Math. 350-01 Summer, 2015 R. B. Kearfott

Final Exam

Thursday, July 30, 2015, 7:30–10:00

This exam is closed book, but you may use calculators. Make sure your name is on all pages. Show all work, and show it in a logical and organized manner. You may generally use graphing calculators, but you may not use any device with wireless communication capabilities. Each problem is worth 33 points, and 1 point is free.

1. Write down the terms up to and including x^5 for the power series solution to

$$y'' + xy' + x^2y = 1$$
, $y(0) = 0$, $y'(0) = 1$.

2. Use the table of Laplace transforms on the back of this page to write down the solution to the following initial value problem.

$$y'' + 3y' + 2y = f(t), \quad y(0) = 1, \quad y'(0) = 0,$$

where

$$f(t) = \left\{ \begin{array}{ll} 0 & t < \pi \\ 1 & \pi \le t < 2\pi \\ 0 & t \ge 2\pi. \end{array} \right\}.$$

3. Solve

$$y'' + 3y' + 2y = 0$$
, $y(0) = 1$, $y'(0) = 0$

by finding the roots of the characteristic equation, and compare with the solution of Problem 2.

 TABLE 6.2.1
 Elementary Laplace Transforms

- 11	$f(t) = \mathcal{L}^{-1}\{F(s)\}$	$F(s) = \mathcal{L}\{f(t)\}$	Notes
1	• 1 follows that $A = (0)^{i_1} = (d_{i_1} + d_{i_2})^{i_3}$	$\frac{1}{s}, \frac{1}{s > 0}$ is the set unique.	Sec. 6.1; Ex. 4
.Sohich with its link to Laplace transform	, e ^{ar} - Cristica e solution orollary 6.2.2. Check taking t	$\frac{1}{s-a}, \qquad s > a$	Sec. 6.1; Ex. 5
3.	t^n , $n = \text{positive integer}$	$\frac{n!}{s^{n+1}}, \qquad s>0$	Sec. 6.1; Prob. 2
.46.2.1. Substitution ann	$t^p, \qquad p > -1$	$\frac{\Gamma(p+1)}{s^{p+1}}, \qquad s>0$	Sec. 6.1; Prob. 2
5.	sin at	$\frac{a}{s^2 + a^2}, \qquad s > 0$	Sec. 6.1; Ex. 6
6.	cos at	$\frac{s}{s^2 + a^2}, \qquad s > 0$	Sec. 6.1; