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Abstract. Deterministic global optimization with interval analysis involves

− using interval enclosures for ranges of the constraints, objective, and gradient
to reject infeasible regions, regions without global optima, and regions without
critical points;

− using interval Newton methods to converge on optimum-containing regions and
to verify global optima.

There are certain problems for which interval dependency leads to overestimation
in the enclosures of the individual components, causing the optimization search
to become prohibitively inefficient. As Hansen has observed earlier, in other prob-
lems, there isn’t overestimation in the individual components, but overestimation is
introduced in the preconditioning in the interval Newton method.

We examine these issues for a particular nonlinear systems problem that, to
date, has defied numerical solution. To reduce overestimation, we use Taylor models.
The Taylor models sometimes reduce individual overestimation but, consistent with
Hansen’s observations, especially reduce the overestimation due to preconditioning.
From numerical experiments, we conclude that, in certain instances, Taylor mod-
els can greatly reduce both the number of subregions necessary to complete an
exhaustive search and the total computational effort.
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1. Introduction

Throughout, we assume some knowledge of branch-and-bound methods
for global optimization and of interval computations. There are many
excellent introductions to these topics, such as (Ratschek and Rokne,
1988) for both interval computations and branch-and-bound methods,
(Pardalos and Rosen, 1987, Chapter 6) for branch and bound methods,
(Neumaier, 1990) for interval computations and an advanced treatment
of interval nonlinear systems, and (Kearfott, 1996) for an introduction
to interval computations in the context here.

† c©2002 Sun Microsystems and R. Baker Kearfott. All rights reserved.
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2 R. B. Kearfott and G. W. Walster

1.1. The Global Optimization Context

The context of our study is deterministic global optimization via ex-
haustive search. For example, if the problem is the equality-constrained
problem

minimize φ(x)
subject to ci(x) = 0, i = 1, . . . , m1,

gi(x) = 0, i = 1, . . . , m2,
where φ : Rn → R and ci, gi : Rn → R.

(1)

then bounding the range of φ over a small region known to contain
feasible points gives an upper bound for the global minimum of φ over
the region x. Some method is then used to bound the range of φ over
subregions x̃ ⊂ x. If the lower bound φ, so obtained, for φ over x̃ has
φ > φ(x), then x̃ may be rejected as not containing any global optima.
Similarly, if bounds on the range of any ci over x̃ cannot contain zero,
then x̃ can be rejected as not containing any feasible points.

A special case is where the objective function φ is constant or non-
existent, and where m = n, so we have a square nonlinear system of
equations

F (x) = (c1(x), . . . , cn(x)) = 0. (2)

Here, we focus on this case.

1.2. Behavior of Interval Newton Methods

We use interval evaluations to obtain bounds on the ranges of the ci.
We also employ interval Newton methods, in which we use interval
computations to bound the solution set v to systems of the form

Y Av = −Y F (x̌), (3)

where A is a bound on the range {F ′(x) | x ∈ x} or an interval slope
matrix, and where Y is a preconditioner matrix , often chosen to be the
inverse of the matrix of midpoints of the entries of A. For example, if

f1(x) = x2
1 − x2

2 − 1
f2(x) = 2x1x2,

with x =
(

[0.9, 1.2]
[−0.1, 0.1]

)

, x̌ =
(

1.05
0

)

,

then an interval extension of the Jacobi matrix for f is

F ′(x) =
(

2x1 −2x2
2x2 2x1

)

,

and its value at x is
(

[1.8, 2.4] [−0.2, 0.2]
[−0.2, 0.2] [1.8, 2.4]

)

.
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Taylor Preconditioning Example 3

The inverse midpoint preconditioner is

Y =
(

2.1 0
0 2.1

)−1

≈
(

0.476 0
0 0.476

)

,

and the preconditioned system corresponding to (3), rounded out, is
(

[0.85, 1.15] [−.096, .096]
[−.096, .096] [0.85, 1.15]

)

v =
(

[−.0488,−.0487]
0

)

.

The interval Gauss–Seidel method is used to compute sharper bounds

on v = x− x̌, beginning with v =
(

[−0.15, 0.15]
[−0.1, 0.1]

)

. That is,

ṽ1 ⊆
[−.0488,−.0487]− [−.096, .096]v2

[0.85, 1.15]
⊂ [−0.0688,−.034].

