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Abstract. We consider branch and bound methods for enclosing all unconstrained
global minimizers of a nonconvex nonlinear twice-continuously differentiable objective
function. In particular, we consider bounds obtained with interval arithmetic, with
the “midpoint test,” but no acceleration procedures. Unless the lower bound is exact,
the algorithm without acceleration procedures in general gives an undesirable cluster
of boxes around each minimizer. In a previous paper, we analyzed this problem for
univariate objective functions. In this paper, we generalize that analysis to multi-
dimensional objective functions. As in the univariate case, the results show that the
problem is highly related to the behavior of the objective function near the global
minimizers and to the order of the corresponding interval extension.

1. Introduction and Basic Concepts

Our underlying problem is:

(1)
find all global minimizers to f(x)

subject to x ∈ X,

where X ⊂ Rm is a compact right parallelepiped with faces parallel to the axes.
We will refer to X as a box. We denote the global minimum as f∗ and the set of
global minimizers as X ∗. Interval branch and bound procedures for unconstrained
nonconvex optimization, i.e. for rigorously enclosing the solution set X ∗ of (1), are
competitive with stochastic methods, such as Monte Carlo methods, and methods
involving heuristics, such as simulated annealing or the tunneling method. Our
analysis deals with algorithms similar to Algorithm 3, p. 111 of [10]. Also, as in
[10], we will use interval arithmetic to obtain the bounds.

This paper deals with the phenomenon of clusters of small boxes around global
minimizers that such algorithms produce cannot eliminate. We refer to this phe-
nomenon as the cluster problem. Though the algorithms in which the cluster prob-
lem occurs apply to global, nonconvex, unconstrained optimization, the cluster
problem is essentially a local phenomenon dealing with the portion of the domain
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around minimizers in which f is convex. However, the overall algorithm’s effi-
ciency depends on how it handles these local regions; an understanding of this local
behavior aids in prediction of efficiency for the overall algorithm.

We introduced and analyzed the phenomenon for the univariate case in [6].
Here, we generalize those results to the multidimensional case. The algorithm
presented here is simplified, to facilitate a clear theoretical analysis. Practical
algorithms will have more features to improve efficiency. However, their running
will generate additional phenomena, such as possible, but not certain, elimination
of boxes through convergence to critical points, which, together, are more difficult
to analyze.

For introductions to interval arithmetic, see e.g. [1], [7], or [9].
Throughout, we denote non-interval quantities (both points in multidimen-

sional space and scalars) by lower case, interval quantities by upper case boldface,
and vectors by lower case marked letters such as ~p. We will occasionally use a lower
case bold letter to denote a non-interval function value that has been bounded using
interval arithmetic.

Definition 1. Let X = X1×X2×· · ·×Xm, be an m-dimensional box, where each
Xi an interval. Then the width of X is

w(X) = max
1≤i≤m

{w(Xi)}.

This differs from the componentwise definition, or diameter, used by some
authors in some contexts. However, with this definition of width, the order of
an inclusion function is formally identical to the corresponding order in the one-
dimensional case.

Definition 2. Let F(X) denote an interval extension of f evaluated over a box X.
Let f(X) denote the exact range of f over X. If there is a constant K, independent
of the box X such that

(2) w(F(X))− w(f(X)) ≤ Kw(X)α,

for all boxes X with w(X) sufficiently small, then we say that F is an order α
inclusion function for f . When α is 1 or 2, we call the inclusion first order or
second order, respectively.

The following algorithm is Algorithm 3, p. 111 of [10]. We use the following
notation.

(1) mid(X): the “midpoint” of a box X, defined componentwise;
(2) ub(X): the upper bound of an interval X;
(3) lb(X): the lower bound of an interval X.

Algorithm 1.
0. Input the original box X, the inclusion function F of f , and additional param-

eters used in the termination criteria.
1. Set Y := X.
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2. Calculate F(X) and f̃ := ub(F(c)) where c := mid(Y).
3. Set y := lb(F(Y)).
4. Initialize the list L := {(Y, y)}.
5. Choose a coordinate direction i0 parallel to which Y has an edge of maximum

length, i.e., i0 ∈ {i : w(Yi) = w(Y)}.
6. Bisect Y normal to direction i0 to obtain boxes V1 and V2 such that Y =

V1 ∪V2.
7. Calculate F(V1) and F(V2).
8. Set vi := lb(F(Vi)) for i = 1, 2.
9. Enter the pairs (V1, v1) and (V2, v2) at the end of the list.

10. Choose a pair (Ỹ, ỹ) of the list which satisfies ỹ ≤ z for all pairs (Z, z) of the
list.

11. Discard all pairs {Z, z} from the list that satisfy z > f̃ (midpoint test).
12. If the termination criteria hold go to 15.
13. Denote the first pair of the list by (Y, y). Then set c := midY and f̃ :=

min(f̃ , ub(F(c))).
14. Go to 5.
15. End.

Generally, we will terminate the algorithm if all boxes in the list have widths
at most a pre-specified tolerance ε.

Step 11 is crucial for our purposes, since we are studying the power of the
midpoint test to discard boxes that do not contain global minimizers.

2. The analysis

Our multi-dimensional analysis appears in this section. It is analogous to the
one-dimensional case in [6]. In one dimension, we formulated when the algorithm
would reject an interval I in terms of the number of intervals generated by the
algorithm between an optimizer and I. This number was compared with the excess
width of F(I) over the exact range f(I) of f on I. That analysis generalizes to
multivariate objective functions. However, we must count the number of boxes in
a particular direction between an optimizer and the box in question.

Terminology, general assumptions and a sufficient condition for a box to
be rejected.

Assumption. Suppose that x∗ ∈ X ∗ is a particular minimizer that is a strict local
minimizer in the sense that there is a neighborhood N of x∗ such that f(x) > f(x∗)
for x 6= x∗ and x ∈ N .

Our analysis is a local analysis of the behavior of the algorithm in such a
neighborhood of x∗. However, the overall algorithm in a region containing many
minimizers and sub-regions where f is not convex behaves according to our anal-
ysis. This is because nonconvex regions correspond to large function values (local
maxima), and are rapidly rejected in Step 11. (We illustrate this with Example 2
in §3 below.)

For simplicity in the analysis, we assume a uniform subdivision of mesh ε each
coordinate direction in a neighborhood of x∗, as illustrated in Figure 1. This does
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not seem to diminish the predictive power of our analytical results: The subdivision
may have more boxes in one direction from the minimum than in others; however,
this non-uniformity does not qualitatively change the clustering behavior. The
actual algorithm does produce a uniform subdivision on certain steps.

For small ε and near a selected local minimizer x∗, we will represent a typical
point x = xδ in one of the boxes X(1) corresponding to the list L in Algorithm 1 as

xδ = x∗ + (nε + δ)~p,

where n is the number of boxes1 through which a ray from x∗ to the box X(1)

passes, ~p is a vector of unit length with respect to the infinity norm and δ ∈ [0, ε)
is a parameter indicating the point’s position within the box. The set

Rn = {x∗ + (nε + δ)~p | ~p ∈ Rm, ‖~p‖∞ = 1, ε fixed, n fixed, 0 ≤ δ ≤ ε}

is the set illustrated in Figure 1. Assuming that a uniform subdivision of mesh ε
has been achieved, the ring Rn consists of a union of boxes, each of which is of
distance nε to (n + 1)ε in ‖◦‖∞ from the optimizer x∗. We will call both this set
of boxes and the set consisting of their union “the ring Rn.” In our analysis we
assume that Rn will be left in the list upon completion of Algorithm 1 provided
there exists at least one box in Rn that is left in the list. This is valid, since our
goal is to obtain an upper bound on the number of boxes left in the list.

Figure 1. Reducing the analysis to one dimension. n = 3. The
ring Rn is delineated in bold lines.

1or parts of boxes, if x∗ is not at a vertex of a sub-box
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Our analysis will proceed as in the one-dimensional case: We take an arbitrary
box X(1) ⊂ Rn and consider whether the algorithm will reject it. Let x+ denote
the current midpoint used in the midpoint test. Then, directly from Step 11 of
Algorithm 1, a box X(1) will be rejected provided

lb(F(X(1))) > f(x+)

i.e.

−lb(F(X(1))) < −f(x+)

which is equivalent to

lb(f(X(1)))− lb(F(X(1))) < lb(f(X(1)))− f(x+).(3)

But

lb(f(X(1)))− lb(F(X(1)))

= lb(f(X(1)))− ub(f(X(1))) + ub(f(X(1)))− lb(F(X(1)))

≤ lb(f(X(1)))− ub(f(X(1))) + ub(F(X(1)))− lb(F(X(1)))

= w(F(X(1))− w(f(X(1)))(4)

Combining (3) and (4), we see that a sufficient condition for a box to be rejected is

(5) w(F(X(1))− w(f(X(1))) ≤ lb(f(X(1)))− f(x+).

Now, following the pattern of representation of points in Rn, we let xδ0 = x∗ +
(nε+δ0)~p0 be a point in X(1) with smallest function value: f(xδ0) = minx∈X(1) f(x).
Then (5) becomes

(6) w(F(X(1)))− w(f(X(1))) < f(xδ0)− f(x+).

We will think of f̃(t) = f(x∗ + t~p) as a univariate function of t. Suppose that nε
is sufficiently small to ensure that f̃(t) is monotonic in the interval [0, (n + 1)ε]
for every ~p ∈ Rm with ‖~p‖∞ = 1. (This is possible whenever x∗ is a strict local
minimizer.) Then a ~p can be found such that, with x1 = x∗ + nε~p, f(xδ0) = f(x1).
(See Figure 1.) From (6), we thus see that

(6′) w(F(X(1)))− w(f(X(1))) < f(x∗ + nε~p)− f(x+)

∀~p ∈ Rm with ‖~p‖∞ = 1

is a sufficient condition that the box X(1) be rejected in Step 11 of Algorithm 1.
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The theory.
Consistent with the assumptions above, the theory reflects local behavior of

the algorithm. That is, it describes the behavior of the algorithm, given a suffi-
ciently small initial box containing a single global minimum. As stated above, in
practical contexts with practical algorithms, the monotonicity test (checking that
the gradient does not contain zero), combined with checking the interval objective
function values (i.e. the midpoint test) effectively eliminate boxes in the nonconvex
regions between optima. Thus, the theory accurately reflects behavior of such prac-
tical algorithms. We do not prove this here2, but illustrate it in §3 with a numerical
example.

Our first theorem gives an upper bound on the number of boxes in the cluster
around a global minimizer, when we assume that the minimizer occurs at the vertex
of one of the boxes produced by the algorithm. The second theorem, though proven
analogously, generalizes the first theorem to the case when the global minimizers
occur in the interior of the boxes in question.

Suppose that the objective function f : X ⊂ Rm → R has a Taylor expansion
in some neighborhood of x∗, and suppose that f attains its global minimum at an
interior point x∗ (i.e., ‖g(x∗)‖ = 0, where g is the gradient of f).

Theorem 1. Assume that the global minimizer x∗ for which the analysis holds
occurs at a vertex of one of the boxes produced by the algorithm, so that x+ = x∗. In
addition to the general assumptions above, assume that the Hessian matrix G(x) of
the objective function f is positive definite in the set of sub-boxes C of the initial box
X in which the cluster occurs. Denote the eigenvalues of G by λ1 ≤ λ2 ≤ · · · ≤ λm.
Set

λ1,0 = min
x∈C

λ1 > 0.

