
EXISTENCE VERIFICATION FOR HIGHER DEGREE SINGULAR
ZEROS OF COMPLEX NONLINEAR SYSTEMS∗

R. BAKER KEARFOTT† AND JIANWEI DIAN‡

Abstract. It is known that, in general, no computational techniques can verify the existence of
a singular solution of the nonlinear system of n equations in n variables within a given region x of
n-space. However, computational verification that a given number of true solutions exist within a
region in complex space containing x is possible. That can be done by computation of the topological
degree. In a previous paper, we presented theory and algorithms for the simplest case, when the
rank-defect of the Jacobi matrix at the solution is one and the topological index is 2. Here, we
will generalize that result to arbitrary topological index d ≥ 2: We present theory, algorithms, and
experimental results. We also present a heuristic for determining the degree, obtaining a value that
we can subsequently verify with our algorithms.

Key words. complex nonlinear systems, interval computations, verified computations, singu-
larities, topological degree

AMS subject classifications. 65G10, 65H10

1. Introduction. Our fundamental problem is

Given F : x → Rn and x ∈ IRn, rigorously verify:
• there exists a unique x∗ ∈ x such that F (x∗) = 0, where
• x =

{

(x1, x2, . . . , xn)T ∈ Rn
∣

∣ xi ≤ xi ≤ xi, 1 ≤ i ≤ n
}

,
(1.1)

where the xi and xi represent constant bounds on the problem variables xi. When
the Jacobi matrix F ′(x∗) well-conditioned and not too quickly varying, interval com-
putations have no trouble proving that there is a unique solution within small boxes
with x∗ reasonably near the center; see [4, 9, 11]. When F ′(x∗) is ill-conditioned or
singular, in general, no computational techniques can verify the existence of a solu-
tion within a given region x of Rn. However, in the singular case, computational but
rigorous verification that a given number of true solutions exist within a region in
complex space containing x is possible, as we indicated in [10]. In [10], we studied the
simplest case, when the rank-defect of the Jacobi matrix at the solution is one, and we
developed and experimentally validated algorithms for the case when the topological
index is 2. There, we proved the special case of Theorem 3.1 when d = 2 under the
same assumptions as those in §2, we developed specialized versions of the algorithms
in §4, and we presented varying-dimensional experimental results.

We were surprised and pleased that the results in [10] could be generalized so eas-
ily. In particular, we developed an alternate simple, general proof for Theorem 3.1.
Furthermore, the algorithms in §4, although not taking advantage of special efficien-
cies in the degree-2 case, are similar in structure and have the same computational
complexity as the algorithms in [10].

1.1. Notation. We assume familiarity with the fundamentals of interval arith-
metic; see [1, 4, 9, 11, 13] for introductory material.

∗This work was partially supported by National Science Foundation grant DMS-9701540.
†Department of Mathematics, University of Louisiana at Lafayette, Lafayette, LA 70504, USA

(rbk@louisiana.edu).
‡Software Design Engineer, Hewlett–Packard Company, 3000 Waterview Parkway, Richardson,

TX 75080, USA (jianwei@rsn.hp.com).

1

Throughout, scalars and vectors will be denoted by lower case, while matrices
will be denoted by upper case. Intervals, interval vectors (also called “boxes”) and
interval matrices will be denoted by boldface. For instance, x = (x1, . . . , xn) denotes
an interval vector, A = (ai,j) denotes a point matrix, and A = (ai,j) denotes an
interval matrix. The midpoint of an interval or interval vector x will be denoted by
m(x). Real n-space will be denoted by Rn, while complex n-space will be denoted by
Cn.

Suppose x = (x1, . . . , xn) is an n-dimensional real box, where xk = [xk, xk]. The
non-oriented boundary of x, denoted by ∂x, consists of 2n (n − 1)-dimensional real
boxes

xk ≡ (x1, . . . , xk−1, xk,xk+1, . . . , xn) and xk ≡ (x1, . . . , xk−1, xk,xk+1, . . . , xn),

where k = 1, . . . , n. If x is positively oriented, then the derived orientation of xk is
(−1)k and the derived orientation of xk is (−1)k+1; see [10].

1.2. Formulas from Degree Theory. In [10], we reviewed the topological
degree in the context of this paper. Also see [2, 3, 6, 7, 12, 14]. Here, we repeat
several properties used in the proofs in subsequent sections.

Theorem 1.1. ([12, p. 150]) Suppose that the Jacobian matrix F ′(x) is nonsin-
gular at each zero of F . Then, the degree d(F,D, 0) is equal to the number of zeros of
F at which the determinant of the Jacobian matrix F ′(x) is positive minus the number
of zeros of F at which the determinant of the Jacobian matrix F ′(x) is negative.

Theorem 1.1 gives some intuition of what the degree is, under the conditions in
the theorem. It’s a kind of counting of zeros of F in D.

Theorem 1.2. ([12, p. 150]) Let F , G : D ⊂ Rn → Rn be two continuous
functions. If F (x) = G(x) for x ∈ ∂D, then d(F,D, 0) = d(G,D, 0).

Theorem 1.2 states one of the most important properties of degree: the degree
depends only on the function values on the boundary.

Theorem 1.3. ([12, p. 152]) Let α = min{‖F (x)‖2|x ∈ ∂D}. If

sup{‖F (x)−G(x)‖2|x ∈ D} <
1
7
α,

then

d(F,D, 0) = d(G,D, 0).

Theorem 1.3 tells us that small perturbations of F don’t change the degree.
Theorem 1.4. ([12, p. 157]) Let F , G : D ⊂ Rn → Rn be two continuous

functions. If

0 6∈ {tF (x) + (1− t)G(x)|x ∈ ∂D and t ∈ [0, 1]},

then

d(F,D, 0) = d(G,D, 0).

Theorem 1.4 is the famous Poincaré-Bohl Theorem. It’s a particular case of the
homotopy invariant property of the topological degree.

2

Suppose F : D ⊂ Cn → Cn is analytic, and view the real and imaginary com-
ponents of F and its argument z ∈ Cn as real components in R2n. Let z = x + iy
and F (z) = u(x, y) + iv(x, y), where x = (x1, . . . , xn), y = (y1, . . . , yn), u(x, y) =
(u1(x, y), . . . , un(x, y)) and v(x, y) = (v1(x, y), . . . , vn(x, y)). We define D̃ by

D̃ ≡ {(x1, y1, . . . , xn, yn)|(x1 + iy1, . . . , xn + iyn) ∈ D}

and F̃ : D̃ ⊂ R2n → R2n by F̃ = (u1, v1, . . . , un, vn). Then, we have the following
property of topological degree d(F̃ , D̃, 0), and relationships between d(F̃ , D̃, 0) and
the solutions of the system F (z) = 0 in D.

Theorem 1.5. ([10]) Suppose F : D ⊂ Cn → Cn is analytic, with F (z) 6= 0 for
any z ∈ ∂D, and suppose D̃ and F̃ : D̃ → R2n are defined as above. Then

1. d(F̃ , D̃, 0) ≥ 0.
2. d(F̃ , D̃, 0) > 0 if and only if there is a solution z∗ ∈ D, F (z∗) = 0.
3. d(F̃ , D̃, 0) is equal to the number of solutions z∗ ∈ D, F (z∗) = 0, counting

multiplicities.
4. If the Jacobi matrix F ′(z∗) is non-singular at every z∗ ∈ D with F (z∗) = 0,

then d(F̃ , D̃, 0) is equal to the number of solutions z∗ ∈ D, F (z∗) = 0.

1.3. A Basic Degree Computation Formula. If we let

F¬k(x) ≡
(

f1(x), . . . , fk−1(x), fk+1(x), . . . , fn(x)
)

and select s ∈ {−1, 1}, then d(F, x, 0) is equal to the number of zeros of F¬k on ∂x
with positive orientation at which sgn(fk) = s, minus the number of zeros of F¬k on
∂x with negative orientation at which sgn(fk) = s. The orientation of each zero can
be computed by computing the sign of the determinant of the Jacobian of F¬k and
by taking into account the orientation of the face of x on which the zero lies.

Next, we present a degree computation formula that is similar to a formula used
in [10]; see Theorem 2.5 of [10]. We can get the formula in the following theorem by
noticing formulas (4.12) and (4.14) in [14] and by taking the orientations of the faces
of x into account. We will use this formula to derive the computational procedures
in §4.

Theorem 1.6. Suppose F 6= 0 on ∂x, and suppose there is p, 1 ≤ p ≤ n, such
that:

1. F¬p ≡ (f1, . . . , fp−1, fp+1, . . . , fn) 6= 0 on ∂xk or ∂xk, k = 1, . . . , n; and
2. the Jacobi matrices of F¬p are non-singular at all solutions of F¬p = 0 on

∂x.
Then

d(F, x, 0) = (−1)p−1s

{

n
∑

k=1

(−1)k
∑

x∈xk
F¬p(x)=0

sgn(fp(x))=s

sgn
∣

∣

∣

∣

∂F¬p

∂x1x2 . . . xk−1xk+1 . . . xn
(x)

∣

∣

∣

∣

+
n

∑

k=1

(−1)k+1
∑

x∈x
k

F¬p(x)=0
sgn(fp(x))=s

sgn
∣

∣

∣

∣

∂F¬p

∂x1x2 . . . xk−1xk+1 . . . xn
(x)

∣

∣

∣

∣

}

,

where s = +1 or −1.
3

2. Assumptions and Choice of Box. In this section, we present the basic
assumptions. We also introduce how we choose the coordinate bounds xi = [xi, xi]
to satisfy the assumptions and enable more efficient algorithms. When the rank of
F ′(x∗) is n− p for some p > 0, an appropriate preconditioner can be used to reduce
F ′(x) to approximately the pattern shown in Figure 2.1. (See [9] and [10] for details
on preconditioning.)

Y F ′(x) =

1 0 . . . 0
p

︷ ︸︸ ︷

∗ . . . ∗
0 1 0 . . . 0 ∗ . . . ∗
...

...
. . .

...
...

0 . . . 0 1 ∗ . . . ∗
0 . . . 0 0 0 . . . 0
...

...
...

...
...

0 . . . 0 0 0 . . . 0

.

Fig. 2.1. A preconditioned singular system of rank n − p, where “∗” represents a non-zero
element.

In the analysis to follow, we assume that the system has already been precondi-
tioned, so that it is, to within second-order terms with respect to w(x), of the form
in Figure 2.1. Here as in [10], we concentrate on the case p=1.

2.1. The Basic Assumptions. As in the special case d = 2 of [10], we assume
1. F : D ⊂ Rn → Rn can be extended to an analytic function in Cn.
2. x = (x1, . . . , xn) = ([x1, x1], . . . , [xn, xn]) is a small box constructed to be

centered at an approximate solution x̌, i.e. m(x) = (x̌1, . . . , x̌n).
3. x̌ is near a point x∗ with F (x∗) = 0, such that ‖x̌− x∗‖ is much smaller

than the width of the box x, and width of the box x is small enough so that
mean value interval extensions lead, after preconditioning, to a system like
Figure 2.1, with small intervals replacing the zeros.

4. F has been preconditioned as in Figure 2.1, and F ′(x∗) has null space of
dimension 1.

Denote

αk ≡
∂fk

∂xn
(x̌), 1 ≤ k ≤ n− 1,

αn ≡ −1,

∆1 ≡
∣

∣

∣

∣

∂F
∂x1 . . . ∂xn

(x̌)
∣

∣

∣

∣

∆d ≡
n

∑

k1=1

. . .
n

∑

kd=1

∂dfn

∂xk1 . . . ∂xkd

(x̌)αk1 . . . αkd , 2 ≤ d.

The following representation of f(x) near x̌ is appropriate under these assumptions.

fk(x) = (xk − x̌k) + αk(xn − x̌n) +O
(

‖x− x̌‖2
)

(2.1)

for 1 ≤ k ≤ n− 1.

fn(x) =
1
2!

n
∑

k1=1

n
∑

k2=1

∂2fn

∂xk1∂xk2

(x̌)(xk1 − x̌k1)(xk2 − x̌k2) + . . .(2.2)

4

+
1
d!

n
∑

k1=1

. . .
n

∑

kd=1

∂dfn

∂xk1 . . . ∂xkd

(x̌)(xk1 − x̌k1) . . . (xkd − x̌kd)

+O
(

‖x− x̌‖d+1
)

,

or

fk(x) ≈ (xk − x̌k) + αk(xn − x̌n) for 1 ≤ k ≤ n− 1.(2.3)

fn(x) ≈ 1
2!

n
∑

k1=1

n
∑

k2=1

∂2fn

∂xk1∂xk2

(x̌)(xk1 − x̌k1)(xk2 − x̌k2) + . . .(2.4)

+
1
d!

n
∑

k1=1

. . .
n

∑

kd=1

∂dfn

∂xk1 . . . ∂xkd

(x̌)(xk1 − x̌k1) . . . (xkd − x̌kd).

For F : Rn → Rn, extend F to complex space: x + iy, with y in a small box y =
(

y1, . . . , yn

)

=
(

[y
1
, y1], . . . , [yn

, yn]
)

, where y is centered at (0, . . . , 0). Define x̃ ≡
(x1,y1, . . . , xn, yn) = ([x1, x1], [y1

, y1], . . . , [xn, xn], [y
n
, yn]), uk(x, y) ≡ <(fk(x+ iy))

and vk(x, y) ≡ =(fk(x + iy)). With this, define

F̃ (x, y) ≡ (u1(x, y), v1(x, y), . . . , un(x, y), vn(x, y)) : R2n → R2n.

Also define

F̃¬un(x, y) ≡
(

u1(x, y), v1(x, y), . . . , un−1(x, y), vn−1(x, y), vn(x, y)
)

.

Then, based on (2.1) and (2.2), for 1 ≤ k ≤ (n− 1),

uk(x, y) = (xk − x̌k) + αk(xn − x̌n)

+O
(

‖(x− x̌, y)‖2
)

,

vk(x, y) = yk + αkyn +O
(

‖(x− x̌, y)‖2
)

,

(2.5)

or

uk(x, y) ≈ (xk − x̌k) + αk(xn − x̌n),
vk(x, y) ≈ yk + αkyn.

}

(2.6)

2.2. Choosing the Coordinate Bounds. We use a similar scheme to that of
§5 of [10]. In particular, having defined xk and xk in §1.1, we define yk and yk
similarly:

yk ≡ (x1, y1, . . . , xk−1, yk−1, xk, y
k
, xk+1, yk+1, . . . , xn, yn) and

yk ≡ (x1, y1, . . . , xk−1, yk−1, xk, yk, xk+1, yk+1, . . . , xn, yn).

To compute the degree d(F̃ , x̃, 0), we consider F̃¬un on the boundary of x̃. This
boundary consists of the 4n faces x1, x1, y1, y1, . . ., xn, xn, yn, yn. We set xn and
yn in such a way that

w(xn) ≤ 1
2

min
1≤k≤n−1

{

w(xk)
|αk|

}

and w(yn) ≤ 1
2

min
1≤k≤n−1

{

w(yk)
|αk|

}

.(2.7)

Constructing the box widths this way makes it is unlikely that uk(x, y) = 0 on either
xk or xk and unlikely that vk(x, y) = 0 on either yk or yk, where k = 1, . . . , n − 1.

5

This, in turn, allows us to replace searches on 4n− 4 of the 4n faces of ∂x̃ by simple
interval evaluations, reducing the total computational cost dramatically. See [10] for
details.

A difference between the scheme used here and that of [10] is the way the ratio
w(yn)/w(xn) is chosen. In [10], w(yn) was chosen large relative to xn, to arrange no
solutions of un = 0 on yn and yn. When the degree is odd, that is not possible, and
we have found the strategy represented by formula (4.3) below, implying w(yn) small
relative to w(xn) as in Figure 4.1 below, to be more convenient.

3. A Theorem. In [10] we proved that, under the assumptions in §2, if (2.3)
and (2.4) are exact for d = 2, and if ∆1 = 0 but ∆2 6= 0, then d(F̃ , x̃, 0) = 2. Here,
we generalize that result to ∆1 = . . . = ∆d−1 = 0, ∆d 6= 0.

Theorem 3.1. Suppose
1. all the assumptions in §2 are true;
2. (2.3) and (2.4) are exact; and
3. ∆1 = . . . = ∆d−1 = 0, ∆d 6= 0, where 2 ≤ d.

Then d(F̃ , x̃, 0) = d.
In contrast to the proof in [10], we use a homotopy argument to prove Theo-

rem 3.1.
Proof. Let z = (z1, . . . , zn) = (x1 + iy1, . . . , xn + iyn). Then

F (z) = (f1(z), . . . , fn−1(z), fn(z)),

where

fk(z) = (zk − žk) +
∂fk

∂xn
(x̌)(zn − žn)

for 1 ≤ k ≤ n− 1,

fn(z) =
1
2!

n
∑

k1=1

n
∑

k2=1

∂2fn

∂xk1∂xk2

(x̌)(zk1 − žk1)(zk2 − žk2) + . . .(3.1)

+
1
d!

n
∑

k1=1

. . .
n

∑

kd=1

∂2fn

∂xk1 . . . ∂xkd

(x̌)(zk1 − žk1) . . . (zkd − žkd).

We construct G : Cn → Cn by

G(z) = (g1(z), . . . , gn−1(z), gn(z)),

where

gk(z) = (zk − žk) for 1 ≤ k ≤ n− 1,

gn(z) =
(−1)d∆d

d!
(zn − žn)d.(3.2)

Let pk(x, y) ≡ <(gk(x + iy)) and qk(x, y) ≡ =(gk(x + iy)). With this, define G̃ :
R2n → R2n by

G̃(x, y) ≡ (p1(x, y), q1(x, y), . . . , pn(x, y), qn(x, y)).

We will first prove d(F̃ , x̃, 0) = d(G̃, x̃, 0). Define

H̃((x, y), t) ≡ tF̃ (x, y) + (1− t)G̃(x, y)

and H(z, t) ≡ tF (z) + (1− t)G(z).
6

We will prove that H̃((x, y), t) 6= 0 when (x, y) ∈ ∂x̃ and t ∈ [0, 1]. It’s clear that
H̃((x, y), t) = 0 is equivalent to H(z, t) = 0, so we consider H(z, t).

H(z, t) =
(

H1(z, t), . . . , Hn(z, t)
)

=
(

tf1(z) + (1− t)g1(z), . . . , tfn−1(z) + (1− t)gn−1(z),

tfn(z) + (1− t)gn(z)
)

=
(

t((z1 − ž1) + α1(zn − žn)) + (1− t)(z1 − ž1), . . . ,

t((zn−1 − žn−1) + αn−1(zn − žn)) + (1− t)(zn−1 − žn−1),

tfn(z) + (1− t)
(−1)d∆d

d!
(zn − žn)d

)

=
(

(z1 − ž1) + tα1(zn − žn), . . . , (zn−1 − žn−1) + tαn−1(zn − žn),

tfn(z) + (1− t)
(−1)d∆d

d!
(zn − žn)d

)

Thus, H(z, t) = 0 implies zk = žk − tαk(zn − žn) for k = 1, . . . , n − 1. Plugging
zk − žk = −tαk(zn − žn) for each such k into (3.1), we get

fn(z) =
1
2!

n
∑

k1=1

n
∑

k2=1

∂2fn

∂xk1∂xk2

(x̌)(−1)2t2αk1αk2(zn − žn)2 + . . . +

1
d!

n
∑

k1=1

. . .
n

∑

kd=1

∂2fn

∂xk1 . . . ∂xkd

(x̌)(−1)dtdαk1 . . . αkd(zn − žn)d

=
(−1)2t2

2!
(zn − žn)2

n
∑

k1=1

n
∑

k2=1

∂2fn

∂xk1∂xk2

(x̌)αk1αk2 + . . .

+
(−1)dtd

d!
(zn − žn)d

n
∑

k1=1

. . .
n

∑

kd=1

∂2fn

∂xk1 . . . ∂xkd

(x̌)αk1 . . . αkd

=
(−1)2t2∆2

2!
(zn − žn)2 + . . . +

(−1)d−1td−1∆d−1

(d− 1)!
(zn − žn)d−1

+
(−1)dtd∆d

d!
(zn − žn)d

=
(−1)dtd∆d

d!
(zn − žn)d.

Thus, the last component of H(z, t) is:

tfn(z) + (1− t)
(−1)d∆d

d!
(zn − žn)d

=
(−1)dtd+1∆d

d!
(zn − žn)d + (1− t)

(−1)d∆d

d!
(zn − žn)d

=
(−1)d(1− t + td+1)∆d

d!
(zn − žn)d.

When t = 0 and t = 1, 1− t + td+1 = 1. When t ∈ (0, 1), 1− t + td+1 > td+1 > 0.
Thus, 1 − t + td+1 6= 0 for t ∈ [0, 1]. Then, H(z, t) = 0 implies (zn − žn)d = 0, and
consequently, zn − žn = 0 or zn = žn.

7

Now we know H(z, t) has a unique zero at (z̃1, . . . , z̃n−1, z̃n) = (ž1 − tα1(zn −
žn), . . . , žn−1 − tαn−1(zn − žn), žn). Accordingly, H̃((x, y), t) has a unique zero at
(x̃1, ỹ1, . . . , x̃n−1, ỹn−1, x̃n, ỹn) = (x̌1 − tα1(xn − x̌n), (y̌1 − tα1(yn − y̌n), . . . , x̌n−1 −
tαn−1(xn− x̌n), y̌n−1− tαn−1(yn− y̌n), x̌n, y̌n). Based on the way we have constructed
xn and yn, we have

|x̃k − x̌k| = |tαk(xn − x̌n)| ≤ |αk(xn − x̌n)| ≤ |αk|
w(xn)

2
<

w(xk)
2

and |ỹk − y̌k| = |tαk(yn − y̌n)| ≤ |αk(yn − y̌n)| ≤ |αk|
w(yn)

2
<

w(yk)
2

,

where k = 1, . . . , n−1. Thus, x̃k /∈ ∂xk and ỹk /∈ ∂yk for k = 1, . . . , n−1. Obviously,
x̃n = x̌n /∈ ∂xn and ỹn = y̌n /∈ ∂yn. This implies H̃((x, y), t) 6= 0 for (x, y) ∈ ∂x̃ and
t ∈ [0, 1]. Then, by Theorem 1.4,

d(F̃ , x̃, 0) = d(G̃, x̃, 0).

Next, we prove d(G̃, x̃, 0) = d. Perturb G(z) by an arbitrary small ε to define

Gε(z) = (g1ε(z), . . . , g(n−1)ε(z), gnε(z)),

where

gkε(z) = gk(z) = (zk − žk) for 1 ≤ k ≤ n− 1,

gnε(z) = gn(z) + ε =
(−1)d∆d

d!
(zn − žn)d + ε.(3.3)

Let pkε(x, y) ≡ <(gkε(x + iy)) and qkε(x, y) ≡ =(gkε(x + iy)). With this, define

G̃ε(x, y) ≡ (p1ε(x, y), q1ε(x, y), . . . , pnε(x, y), qnε(x, y)).

It is obvious that pkε(x, y) = xk−x̌k and qkε(x, y) = yk−y̌k for k = 1, . . . , n−1. Assume
ε is small enough. Then, Gε(z), and thus G̃ε(x, y), have d zeros z̃ = (z̃1, . . . , z̃n−1, z̃n),
or x̃ = (x̃1, ỹ1, . . . , x̃n−1, ỹn−1, x̃n, x̃n) in x̃, with z̃k − žk = 0, or x̃k − x̌k = 0 and
ỹk − y̌k = 0 for k = 1, . . . , n − 1, and (z̃n − žn)d = d!ε

(−1)d+1∆d
6= 0. ∂gnε

∂zn
(z̃) =

(−1)d∆d
(d−1)! (z̃n − žn)d−1 6= 0.

∣

∣

∣

∣

∣

∂G̃ε

∂x1∂y1 . . . ∂xn∂yn
(x̃)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 0 . . . 0 0 0
0 1 . . . 0 0 0
...

...
. . .

...
...

0 0 . . . 1 0 0
0 0 . . . 0 ∂pnε

∂xn

∂pnε
∂yn

0 0 . . . 0 ∂qnε
∂xn

∂qnε
∂yn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∂pnε
∂xn

∂pnε
∂yn

∂qnε
∂xn

∂qnε
∂yn

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∂pnε
∂xn

∂pnε
∂yn

−∂pnε
∂yn

∂pnε
∂xn

∣

∣

∣

∣

∣

(3.4)

=
(

∂pnε

∂xn

)2

+
(

∂pnε

∂yn

)2

=
∣

∣

∣

∣

∂gnε

∂zn
(z̃)

∣

∣

∣

∣

2

> 0.

Thus, by Theorem 1.1, d(G̃ε, x̃, 0) = d, and then d(G̃, x̃, 0) = d by Theorem 1.3.
Finally,

d(F̃ , x̃, 0) = d(G̃, x̃, 0) = d.
8

Unless the components of F are exactly linear and degree d polynomials, the
equalities (2.3) and (2.4) in §2 are not exact, but are only approximately true to
second order. However, if second-order approximations are accurate, we can expect
the degree to be equal to d. The disadvantage of the proof of Theorem 3.1 is that it
does not lead to a practical computational technique. If we try to verify H(z, t) 6= 0
or H̃((x, y), t) 6= 0 when (x, y) ∈ ∂x̃ and t ∈ [0, 1], then it would require an inordinate
amount of work for a verification process that would normally require only a single
step of an interval Newton method in the nonsingular case. First, we would need
to compute ∆d, which involves all partial derivatives of order 1 and order d. This
is expensive when both n and d are large. Second, we would need to know where
the solutions of un(x) = 0 and vn(x) = 0 are on xn, xn, yn and yn when zk =
žk − tαk(zn − žn), and the search process for such solutions is expensive.

We could try to verify H(z, t) 6= 0 when (x, y) ∈ ∂x̃ and t ∈ [0, 1] in another way:
verify H(z, t) = 0 has a unique solution in the interior of x̃ when t ∈ [0, 1]. However,
we will run into the singular situation again if we do that.

In fact, there is an alternative algorithm to compute the degree. That will be the
subject of next section.

4. Algorithm. The algorithm we present here is similar to the algorithm in [10].
Based on Theorem 1.6 in §1.2, the following theorem underlies our algorithm.