Thus, the first component of N(f, x, x̌) is x̌1 + v1 ⊂ [0.981, 1.016]. In
the second step of the interval Gauss–Seidel method,

ṽ2 = (0− [−.096, .096]ṽ1)/[.085, 1.15] ⊂ [−0.00778, 0.00778],

so, rounded out, N(f, x, x̌) is computed to be
(

[0.981, 1.016]
[−0.00778, 0.00778]

)

⊂
(

[0.9, 1.2]
[−0.1, 0.1]

)

.

A general theorem on interval Newton methods (see e.g. (Neumaier,
1990)) states that, if N(f, x, x̌) ⊂ x as above, then this proves that
there is a unique solution of F (x) in x.

Now, to illustrate a way this procedure runs into difficulties, consider

Example 1.

f1(x) = x3
1 − x3

2
f2(x) = x3

1 + x3
2 − 2.1 with x =

(

[0.7, 1.3]
[0.7, 1.3]

)

, x̌ =
(

1
1

)

.

In Example 1, interval evaluation of the individual components gives
the exact range to within roundout error (i.e. there is no overestima-
tion), since each variable occurs only once in each expression. However,
the values of the elements in the first and second rows of the in-

terval Jacobi matrix F ′(x) =
(

3x2
1 −3x2

2
3x2

1 3x2
1

)

are not independent.

Thus, evaluating F ′(x) componentwise before preconditioning gives

F ′ ([0.7, 1.3] , [0.7, 1.3]) =
(

[1.47, 5.07] [−5.07, 1.47]
[1.47, 5.07] [1.47, 5.07]

)

, and all infor-

mation about the dependencies between the rows is lost. Precondition-
ing by the inverse of the midpoint matrix

Y ≈
(

0.1529 0.1529
−0.1529 0.1529

)
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then gives

Y F ′(x) ⊂
(

[0.4495, 1.5505] [−0.5505, 0.5505]
[−0.5505, 0.5505] [0.4495, 1.5505]

)

,

Y F (x̌) ≈
(

−0.01529
−0.01529

)

.

From this, the interval Gauss–Seidel method gives

N(f, x, x̌) ⊆
(

[0.6666, 1.4014]
[0.6666, 1.4014]

)

6⊆ x =
(

[0.7, 1.3]
[0.7, 1.3]

)

,

despite the fact that there is a unique solution of F (x) = 0 within x.
In contrast, assume that we can precondition the system in Ex-

ample 1 symbolically, so that information about the tandem varia-
tion of the entries in a particular column of the Jacobi matrix F ′ is
not lost. This preconditioning is carried out by applying the linear
transformation to the coefficients in the function representation:

Y
(

3x2
1 −3x2

2
3x2

1 3x2
2

)

≈
(

0.9174x2
1 0

0 0.9174x2
2

)

.

Applying the interval Gauss–Seidel method to the symbolically precon-
ditioned system gives

N(f, x, x̌) ≈











1− −0.01529
0.9174[0.7, 1.3]2

1− −0.01529
0.9174[0.7, 1.3]2











⊆
(

[1.0032, 1.0114]
[1.0032, 1.0114]

)

⊂ x.

Hansen perhaps first proposed the idea of symbolic preconditioning
in (Hansen, 1997).

For symbolic preconditioning to be practical, a basis representation
of the functions fi should be chosen and manipulated automatically.
This is the role of Taylor models and Taylor arithmetic.

1.3. Taylor Models

We will consider interval Taylor models for a function f : x ⊆ Rn → R
of the form

f(x) ∈ Pd(x− x̌) + Id, (4)

where Pd(x) is a degree-d polynomial in the n variables x ∈ Rn, x̌
is a base point (often the midpoint of the interval vector x), and Id
is an interval that encompasses the truncation error over the interval
vector x and possible roundoff errors in computing the coefficients of
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Pd. Although Taylor models have certain theoretical properties that
are no better than simpler mean value extensions (see our comments
in (Kearfott and Arazyan, 2000)), in many cases, especially when x̌ is
the midpoint of x, an interval evaluation

{f(x) | x ∈ x} ⊆ Pd(x− x̌) + Id (5)

gives an orders-of-magnitude narrower interval enclosure for the range
{f(x) | x ∈ x} than straightforward interval evaluation f(x) or than a
mean value extension f(x̌)+∇f(x)(x−x̌). (See (Kearfott and Arazyan,
2000; Makino and Berz, 1999).)

More than reduction of excess width in interval enclosures for the
range of a single function, our interest in Taylor models lies in their
use to implement symbolic preconditioning as we described below Ex-
ample 1. In particular, a Taylor arithmetic can be defined on Taylor
objects in such a way that evaluation of an expression for f in this
arithmetic gives the Taylor polynomial with remainder term for f as
in (5). For an introduction to these concepts and techniques, see (Berz
and Hoffstätter, 1998).

Berz et al have a good Taylor model implementation in COSY-
Infinity (Berz et al., 1996; Berz, 2000). Although the COSY-Infinity
package has its own language designed especially for beam physics com-
putations, Jens Hoefkens has recently developed a Fortran 90 module
for general access to the COSY-Infinity Taylor arithmetic.

1.4. The Software Environment

The software environment within which we do the experiments below
is GlobSol (Corliss, 1998; Corliss and Kearfott, 2000) combined with
COSY-Infinity. Because of low-level implementation details, GlobSol, in
many instances, executes several times more slowly than the most effi-
cient possible software, for a given algorithm. Nonetheless, we have used
GlobSol here due to its easy user interface and due to our familiarity
with its structure (allowing us to make low-level modifications).

2. An Example Problem

The problem is an interesting variable-dimension problem originally
examined by E. Hansen and G. W. Walster. GlobSol could complete
with low-dimensional versions of this problem, but very inefficiently.
The package Numerica (Van Hentenryck et al., 1997) also could not
complete efficiently for any variants of this problem.
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6 R. B. Kearfott and G. W. Walster

Problem 1. For ν ≥ 4, choose ai, 2 ≤ i ≤ ν − 1 and xj , 1 ≤ j ≤ ν − 3
such that

1 +
ν−1
∑

i=2

ai = 0,

ν +
ν−1
∑

i=2

iai = 0

νxν−1
j +

ν−1
∑

i=1

iaixi−1
j = 0 for 1 ≤ j ≤ ν − 3,

(

xν
j + xν

j+1

)

+
ν−1
∑

i=1

ai

(

xi
j + xi

j+1

)

= 0 for 1 ≤ j ≤ ν − 4,

where

0 < x1, xj < xj+1 for 1 ≤ j ≤ ν − 4, and xν−3 < 1. (6)

Thus, Problem 1 represents a system of 2ν − 5 equations in 2ν −
5 unknowns, with positive variables. The inequalities (6) prevent a
combinatorial explosion of solutions due to symmetries. It is known that
the problem, with the inequalities included, has a unique solution. The
inequalities may be included either explicitly in the problem statement
or by defining the search region appropriately.

3. Concerning the Experimental Environment

To provide a realistic test bed for the problem class (1), we modified
GlobSol’s main optimization routine find global min. In particular,
for the problem class (1),

1. the interval Newton method used to reduce the size of subregions
x is appropriate for systems of the form (2);

2. when x is split by bisecting a coordinate, the coordinate selection
scheme is based on maximal smear for F as in (Kearfott, 1997),
rather than the somewhat analogous form for ∇φ as described in
(Kearfott, 1996, (5.1)) or (Ratz and Csendes, 1995);

3. bound constraints are disabled;

4. the best-found upper bound on the objective is initialized to 0;

5. the algorithm to verify feasibility is changed appropriately.
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Otherwise, the algorithm in find global min is as documented. A
(possibly constant) objective should be supplied with minimum equal to
zero at the solutions of F (x) = 0. If inequality constraints are supplied,
they act as the “soft constraints” described in (Van Hentenryck et al.,
1997).

Within the global optimization algorithm, the following evaluations
could possibly benefit from Taylor evaluations:

1. evaluation of a the objective function φ;

2. evaluation of the gradient ∇φ;

3. evaluation of the equality constraints ci;

4. evaluation of the gradients of the constraints ∇ci;

5. use in symbolic preconditioning as explained in §1.2.

Implementation of Taylor arithmetic with optimal efficiency in this
GlobSol would take prohibitively long for the exploratory experiments
of this paper. Nonetheless, we implemented the capability to perform
the experiments in a way that gives useful information. In particular,
we provided separate routines for each of the above five tasks, utilizing
Hoefkens’ Fortran 90 COSY Infinity interface. The implementation is
not efficient in the sense that the entire code list (see (Kearfott, 1995) or
(Kearfott, 1996)), including computations for each component of each
constraint and constraint gradient, is evaluated each time a particular
constraint value or constraint gradient component value is required.
Contact the authors for further details.