Also assume that the interval extension F of f is of order α. Then, upon completion
of the algorithm (i.e. when each box in the list has width at most ε), the maximum
number of boxes corresponding to x∗ left in the list will be

(7) N =

{

2

⌊√

2K
λ1,0

·
√

εα−2

⌋

+ 1

}m

,

where brc stands for the integer part of the positive real number r, and where we
assume that each box in the list has width ε.

Proof. By assumption, the objective function f has a Taylor expansion about x∗

of the form

f(x) = f(x∗) + g(x∗)T (x− x∗) + (x− x∗)T G(ξ)
2

(x− x∗).

where g is the gradient of f and ξ is a point of the form ξ = x∗ + θx for some θ
(0 ≤ θ ≤ 1). When x = x∗ + nε~p and g(x∗) = 0, the above becomes

(8) f(x∗ + nε~p)− f(x∗) =
1
2
(nε)2~pT G(ξ)~p,

2We will rigorously analyze the global behavior of the algorithm in a separate work, using
the results presented here and similar techniques.
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where ξ = x∗ + t~p for some t ∈ (0, nε). Since F is of order α,

(9) w
(

F(X(1))
)

− w
(

f(X(1))
)

≤ Kw
(

X(1)
)α

,

where K does not depend on ε. Since G = G(ξ) is positive definite, a set of
eigenvectors forms an orthonormal basis for Rm. Denote these eigenvectors by
{~vi}m

i=1, so that ~p =
∑m

i=1 αi~vi for some set {αi}m
i=1. Then

G~p =
m

∑

i=1

αiλi~vi,

so

~pT G~p = (
m

∑

i=1

αi~vi) · (
m

∑

i=1

αiλi~vi)(10)

=
m

∑

i=1

α2
i λi

≥ ‖~p‖22λ1,0

≥ λ1,0,

since
min

‖~p‖∞=1
‖~p‖22 = 1.

Combining (8) and (10) then gives

(11) f(x∗ + nε~p)− f(x∗) ≥ 1
2
(nε)2λ1,0.

Now, (9) and (11) combined with the sufficient condition in (6′) show that

(12) Kw(X(1))α <
1
2
(nε)2λ1,0

is a sufficient condition that the algorithm reject X(1). Since (12) does not contain
an explicit reference to ~p, it is also a sufficient condition that any box in Rn be
rejected. Solving the above inequality for n with w(X(1)) = ε, we get

(13) n >

√

2K
λ1,0

·
√

εα−2

Thus the maximum index n for a box X(1) to stay in the list is

N1 =

⌊√

2K
λ1,0

·
√

εα−2

⌋

+ 1.

The ring Rn will thus be rejected provided n obeys (13). However, without loss of
generality assume that Algorithm 1 has produced a uniform subdivision of boxes of
width ε in each direction3. Then set of all possible boxes inside the ring Rn defined
by (13) is a cube of side length 2nε. The conclusion then follows. �

3Note that each coordinate width is the coordinate width of the original box divided by a
power of two. Thus, if a coordinate width is larger than a corresponding coordinate width of an
adjacent box, we could subdivide the box in that direction. We could thus obtain a uniform width
and more boxes, not altering the conclusion of the theorem.



8 KAISHENG DU AND R. BAKER KEARFOTT

Corollary 1. Suppose λ1,0 > 0. If:
(1) α < 2, then there may exist a severe cluster, i.e. the number of boxes in the

list associated with x∗ may increase without bound as ε becomes small;
(2) α = 2, then the cluster is not serious, but there may always be a constant

number N > 1 of boxes in the list associated with x∗, no matter how small ε
is;

(3) α > 2, then there is no cluster, i.e. for sufficiently small ε the optima obtained
by use of the midpoint test are contained in single boxes, unless the optima lie
on boundaries of boxes.

In practical situations, where x∗ is not both the best approximate minimizer
and a vertex of one of the boxes, we feel that the conclusions of Theorem 1 still hold
qualitatively. The following theorem proves this, under a technical assumption.