Theorem 4.1. Suppose
1. uk 6= 0 on xk and xk, and vk 6= 0 on yk and yk, k = 1, . . . , n− 1;
2. F̃¬un = 0 has solutions, if there are any, on xn and xn with yn in the interior

of yn, and F̃¬un = 0 has solutions, if there are any, on yn and yn with xn

in the interior of xn;
3. un 6= 0 at the solutions of F̃¬un = 0 in condition 2; and
4. the Jacobi matrices of F̃¬un are non-singular at the solutions of F̃¬un = 0 in

condition 2.
Then, for a fixed s ∈ {−1, 1},

d(F̃ , x̃, 0) = −s
∑

xn=xn
F̃¬un (x,y)=0

sgn(un(x,y))=s

sgn

∣

∣

∣

∣

∣

∂F̃¬un

∂x1y1 . . . xn−1yn−1yn
(x, y)

∣

∣

∣

∣

∣

+s
∑

xn=xn
F̃¬un (x,y)=0

sgn(un(x,y))=s

sgn

∣

∣

∣

∣

∣

∂F̃¬un

∂x1y1 . . . xn−1yn−1yn
(x, y)

∣

∣

∣

∣

∣

+s
∑

yn=y
n

F̃¬un (x,y)=0
sgn(un(x,y))=s

sgn

∣

∣

∣

∣

∣

∂F̃¬un

∂x1y1 . . . xn−1yn−1xn
(x, y)

∣

∣

∣

∣

∣

−s
∑

yn=yn
F̃¬un (x,y)=0

sgn(un(x,y))=s

sgn

∣

∣

∣

∣

∣

∂F̃¬un

∂x1y1 . . . xn−1yn−1xn
(x, y)

∣

∣

∣

∣

∣

.

Proof. Condition 1 implies F̃ 6= 0 on xk, xk, yk and yk, k = 1, . . . , n − 1, and
conditions 2 and 3 imply F̃ 6= 0 on xn, xn, yn and yn. Thus, F̃ 6= 0 on ∂x̃. Now,

9

condition 1 implies F̃¬un 6= 0 on ∂xk, ∂xk, ∂yk and ∂yk, k = 1, . . . , n − 1. ∂xn

consists of 2(n− 1) (2n− 2)-dimensional boxes, each of which is either embedded in
some xk, xk, yk or yk, 1 ≤ k ≤ n− 1 or is embedded in ∂yn or ∂yn. Thus, by 1 and
2, F̃¬un 6= 0 on ∂xn. Similarly, F̃¬un 6= 0 on ∂xn, ∂yn and ∂yn. Thus, condition 1
in Theorem 1.6 is satisfied. Finally, with condition 4, all the conditions of Theorem
1.6 are satisfied. The formula is thus obtained.

By constructing the box x̃ according to (2.7), we can verify uk 6= 0 on xk and xk,
and vk 6= 0 on yk and yk, k = 1, . . . , n−1, since uk(x, y) ≈ (xk−x̌k)+αk(xn−x̌n) 6= 0
on xk and xk, and vk(x, y) ≈ yk + αkyn 6= 0 on yk and yk. This only needs 4n − 4
interval evaluations. Then, we only need to search the four faces xn, xn, yn and yn for
solutions of F̃¬un(x, y) = 0, regardless of how large n is, thus dramatically reducing
the total computational cost. The four faces xn, xn, yn and yn remaining to be
searched are (2n − 1)-dimensional boxes. However, exploitation of (2.5) will reduce
the search of solutions of F̃¬un(x, y) = 0 on the (2n−1)-dimensional boxes to actually
a one dimensional search. We use xn as an example to explain this.

On xn, xn = xn. We know from (2.5) that if xn is known precisely, formally

solving uk(x,y) = 0 for xk gives sharper bounds x̃k with w(x̃k) = O
(

‖(x− x̌, y)‖2
)

,
1 ≤ k ≤ n − 1. Then, we can divide yn into smaller subintervals. For a small
subinterval y0

n of yn, we can formally solve vk(x, y) = 0 for yk to get sharper bounds

ỹk with w(ỹk) = O
(

max(‖(x− x̌, y)‖2,
∥

∥y0
n

∥

∥)
)

, 1 ≤ k ≤ n − 1. Thus, we have
reduced the search to searching the one dimensional interval yn, much less costly
than searching a (2n− 1)-dimensional box when n is large. Furthermore, if we know
approximately where the solutions of F̃¬un(x, y) = 0 are, we can even reduce the cost
of the one dimensional search. To this end, we will next analyze the solutions of
F̃¬un(x, y) = 0 on the four faces xn, xn, yn and yn.

For convenience of analysis, assume (2.3) and (2.4) are exact. In other words, for
1 ≤ k ≤ (n− 1),

uk(x, y) = (xk − x̌k) + αk(xn − x̌n),
vk(x, y) = yk + αkyn.

}

(4.1)

and

fn(z) =
1
2!

n
∑

k1=1

n
∑

k2=1

∂2fn

∂xk1∂xk2

(x̌)(zk1 − žk1)(zk2 − žk2) + . . . +

1
d!

n
∑

k1=1

. . .
n

∑

kd=1

∂dfn

∂xk1 . . . ∂xkd

(x̌)(zk1 − žk1) . . . (zkd − žkd).

From this, F̃¬un(x, y) = 0 implies uk(x, y) = 0 and vk(x, y) = 0, i.e. fk(z) = 0,
whence zk = žk−αk(zn− žn) for k = 1, . . . , n− 1. In terms of the real and imaginary
coordinates,

xk = x̌k − αk(xn − x̌n),
yk = −αkyn,

}

(4.2)

for k = 1, . . . , n− 1. Plugging zk − žk = −αk(zn− žn), k = 1, . . . , n− 1, into fn(z) as
in the proof of Theorem 3.1 then gives

fn(z) =
(−1)d∆d

d!
(zn − žn)d.

10

-

6

xn

yn

xnxn

yn

yn

vn = 0vn = 0

vn = 0 vn = 0

vn = 0 vn = 0

un = 0un = 0

un = 0 un = 0

un = 0

un = 0

�

�
y:

Fig. 4.1. When d is odd. Here, d = 3. vn = 0 on solid lines and un = 0 on dashed lines. The
thick dots are the solutions of F̃¬un(x, y) = 0 on @x̃.