We have designed the experiments to detect the low-level efficiency
of this implementation, to determine the benefits of the Taylor models
in terms of total calls to the function, and to thus surmise advantages
in more nearly optimal implementations.

4. The experiments

4.1. Timings for the Underlying Computations

To determine the ratio of a call to an interval routine versus a call
to the corresponding Taylor model routine, we used Problem 1 with
n = 4, and with objective φ equal to the sum of squares of the 2n− 5
equation residuals. In separate runs, we evaluated φ, ∇φ, F and F ′.
We called these functions 1000 times within a loop. Table 4.1 represents
the results on a 450MHz machine with DEC (Compaq) Fortran version
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8 R. B. Kearfott and G. W. Walster

6.1, no optimization. For the interval arithmetic, we used the relatively
slow INTLIB (Kearfott et al., 1994), distributed with GlobSol. (Faster,
sharper packages, such as the intrinsic interval type in Sun’s Fortran
compiler, may give different results.) The times are elapsed times in

Table I. Timings for the underlying computations

Routine plain interval with Taylor

constraints 0.33 22.30
constraint gradients 0.33 22.69

objective 0.33 22.63
gradient 0.39 22.52

seconds. Taylor models of degree 5 were used. (Since the function
components themselves are of degree 4, the Taylor models represent
the functions exactly in point arithmetic.)

We see from Table 4.1 that an interval evaluation proceeds roughly
65 times faster than a Taylor model evaluation within our implemen-
tation. We also see that each routine, be it objective, gradient, con-
straints, or constraint gradient, completes in the same amount of time,
to within the accuracy of the timing process. This is because, as in-
dicated above, the entire code list is evaluated once for each quantity,
and most of the work is in evaluation of the code list.

In a second test, we designed a non-trivial function for which interval
evaluation and Taylor model evaluation will lead to the same number
of boxes in the overall subdivision process. This function is

Problem 2.

f1(x) = x2
1 + sin(x2)− 1 = 0

f2(x) = x2
3 + sin(x4)− 1 = 0

f3(x) = x1 + x4 = 0
f4(x) = x2 + x3 = 0

with initial box x(0) = ([−2, 2], [−2, 2], [−2, 2], [−2, 2])T .

Problem 2 has four solutions within the initial box x(0).
There is no overestimation in evaluation of the individual compo-

nents fi. Also, because each symbol xi occurs in only one entry of
the Jacobi matrix, preconditioning does not introduce any implicit
overestimation. However, the Jacobi matrix is irreducible (i.e. the sys-
tem is fully coupled), so an interval Newton method is necessary for
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efficiency within the overall search algorithm. The transcendental func-
tions sin(x2) and sin(x4) slow down evaluation of this relatively simple
function, to make timing comparisons more accurate and also ensure
that the Taylor models are not trivial.

We used φ(x) =
∑4

i=1 f2
i (x) as objective, and we used stopping

tolerance EPS DOMAIN = 10−5. We ran the global search once without
any Taylor model evaluation and once with Taylor model evaluation of
the constraints, as well as use of Taylor models throughout the interval
Newton method. In both cases, the global search considered exactly the
same total number of boxes. The results appear in Table 4.1. Thus, for

Table II. Timings for the underlying computations

plain interval with Taylor

total # boxes 14 14
total elapsed time 0.33 1.64

Problem 2, the time penalty within the GlobSol environment for using
degree 5 Taylor models when there are no benefits to do so appears to
be approximately a factor of 5.

4.2. Results for Problem 1

In our first experiment, we solved Problem 1 with ν = 5 (so the dimen-
sion n of the system is also 5). In this experiment, we took an initial
box x0 in which (6) is automatically satisfied:

x(0) = (a(0)
2 , a(0)

3 , a(0)
4 , x(0)

1 , x(0)
2 )T ,

where x(0)
i =

[

i− 1
ν − 1

+ 10−2,
i

ν − 1
− 10−2

]

and a(0))
i = [−5, 5], i = 2, 3, 4.

We ran the global search

1. without any Taylor models;

2. with Taylor models for the constraints only;

3. with Taylor models and symbolic preconditioning within the inter-
val Newton method only;

4. with Taylor models both for the constraints and within the interval
Newton method.

2001_Taylor_on_Walster_rc.tex; 17/02/2002; 15:04; p.9
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In all cases, we set the limits on CPU time, maximum number of boxes
considered, etc. so the global search would complete successfully. The
results appear in Table 4.2.

Table III. Performance for Problem 1 with n = 5.

Total # boxes Total elapsed time

interval only 121,151 1,762

Taylor constraints only 8,422 1,259

Taylor interval Newton
only

3,562 154

Taylor interval Newton
and constraints

2,961 395

Table 4.2 indicates that, for Problem 1, use of symbolic precondi-
tioning in the interval Newton method is important. Taylor models
for the individual components, although also useful, appear to be less
important than the symbolic preconditioning. (We note that, when
symbolic preconditioning is used in the interval Newton method, the
constraint residuals are calculated with Taylor models and checked
before the actual preconditioning is done. Thus, use of Taylor models
on the individual constraints and in the symbolic preconditioning is
not totally separated in this experiment.)

Unfortunately, we were unable to obtain results for larger values of
n. (For example, with ν = 6, corresponding to n = 7, using Taylor
interval Newton only, the global search could not complete with less
than 200,000 boxes considered.)

5. Is there a Good Heuristic for Use of Taylor Models?

Taylor models are beneficial for the individual constraints when there is
significant interval dependency (and overestimation) in the individual
constraints. Similarly, Taylor preconditioning is beneficial when there
is significant overestimation in the preconditioned constraints. Three
possibilities come to mind for detecting such overestimation, in either
case.

1. Compute an ordinary interval inclusion, then actually compute the
Taylor inclusion, and compare the widths.
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2. Sample the function at a number of random points within the box,
and compare the range to the range given by an ordinary interval
inclusion.

3. Use inner bounds.

Actually computing the Taylor inclusion does not save any computa-
tional effort. However, this can be done once or twice at the beginning
of the global search algorithm (with relatively large boxes), and we
may then heuristically assume that all subsequent boxes have the same
degree of overestimation. The main failings of this possibility would be
different behavior in different subregions and less overestimation in the
smaller sub-boxes produced as subdivision progresses.

Berz and Makino use random sampling to heuristically estimate the
overestimation in ordinary interval inclusions and in Taylor models in
COSY Infinity. There is clearly the possibility of coming to an incorrect
conclusion through this process, although it seems to work fairly well
in practice.

A final possibility is to compute rigorous inner estimations with, say,
twin arithmetic as described in (Nesterov, 1997); Muñoz is developing
a package for twin arithmetic, and has developed formulas for inner
estimations for a number of functions and their slopes (Muñoz, 2001).
Twin arithmetic gives rigorous inner estimations, and, although more
costly than computation of ordinary interval inclusions, is much less
costly than Taylor arithmetic. However, there are instances in which
the inner estimations that twin arithmetic gives are much narrower
than the actual range; see (Hertling, 2001).

6. Conclusions

The goal was to design and carry out initial experiments to demonstrate
or refute the potential value of symbolic preconditioning and other
uses of Taylor arithmetic in rigorous branch and bound algorithms for
constrained global optimization. There was a factor of around 20 time
penalty in individual objective or constraint evaluations and a factor
of about 5 time penalty in the overall global optimization algorithm,
when the total number of boxes in the global optimization algorithm
remained constant. However, in problems where coupling between the
equations leads to overestimation due to applying the preconditioner,
symbolic preconditioning with the Taylor model can lead to an order-
of-magnitude reduction in the total amount of work, and can make it
practical to solve problems that were previously impractical to solve.
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12 R. B. Kearfott and G. W. Walster

Nonetheless, straightforward application of Taylor models will not make
it practical to solve all such problems.

Considering the experiments in this paper and previous experiments
(such as in (Kearfott and Arazyan, 2000), (Makino and Berz, 1999), or
(Makino and Berz, 2000)), we can give the following advice:

− Taylor models are not universally applicable, but, when used in
specific ways for specific problems, can make certain unsolvable
problems solvable.

− If one recognizes interval dependency among individual constraints,
especially if the dependency occurs in a transcendental way, then
Taylor models for these constraints can be useful.

− If one recognizes that preconditioning will introduce interval de-
pendency due to coupling in a system of differential equations,
then symbolic preconditioning with Taylor models will probably
be useful.

− An order of magnitude or more increase in speed may be possible
if Taylor arithmetic is incorporated at a low level in the global
optimization algorithm. (Whether or not to do this would depend
on the importance of the problem or problems being solved.)
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