Theorem 2. Let the setting be as in Theorem 1, but do not assume that x∗ occurs
at a vertex, nor that f(x∗) = f(x+). However, do assume that the current midpoint
value f(x+) occurs at a vertex xv. Let λ1,0 be as in Theorem 1, and define

λm,0 = max
x∈C

λm,

where C is as in Theorem 1. Then, under the other assumptions in Theorem 1, the
number of boxes corresponding to x∗ left in the list will not exceed

(7′) Ñ =

{√

2Kεα−2

λ1,0
+

m
4

λm,0

λ1,0
+ 1

}m

.

Proof of Theorem 2. The proof is analogous to the proof of Theorem 1, but with an
extra term appearing in the analogues of (8) and (12). In particular, let xv denote
the vertex nearest the minimizer x∗. Then xv takes the place of x∗ in the analogues
to (8) and (11). A relation between f(xν) and f(x∗) is given by

(14) f(xv) = f(x∗) +
δ2

2
~pT

v G(ξv)~pv

for some ~pv with ‖~pv‖∞ = 1 and δ ≤ ε/2. However,

~pT
v G(ξv)~pv ≤ mλm,0

since ‖~p‖∞ ≤
√

m‖~p‖2, ∀~p ∈ Rm, so

(15) f(xv) ≤ f(x∗) +
ε2

8
mλm,0.

Thus, (8), (11) and (15) give

f(x∗ + nε~p)− f(xv) = f(x∗ + nε~p)− f(x∗) + f(x∗)− f(xv)

≥ 1
2
(nε)2λ1,0 −

ε2

8
mλm,0.(11′)
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Combining (11′) with (9) and the sufficient condition (6′) now gives

(12′) Kw(X(1))α <
1
2
(nε)2λ1,0 −

ε2

8
mλm,0

as a sufficient condition that the algorithm reject X(1). As in Theorem 1, we solve
this equation for n to obtain

(13′) n2 >
2Kεα−2

λ1,0
+

m
4

λm,0

λ1,0
.

The result now follows analogously to that of Theorem 1. �

Remarks.

Remark 1. In the corollary we say “there may · · · ” rather than “there must” be-
cause the theorem gives an upper bound, and not a precise value, for the number
of boxes. In problems in which the lower bound given by the interval extension F
is exact, there will be no cluster even though F is not of high order. Note, however,
that in the experiments in the next section, the bounds correspond very closely
with the actual results.

Remark 2. If the Hessian matrix is not positive definite, then λ1,0 = 0 and the
above discussion is no longer valid. We need to have a better interval extension (at
least of order 3) to obtain conclusions as in the above corollary. The midpoint test
will thus be ineffective in this case.

Remark 3. The requirements for the proofs of Theorem 1 and Theorem 2 to hold
are essentially that the objective function have two continuous derivatives in some
neighborhood of a global minimum and that the Hessian matrix be nonsingular
at the global minimum in question (in the local analysis). Thus the conclusions
apply to a large range of functions. In fact, even these restrictions are somewhat
technical: some extension of the analysis to less smooth functions and to functions
whose derivative vanishes at the minimum in question are given in [6] for the one-
dimensional case.

Remark 4. When G is constant (10) becomes an equality for ~p = ~v1. Thus, the
bound in Theorem 1 is, in this sense, sharp.

Remark 5. Of course, in practice roundoff error could cause actual algorithms to
behave contrary to this theory for extremely small ε. However, see the results in
the next section.

Remark 6. The assumption on f(x+) in Theorem 2 is for convenience only, and is
not crucial. For the more general case, we simply base the Taylor expansion at a
current midpoint. Refer to our analysis of the univariate case in [6].