Thus, un(x, y) = <(fn(z)) = (−1)d∆d
d! <((zn − žn)d) and vn(x, y) = =(fn(z))

= (−1)d∆d
d! =((zn − žn)d). Setting zn − žn = r(cos(θ) + i sin(θ)), we obtain un(x, y) =

(−1)d∆d
d! r cos(dθ) and vn(x, y) = (−1)d∆d

d! r sin(dθ), so un(x, y) = 0 is equivalent to
cos(dθ) = 0 and vn(x, y) = 0 is equivalent to sin(dθ) = 0. If we choose xn and yn
such that

w(yn)
w(xn)

= tan
(π

4d

)

, that is, w(yn) = tan
(π

4d

)

w(xn),(4.3)

then all solutions of vn(x, y) = 0, and consequently all solutions of F̃¬un(x, y) = 0 are
arranged in a known pattern on xn, xn, yn, and yn. In particular, on xn, x̃n = xn.
vn(x, y) = 0 has a unique solution ỹn = 0. Plugging these into (4.2), we get the
unique solution of F̃¬un(x, y) = 0 with

(x̃, ỹ) = (x̌1 − α1(xn − x̌n), 0, . . . , x̌n−1 − αn−1(xn − x̌n), 0, xn, 0) .

Similarly, F̃¬un(x, y) = 0 has a unique solution on xn with

(x̃, ỹ) = (x̌1 − α1(xn − x̌n), 0, . . . , x̌n−1 − αn−1(xn − x̌n), 0, xn, 0).

On yn, ỹn = y
n
. vn(x, y) = 0 has d− 1 solutions with

x̃n =
w(yn)

tan
(mπ

d

) , m = d− 1, d− 2, . . . , 1.(4.4)

Plugging these into (4.2) gives the d− 1 solutions (x̃, ỹ) of F̃¬un(x, y) = 0 with

(x̃, ỹ) =

(

x̌1 − α1

(w(yn)
tan

(mπ
d

) − x̌n

)

, α1yn
, . . . , x̌n−1 − αn−1

(w(yn)
tan

(mπ
d

) − x̌n

)

,

11

−αn−1yn
, x̌n −

(w(yn)
tan

(mπ
d

) − x̌n

)

, y
n

)

.

Similarly, F̃¬un(x, y) = 0 has d− 1 solutions on yn with

(x̃, ỹ) =

(

x̌1 − α1

(w(yn)
tan

(mπ
d

) − x̌n

)

, . . . , αn−1

(w(yn)
tan

(mπ
d

) − x̌n

)

,

−αn−1yn, x̌n −
(w(yn)

tan
(mπ

d

) − x̌n

)

, yn

)

.

For example, Figure 4.1 gives the solutions of vn(x, y) = 0 on the four faces xn, xn,
yn and yn when d = 3.

To use the above analysis to find approximations to the solutions of F̃¬un = 0
on the faces we search, we need to know d; we present a heuristic for d in the next
section.

Now, we present our algorithm. The algorithm consists of three phases:
1. the box-construction phase where we set x̃,
2. the elimination phase where we use interval evaluations to verify that uk 6= 0

on xk and xk, and vk 6= 0 on yk and yk, where 1 ≤ k ≤ n − 1, and thus
eliminate those 4n− 4 faces, and

3. the search phase, where we
(a) search xn, xn, yn and yn to locate the solutions of F̃¬un(x, y) = 0,
(b) compute the signs of un and determinants of the Jacobi matrices of F̃¬un

at those solutions,
(c) compute the degree contributions of each of the four faces xn, xn, yn

and yn according to Theorem 4.1, and
(d) finally sum up to get the degree.

ALGORITHM 1
Box-setting Phase
1. Compute the preconditioner of the original system, using Gaussian elimina-

tion with full pivoting.
2. Set the widths of xk and yk (see explanation below), for 1 ≤ k ≤ n− 1.
3. Set the width of xn as in (2.7).
4. Set the width of yn to be the minimum of that obtained from conditions (2.7)

and (4.3).
Elimination Phase
Do for 1 ≤ k ≤ n− 1
1. Do for xk and xk

(a) Compute the mean-value extension of uk over that face.
(b) If 0 ∈ uk, then stop and signal failure.

2. Do for yk and yk
(a) Compute the mean-value extension of vk over that face.
(b) If 0 ∈ vk, then stop and signal failure.

Search Phase
1. Set the value of s ∈ {+1,−1}.

(a) Initialize s to be +1. Initialize search lower and search upper to be false.
(See the second note below.)

(b) Do for xn and xn

12

i. Use mean-value extensions for uk(x, y) = 0 to solve for xk to get

sharper bounds x̃k with width O
(

‖(x− x̌,y)‖2
)

, 1 ≤ k ≤ n − 1,

and thus to get a subface x0
n (or x0

n) of xn (or xn.).
ii. If x̃k ∩ xk = ∅, then cycle.
iii. Compute the mean-value extension un over x0

n (or x0
n).

iv. If un contains 0, then set search lower (or search upper) to be true
and cycle.

v. If un does not contain 0, then set s = −sgn(un).
(c) If un does not contain 0 on both xn and xn, then set s to be the opposite

sign to the sign of un on xn, and if un has different signs on xn and xn,
then set search lower to be true.

2. For xn (or xn), if search lower (or search upper) is true, then take xn and 0
as inputs and apply Algorithm 2 to compute the degree contribution of xn

(or xn).
3. For yn (or yn)

(a) Use (4.4) to compute the x̃m
n , m = d − 1, d − 2, . . . , 1, x̃d−1

n < x̃d−2
n <

. . . < x̃1
n, corresponding to the d− 1 approximate solutions of F̃¬un = 0

on yn.
(b) Divide xn into d− 1 parts xm

n , m = 1, . . . , d− 1 as follows:

x1
n = [xn, (x̃1

n + x̃2
n)/2], xm

n = [(x̃m−1
n + x̃m

n)/2, (x̃m
n + x̃m+1

n)/2]

for m = 2, . . . , d− 2, and xd−1
n = [(x̃d−2

n + x̃d−1
n)/2, xn].

(c) Do for m = 1, . . . , d− 1.
i. Set a subface ym

n of yn (or ym
n of yn) by replacing xn by xm

n .
ii. Apply Algorithm 3 with ym

n and x̃m
n as inputs, to compute the degree

contribution of ym
n (or ym

n .)
(d) Add the degree contributions in the last step to get the degree contri-

bution of yn (or yn.)
4. Add the degree contributions of xn, xn, yn and yn to get the overall degree.

END OF ALGORITHM 1

Notes for Algorithm 1
1. In Step 3 of the box-setting phase, the width w(xn) of xn depends on the

accuracy of the approximate solution x̌ of the system F (x) = 0: w(xn)
should be much larger than |x̌k−x∗k|, but also should be sufficiently small for
a quadratic model to be accurate over the box.

2. We may set s to minimize the amount of work required to evaluate the sum
in Theorem 4.1. In particular, if we know sgnun = σ on a large number of
faces, then setting s = −σ will eliminate the need to search those faces.

