(54)

and the hull of the system

Mx = r(55)

are the same, i.e.

AHb = MHr,(56)

where M = Ǎ−1A, r = Ǎ−1b and Ǎ = (A + A)/2. Thus, Hansen’s scheme of [6] (as
in Theorem 1.3) gives exactly the hull in this case.

Proof. Theorem 1.2 implies

AHb = [A−1b, A−1b].(57)

Since Ǎ−1 ≥ 0, we have

M = Ǎ−1A = I + [−1, 1]Ǎ−1rad(A).

Hence,

M = [Ǎ−1A, Ǎ−1A].

From this, we have

M−1 = A−1Ǎ = I + A−1(Ǎ−A) ≥ 0.

It follows from Theorem 1.3 that

MHr = [x, x],(58)

with

xi =
{

cieT
i M−1t(i) for xi ≥ 0

eT
i M−1t(i) for xi < 0

(59)

xi =
{

eT
i M−1s(i) for xi ≥ 0

cieT
i M−1s(i) for xi < 0

(60)
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for i = 1, 2, . . . , n, where s(i), t(i) and ci satisfy (9), (10) and (11). Since

r = Ǎ−1b = Ǎ−1b̌ + [−1, 1]Ǎ−1rad(b) = [Ǎ−1b, Ǎ−1b],

we have r = Ǎ−1b, r = Ǎ−1b. Noting that b = −b, we have r = −r. The definition of
s(i) and t(i) implies s(i) = r and t(i) = r for i = 1, 2, . . . , n. Since x ≤ Ǎ−1b < 0 and
x ≥ Ǎ−1b > 0, we have

x = M−1r = (Ǎ−1A)−1(Ǎ−1b) = A−1b(61)

and

x = M−1r = (Ǎ−1A)−1(Ǎ−1b) = A−1b.(62)

Equations (57) and (58) then imply

AHb = MHr.(63)

We now turn our attention to the triangular factors of interval M-matrices, and
to when the interval Gaussian elimination algorithm (IGA) gives the exact hull. The
following lemma is from Fiedler and Pták [4].

Lemma 2.4. Suppose that A ∈ Rn is an M-matrix and A = LU , where L is lower
triangular, U is upper triangular, and Lii = 1 for i = 1, 2, . . . , n. Then

Uij = Aij −
i−1
∑

k=1

LikUkj , for j ≥ i,(64)

Lij = (Aij −
j−1
∑

k=1

LikUkj)/Ujj , for i > j,(65)

and Uii > 0, Uji ≤ 0, Lij ≤ 0 for i > j. That is, the triangular factors of an M-matrix
are themselves M-matrices.

[14, Theorem 4.5.8] implies the following theorem.
Theorem 2.5. (Barth and Nuding [2], Beeck [3]) Suppose that A = [A, A] ∈

IRn×n is an interval M-matrix. Let L = [L,L] be that lower triangular interval
matrix with Lii = [1, 1] for i = 1, 2, . . . , n, and let U = [U, U ] be that upper triangular
interval matrix, defined by

Uij = Aij −
i−1
∑

k=1

LikUkj , for j ≥ i(66)

Lij = (Aij −
j−1
∑

k=1

LikUkj)/Ujj , for i > j(67)

Then A ⊆ LU, A = L U and A = L U . Hence L and U are interval M-matrices.
Also A−1 = U−1L−1, that is, [A

−1
, A−1] = [U

−1
, U−1][L

−1
, L−1]. Moreover

AHb ⊆ U−1(L−1b) = [A
−1

, A−1]b.(68)
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If b ≤ 0, b ≥ 0 or 0 ∈ b, then IGA computes the exact hull AHb, i.e.

AHb = U−1(L−1b) = [A
−1

, A−1]b.(69)

The following theorem, a consequence of Theorem 1.2, gives additional conditions
under which we may easily obtain the interval hull AHb when A is inverse positive.

Theorem 2.6. Suppose A ∈ IRn×n is inverse positive, suppose b, x(0) ∈ IRn,
and suppose AHb ⊆ x(0). For i, k = 1, 2, . . . , n, define A(1), A(2) ∈ A by

A(1)
ik = Aik if x(0)

k ≥ 0 and A(1)
ik = Aik otherwise,

A(2)
ik = Aik if x(0)

k ≤ 0 and A(2)
ik = Aik otherwise.

Define

x = 2
{

(A(1))−1b, (A(2))−1b
}

= ([x1, x1], . . . , [xn, xn])T ,

where 2{v, w} is the interval hull of the vectors v and w, i.e. the smallest interval
vector that contains the set {v, w}. Then

x ⊆ AHb ⊆ x(0).

In particular, if xkx(0)
k ≥ 0 and xkx(0)

k ≥ 0 for k = 1, 2, . . . , n, then

x =
[

(A(1))−1b, (A(2))−1b
]

= AHb.

Proof. Since A(1) ∈ A and A(2) ∈ A, we have

(A(1))−1b ∈ Σ(A,b) and (A(2))−1b ∈ Σ(A,b).

Hence

x ⊆ AHb ⊆ x(0).(70)

Let us define y by

y = [y, y] = AHb.