3. Numerical results

We implemented Algorithm 1 in ACRITH-XSC (also called FORTRAN-SC;
see [2]) on an IBM 3090. We terminated the procedure when all of the boxes in the
final list had the same width ε. (ε is largest number in the computation less than
the specified tolerance ε′.) Below, we give numbers of intervals in the final list,
together with the corresponding stopping tolerance ε′ (the first lines in the tables)
and the given initial intervals (the first columns in the tables).
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Example 1. We consider the function

f(x1, x2) = (x1 + 1)2 + (x2 − 1)2

on the initial box [−10, 20]× [−3, 10]. Here x∗ = (−1, 1) and f∗ = 0.

(A) Interval extension of order 1. We used the extension

F(X) = X1(X1 − 2) + X2(X2 − 2) + 2,

with convergence order 1. The number of boxes left in the final list are shown with
corresponding values of ε′ in the first row of Table 1.

(B) Interval extension of order 2. We used the mean value form

F(X) = f(c) +
f ′(c)

2
(X− c),

where c is the midpoint of X. The number of boxes left in the final list are shown
with corresponding values of ε′ in the first row of Table 1.

initial ε′1 = 10−1 ε′2 = 1
2 · 10−1 ε′3 = 1

4 · 10−1 ε′4 = 1
8 · 10−1 ε′5 = 1

16 · 10−1

α = 1 119 236 467 927 1057
α = 2 13 12 14 12 11

Table 1. Number of boxes, example 1.

Example 2. Six hump camel back function,

f(x1, x2) = 4x2
1 − 2.1x4

1 +
1
3
x6

1 + x1x2 − 4x2
2 + 4x4

2

on the initial box [−10, 20]× [−3, 10]. This function has two global minima and a
total of fifteen critical points (obtained with INTBIS [5]) in this region. However,
the results below show that the algorithm behaves over the entire region as predicted
by the local theory of §2.

(A) Interval extension of order 1. We used the extension

F(X) = 4X2
1 − 2.1X4

1 +
1
3
X6

1 + X1X2 − 4X2
2 + 4X4

2

with convergence order 1. The number of boxes left in the final list are shown with
corresponding values of ε′ in the first row of Table 2.

(B) Interval extension of order 2. We use the mean value form for the second
order interval extension. The number of boxes left in the final list are shown with
corresponding ε′ in the second row of Table 2.

initial ε′1 = 10−1 ε′2 = 1
2 · 10−1 ε′3 = 1

4 · 10−1 ε′4 = 1
8 · 10−1 ε′5 = 1

16 · 10−1

α = 1 105 149 291 571 1140
α = 2 35 23 29 29 27

Table 2. Number of boxes, example 2.
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On the other hand, (7) provides the following inferences.

(1) If the extension is of order 1 (α = 1), the number of boxes in the list should
increase without bound as we decrease the size of the boxes. When α = 2 the
number of boxes in the list should be approximately constant as the final box
size decreases.

(2) In the two dimensional case, the number of boxes in the list will be proportional
to N2. When α = 1, we have N2

1 /N2
2 ≈ ε1/ε2, where N1 corresponds to ε1

and N2 corresponds to ε2.

The results in tables 1 and 2 closely match these inferences.

4. Conclusions and future work

The above results, both theoretical and numerical, show that interval exten-
sions of order at least 2 should be used, if possible, if only the midpoint test is
used to discard boxes. This is especially true when the initial interval contains the
global minimizer. Additionally, we have the following possibilities for improvement
and further work.

1. Incorporate acceleration devices such as an interval Newton method. (Note
that this is standard practice in interval arithmetic-based branch and bound
algorithms; see, for example [4] for one of the earlier explanations of this
process.)

2. Use higher order interval extensions, when possible. When the Hessian matrix
is positive definite, an interval extension of order greater than two together
with the simple midpoint test should result in an efficient algorithm with no
cluster, even without acceleration procedures.

3. When the Hessian matrix is no longer positive definite at the optimum (but is
still nonnegative definite), a higher order extension may be necessary to avoid
a cluster.
Our investigations in the immediate future will involve delineating classes of

multivariate objective functions for which higher-order interval extensions are read-
ily available. In particular, we will see when the arguments in [3] and in §2.4 of [8]
generalize.
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