ALGORITHM 2
Inputs: xn and y̌n (or xn and y̌n)
1. (a) Use mean-value extensions for uk(x, y) = 0 to solve for xk to get sharper

bounds x̃k with width O
(

‖(x− x̌, y)‖2
)

, 1 ≤ k ≤ n− 1.

(b) If x̃k ∩ xk = ∅, then return the degree contribution of that face as 0.
(c) Update xk.

2. (a) Compute the mean-value extension un over that face.
(b) If s× sgn(un) < 0, then return the degree contribution of that face as 0.

3. Construct a small subinterval y0
n of yn centered at y̌n.

13

4. Step 4 to step 9 are identical to step 1(d) to step 1(i), respectively, of the
search phase in the algorithm in [10].

10. Apply Theorem 4.1 to compute the degree contribution of xn or xn.
END OF ALGORITHM 2

ALGORITHM 3
Inputs: yn and x̌n (or yn and x̌n.)
1. (a) Use mean-value extensions for vk(x,y) = 0 to solve for yk to get sharper

bounds ỹk with width O
(

‖(x− x̌, y)‖2
)

, 1 ≤ k ≤ n− 1.

(b) If ỹk ∩ yk = ∅, then return the degree contribution of that face as 0.
(c) Update yk.

2. (a) Compute the mean-value extension un over that face.
(b) If s× sgn(un) < 0, then return the degree contribution of that face as 0.

3. Construct a small subinterval x0
n of xn which is centered at x̌n.

4. Step 4 to step 9 are identical to step 2(d) to step 2(i), respectively, of the
search phase in the algorithm in [10].

10. Same as step 10 of Algorithm 2.
END OF ALGORITHM 3

Notes for Algorithm 2 and Algorithm 3
1. Algorithms 2 and 3 are identical to steps 1 and 2 of the search phase of the

algorithm in [10], except, in Algorithm 2, y̌n can be any interior point of
yn, while y̌n is assumed to equal zero in step 1 of the search phase in the
algorithm in [10]. Similarly, in Algorithm 3, x̌n can be any interior point of
xn, whereas x̌n is assumed to equal the center of xn in step 2 of the search
phase in the algorithm in [10].

2. In the overall algorithm, Algorithm 1, the actual inputs are ym
n and x̃m

n when
Algorithm 3 is applied. However, for notational simplicity, we use yn and x̌n

as inputs in the presentation of Algorithm 3.
The computational complexity of Algorithms 1, 2, and 3 is O

(

n3
)

. (See [10]
for detailed analysis.) Thus, the computational complexity of the overall algorithm,
Algorithm 1, is O

(

n3
)

. This is the best possible order, since computing precondi-
tioners of the original system and the system F̃¬un is necessary and computing each
preconditioner is of order O

(

n3
)

.

5. A Heuristic for the Degree. The algorithms in §4 require a value for d
to locate the approximate positions of solutions of F̃¬un = 0 on the faces we search.
Here, we present a practical heuristic for the value of d.

Suppose (2.3) and (2.4) are exact. Then, if we set xk − x̌k = −αk(xn − x̌n),
k = 1, . . . , n and plug those equalities into fn, we obtain a univariate function

g(xn − x̌n) = fn(x1, . . . , xn)

=
1
2!

n
∑

k1=1

n
∑

k2=1

∂2fn

∂xk1∂xk2

(x̌)(xk1 − x̌k1)(xk2 − x̌k2) + . . . +

1
d!

n
∑

k1=1

. . .
n

∑

kd=1

∂2fn

∂xk1 . . . ∂xkd

(x̌)(xk1 − x̌k1) . . . (xkd − x̌kd)

=
1
2!

n
∑

k1=1

n
∑

k2=1

∂2fn

∂xk1∂xk2

(x̌)(−1)2αk1αk2(xn − x̌n)2 + . . . +

14

1
d!

n
∑

k1=1

. . .
n

∑

kd=1

∂2fn

∂xk1 . . . ∂xkd

(x̌)(−1)dαk1 . . . αkd(xn − x̌n)d

=
(−1)2

2!
(xn − x̌n)2

∂2fn

∂xk1∂xk2

(x̌)αk1αk2 + . . .

+
(−1)d

d!
(xn − x̌n)d ∂2fn

∂xk1 . . . ∂xkd

(x̌)αk1 . . . αkd

=
(−1)2∆2

2!
(xn − x̌n)2 + . . . +

(−1)d−1∆d−1

(d− 1)!
(xn − x̌n)d−1

+
(−1)d∆d

d!
(xn − x̌n)d

=
(−1)d∆d

d!
(xn − x̌n)d =

∆d

d!
(x̌n − xn)d.

Setting

K(r, xn − x̌n) ≡ g(xn − x̌n)
(xn − x̌n)r =

∆d

d!
(x̌n − xn)d−r,

it is clear that K(d, xn − x̌n) = ∆d/d! is independent of xn, while K(r, xn − x̌n)
depends on xn for any other r value. We have the following ratios.

K(d, δ(xn − x̌n))
K(d, xn − x̌n)

=
∆d
d!
∆d
d!

= 1, while

R(r) =
K(r, δ(xn − x̌n))
K(r, xn − x̌n)

=
∆d
d! (δ(x̌n − xn))d−r

∆d
d! (x̌n − xn)d−r

= δd−r

for any other r value. The first ratio R(d) always equals 1, but R(r), r 6= d, depends
on the δ value. We can choose δ to distinguish d from other r values. For example, if
we choose δ = 100, then R(r) is not smaller than 100 when r is smaller than d and
is not larger than 0.01 when r is larger than d. Both values are sufficiently different
from 1. We can also vary the δ value to check our detection of d. Thus, R(r) is a
good heuristic to determine the value of d.

The above discussion is based on the assumptions in §2. However, unless the
first n − 1 components of F are exactly linear and the last component is a degree-d
polynomial of n variables, those assumptions are only approximately true. There are
some finer issues to consider. The above analysis is valid only when the equality
g(xn − x̌n) = ∆d

d! (x̌n − xn)d is accurately approximated. That implies (x̌n − xn)d

should dominate the value of g(xn − x̌n). Actually,

g(xn − x̌n) =
d−1
∑

k=1

ck∆k(xn − x̌n)k + cd∆d(xn − x̌n)d +
∞
∑

k=d+1

ck∆k(xn − x̌n)k,

where, approximately, ∆1 = . . . = ∆d−1 = 0, ∆d 6= 0. Thus, xn − x̌n and δ(xn − x̌n)
should not be too small, since

∑d−1
k=1 ck∆k(xn− x̌n)k could dominate otherwise. They

should not be too big either, since
∑∞

k=d+1 ck∆k(xn− x̌n)k could dominate otherwise.
If ∆k ≈ 0, k = 1, . . . , d− 1 are quite accurate, then we can choose xn− x̌n very small,
so both

∑d−1
k=1 ck∆k(xn − x̌n)k and

∑∞
k=d+1 ck∆k(xn − x̌n)k can be ignored in the

detection of d.
15

The choice of xn − x̌n is independent of the settings of xk, k = 1, . . . , n, since we
only want to know what d is at that stage.