Then Theorem 1.2 gives y =
[

(B(1))−1b, (B(2))−1b
]

, where

B(1)
ik = Aik if y

k
≥ 0 and B(1)

ik = Aik otherwise,

B(2)
ik = Aik if yk ≤ 0 and B(2)

ik = Aik otherwise,

for i, k = 1, 2, . . . , n. Also, (70) gives xk ≥ y
k
≥ x(0)

k and xk ≤ yk ≤ x(0)
k for

k = 1, 2, . . . , n. If, in addition, xkx(0)
k ≥ 0 and xkx(0)

k ≥ 0 for k = 1, 2, . . . , n, then
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y
k
x(0)

k ≥ 0 and ykx(0)
k ≥ 0 for k = 1, 2, . . . , n. Thus, the definitions of A(1) and B(1)

imply that

A(1)
ik = B(1)

ik if y
k
6= 0

for i, k = 1, 2, . . . , n, and

A(1)y = B(1)y = b.

That is

(A(1))−1b = (B(1))−1b = y.

Similarly, the definitions of A(2) and B(2) imply that

A(2)
ik = B(2)

ik if yk 6= 0

for i, k = 1, 2, . . . , n, and

A(2)y = B(2)y = b.

That is

(A(2))−1b = (B(2))−1b = y.

Therefore,

AHb = y =
[

(A(1))−1b, (A(2))−1b
]

= x,

thus completing the proof.
For example, if we know the box x(0) obtained by IGA, [14, Proposition 3.6.6],

Hansen’s technique of [6], or any other solution method for bounding the solution
set, the box x of the above theorem is the hull (to within roundout error) whenever
(A(1))−1b ≤ (A(2))−1b, xkx(0)

k ≥ 0, and xkx(0)
k ≥ 0 for every k = 1, 2, . . . , n.

3. Examples. The following examples illustrate the cases covered in the theory
of the preceding section, and examine several cases outside this theory as well.

The computations in these examples were programmed in Fortran 90 using the
system of [8]. The arithmetic was outwardly rounded interval arithmetic based on
double precision IEEE arithmetic. This arithmetic was accessed with a modification
of the Fortran 77 library INTLIB [7] that allows true directed roundings on Sun Sparc
machines, as in [9]. The answers below are presented to three digits. The endpoints of
the intervals in the answers are rounded using the default conversion routines in the
printing functions of Fortran 90. Thus, the exhibited interval endpoints may differ
from correctly outwardly rounded results by a unit in the last digit.

Example 3.1. Let the interval equation system Ax = b be given with

A =









[4, 6] [−1, 1] [−1, 1] [−1, 1]
[−1, 1] [−6,−4] [−1, 1] [−1, 1]
[−1, 1] [−1, 1] [9, 11] [−1, 1]
[−1, 1] [−1, 1] [−1, 1] [−11,−9]








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and

b =









[−2, 4]
[1, 8]

[−4, 10]
[2, 12]









.

Then

Ǎ =









5
−5

10
−10









,

Ǎ−1 =









0.2
−0.2

0.1
−0.1









,

M = Ǎ−1A =









[0.8, 1.2] [−0.2, 0.2] [−0.2, 0.2] [−0.2, 0.2]
[−0.2, 0.2] [0.8, 1.2] [−0.2, 0.2] [−0.2, 0.2]
[−0.1, 0.1] [−0.1, 0.1] [0.9, 1.1] [−0.1, 0.1]
[−0.1, 0.1] [−0.1, 0.1] [−0.1, 0.1] [0.9, 1.1]









,

and

r = Ǎ−1b =









[−0.4, 0.8]
[−1.6,−0.2]

[−0.4, 1]
[−1.2,−0.2]









.

Using interval Gaussian elimination, we obtain the box








[−2.60, 3.10]
[−3.90, 1.50]
[−1.43, 2.15]
[−2.35, 0.60]









.

Using Theorem 2.1, we obtain AHb = MHr. Then, with Theorem 1.3, we compute
the smallest box containing the solution set to be

AHb = MHr =









[−2.50, 3.10]
[−3.90, 1.20]
[−1.40, 2.15]
[−2.35, 0.60]









.

Using Theorem 2.2, we obtain the same box as above.
Example 3.2. Let the interval equation system Ax = b be given with

A =





[3.7, 4.3] [−1.5,−0.5] [0, 0]
[−1.5,−0.5] [3.7, 4.3] [−1.5,−0.5]

[0, 0] [−1.5,−0.5] [3.7, 4.3]



 ,
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b =





[−14, 14]
[−9, 9]
[−3, 3]



 .

Then

Ǎ =





4 −1 0
−1 4 −1

0 −1 4



 ,

A is an M-matrix, and b = −b. Using interval Gaussian elimination, we obtain the
box





[−6.38, 6.38]
[−6.40, 6.40]
[−3.40, 3.40]



 .

Using Theorem 1.3 and Theorem 2.2, we obtain the same box as above. Theorem 2.3
and Theorem 2.5 imply that in this case, we will obtain the exact hull of the original
system, to within roundout error, by IGA, Hansen’s technique [6], or Rohn’s reformu-
lation of Hansen’s technique.

Example 3.3. Let the interval equation system Ax = b be given, with A as in
Example 3.2 and

b =





[−14, 0]
[−9, 0]
[−3, 0]



 .

Using interval Gaussian elimination, we obtain the box




[−6.38, 0]
[−6.40, 0]
[−3.40, 0]



 .

Theorem 2.5 implies that in this case IGA will give the smallest box containing the
solution set. Using Hansen’s technique of [6] or Rohn’s reformulation of [16], we
obtain the wider box





[−6.38, 1.12]
[−6.40, 1.54]
[−3.40, 1.40]



 .

Using Theorem 2.2, we obtain an even wider box:




[−6.38, 1.67]
[−6.40, 2.77]
[−3.40, 2.40]



 .

Note that Hansen’s technique and Rohn’s reformulation give the same results,
since they both give the hull of the preconditioned systems.

Example 3.4. Let the interval equation system Ax = b be given with A as in
Example 3.2 and

b =





[0, 14]
[0, 9]
[0, 3]



 .
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Using IGA, we obtain the box




[0, 6.38]
[0, 6.40]
[0, 3.40]



 .

Theorem 2.5 implies that IGA computes the hull of the original system of equations
in this case. Using Hansen’s technique of [6], we obtain the wider box





[−1.12, 6.38]
[−1.54, 6.40]
[−1.40, 3.40]



 .

Using Theorem 2.2, we obtain an even wider box:




[−1.67, 6.38]
[−2.77, 6.40]
[−2.40, 3.40]



 .

Example 3.5. Let the interval equation system Ax = b be given with A as in
Example 3.2 and

b =





[2, 14]
[−9,−3]
[−3, 1]



 .

Using IGA, we obtain the box




[−1.09, 4.29]
[−4.02, 1.24]
[−2.44, 0.773]



 .

Using Hansen’s technique of [6], we obtain the wider box




[−0.995, 5.01]
[−4.64, 1.52]
[−2.69, 1.38]



 .

Using [14, Proposition 3.6.6], we obtain the box

A−1b = [A
−1

, A−1]b =





[−1.20, 4.69]
[−4.06, 1.73]
[−2.47, 1.18]



 .

We may now use IGA, Hansen’s technique of [6], or [14, Proposition 3.6.6] to compute
a box x(0) for Theorem 2.6; the resulting box, regardless of which of these methods
was used for x(0), is

x =
[

(A(1))−1b, (A(2))−1b
]

= AHb =





[−0.995, 4.29]
[−3.79, 1.24]
[−2.35, 0.773]



 ,

since the signs of x and x(0) are the same and the signs of x and x(0) are the same.
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Example 3.6. Let the interval equation system Ax = b be given with A as in
Example 3.2 and

b =





[2, 14]
[3, 9]

[−3, 1]



 .

Using IGA, we obtain the box




[0.517, 6.25]
[0.450, 6.07]

[−0.881, 2.73]



 .

Using Hansen’s technique of [6], we obtain the wider box




[−0.206, 6.25]
[−0.386, 6.07]
[−2.01, 2.73]



 .

Using [14, Proposition 3.6.6], we obtain the box

A−1b = [A
−1

, A−1]b =





[0.356, 6.25]
[0.283, 6.07]

[−0.919, 2.73]



 .

If x(0) is obtained by IGA or [14, Proposition 3.6.6], Theorem 2.6, gives the box

x =
[

(A(1))−1b, (A(2))−1b
]

= AHb =





[0.523, 6.25]
[0.499, 6.07]

[−0.743, 2.73]



 ,

since the signs of x and x(0) are the same, and the signs of x and x(0) are the same.
However, if x(0) is obtained by Hansen’s technique of [6], using Theorem 2.6, we
obtain the box

x =
[

(A(1))−1b, (A(2))−1b
]

=





[0.964, 6.25]
[1.04, 6.07]

[−0.387, 2.73]



 ⊂ AHb.

Example 3.7. Let the interval equation system Ax = b be given with

A =









[15, 17] [−3, 3.01] [−3, 3.01] [−3, 3.01]
[−3, 3.01] [15, 17] [−3, 2.99] [−3, 2.99]
[−3, 2.99] [−3, 2.99] [15, 17] [−3, 3.01]
[−3, 3.01] [−3, 3.01] [−3, 2.99] [15, 17]









,

b =









[−6,−2]
[4, 5]

[−2, 4]
[8, 10]









.
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By IGA, we obtain the box








[−1.03, 0.495]
[−0.347, 0.974]
[−0.770, 0.917]
[0.150, 1.25]









.

Using Hansen’s technique of [6], we obtain the box








[−1.03, 0.363]
[−0.223, 0.975]
[−0.752, 0.919]
[0.149, 1.25]









.

Examining the above examples, we see that sometimes IGA gives sharper bounds
on the hull, while in other cases Hansen’s technique does. In some cases, the inter-
section of the results of IGA and Hansen’s technique is narrower than either result
taken separately.
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