An alternative choice for detecting d is to compute the values of ∆k, k = 1, 2, . . .
by interval evaluations until we get some ∆k0 that is sufficiently different from 0.
Then, we can decide d = k0. The obvious disadvantage of this method is that it’s
too expensive for just detecting the value of d, since computation of ∆k involves
computations of all k-th order derivatives. Furthermore, even if we actually evaluate
∆k, k = 1, 2, . . ., spending much time in the process, we still can not detect the value
of d if the magnitudes of ∆k, k = 1, . . . , d − 1, d, are not sufficiently different either
due to the problem itself or due to the range overestimation in interval computations.

6. Numerical Results. In this section, we present numerical results for the
algorithm in §4.

6.1. Test Problems. Example 1. (The same as Example 3 from [10], moti-
vated from considerations in [5] Set f(x) = h(x, t) = (1 − t)(Ax − x2) − tx, where
A ∈ Rn×n is the matrix corresponding to central difference discretization of the bound-
ary value problem −u′′ = 0, u(0) = u(1) = 0 and x2 = (x2

1, . . . , x
2
n)T . t was chosen

to be equal to t1 = λ1/(1 + λ1), where λ1 is the largest eigenvalue of A.
In Example 1, if we change the exponent of x from 2 to 3, then we get another

problem.
Example 2. This example is identical to Example 1, except that we set f(x) =

h(x, t) = (1− t)(Ax− x3)− tx.
The test set consists of Example 1 and Example 2 with n = 5, 10, 20, 40, 80, 160.

For each test problem, we used (0, 0, . . . , 0), the exact solution to F (x) = 0, as the
approximate solution to the problem F (x) = 0. We set the widths w(xk) and w(yk)
to 10−2 for 1 ≤ k ≤ n − 1, then the algorithm automatically computed w(xn) and
w(yn). For all the problems, the algorithm succeeded.

6.2. Test Environment. The algorithm in §4 was programmed in the Fortran
90 environment developed and described in [8, 9]. Similarly, all the test functions were
programmed using the same Fortran 90 system, which generated internal symbolic
representations of the functions to execution of the numerical tests. In the actual
tests, generic routines then interpreted the internal representations to obtain both
floating point and interval values.

The Sun Fortran 95 compiler version 6.0 was used on a Sparc Ultra-1 model
140 with optimization level 0. Execution times were measured with the Port library
routine ETIME. All times are given in CPU seconds.

6.3. Test Results. We present the numerical results in Table 6.1.
The column labels of Table 6.1 are as follows.

Problem: names of the problems identified in §6.1.
n: number of independent variables.
Heuristic Degree: the heuristic value of the degree computed by the heuristic de-

scribed in §5.
Success: whether the algorithm was successful.
Verified Degree: topological degree verified by the algorithm.
CPU Time: CPU time in seconds of the algorithm.
Time Ratio: The ratio of two successive CPU times for a particular problem.

We can see from Table 6.1 that the algorithm was successful on all the problems in
the test set. We also see from the CPU time ratios that the algorithm is approximately
of order O

(

n3
)

in practice. However, when the degree is higher, the system F (x) is
16

Table 6.1
Numerical Results

Heuristic Verified
Problem n Degree Success Degree CPU Time Time Ratio

Example 1 5 2 Yes 2 1.13
Example 1 10 2 Yes 2 5.99 5.30
Example 1 20 2 Yes 2 38.40 6.41
Example 1 40 2 Yes 2 273.61 7.13
Example 1 80 2 Yes 2 2198.14 8.03
Example 1 160 2 Yes 2 13033.22 5.93
Example 2 5 3 Yes 3 39.27
Example 2 10 3 Yes 3 10.31 0.26
Example 2 20 3 Yes 3 74.32 7.21
Example 2 40 3 Yes 3 481.23 6.48
Example 2 80 3 Yes 3 3805.06 7.91
Example 2 160 3 Yes 3 33944.20 8.92

flatter at the singular solution. We can expect that the condition number of the Jacobi
matrix of the system F̃¬un will be larger, and thus, make the interval Newton method
method to verify the unique solutions of F̃¬un in Step 5 of Algorithm 2 and Step 5
of Algorithm 3 less efficient: More iterations should be expected when the condition
number is larger. The experimental results are consistent with our expectations.

REFERENCES

[1] G. Alefeld and J. Herzberger. Introduction to Interval Computations. Academic Press, New
York, 1983.

[2] P. S. Aleksandrov and H. Hopf. Topologie. Springer, Berlin, 1935.
[3] J. Cronin. Fixed Points and Topological Degree in Nonlinear Analysis. American Mathematical

Society, Providence, RI, 1964.
[4] E. R. Hansen. Global Optimization Using Interval Analysis. Marcel Dekker, Inc., New York,

1992.
[5] H. Jürgens, H.-O. Peitgen, and D. Saupe. Topological perturbations in the numerical nonlinear

eigenvalue and bifurcation problems. In S. M. Robinson, editor, Analysis and Computation
of Fixed Points, pages 139–181, New York, 1980. Academic Press.

[6] R. B. Kearfott. Computing the Degree of Maps and a Generalized Method of Bisection. PhD
thesis, University of Utah, 1977.

[7] R. B. Kearfott. An efficient degree-computation method for a generalized method of bisection.
Numer. Math., 32:109–127, 1979.

[8] R. B. Kearfott. A Fortran 90 environment for research and prototyping of enclosure algorithms
for nonlinear equations and global optimization. ACM Trans. Math. Software, 21:63–78,
1995.

[9] R. B. Kearfott. Rigorous Global Search: Continuous Problems. Kluwer, Dordrecht, 1996.
[10] R. B. Kearfott, J. Dian, and A. Neumaier. Existence verification for singular zeros of complex

nonlinear systems. SIAM. J. Numer. Anal., 38:360–379, 2000.
[11] A. Neumaier. Interval Methods for Systems of Equations. Cambridge University Press, Cam-

bridge, England, 1990.
[12] J. M. Ortega and W. C. Rheinboldt. Iterative Solution of Nonlinear Equations in Several

Variables. Academic Press, New York, 1970.
[13] H. Ratschek and J. Rokne. New Computer Methods for Global Optimization. Wiley, New York,

1988.
[14] F. Stenger. Computing the topological degree of a mapping in Rn. Numer. Math., 25:23–38,

1975.

17

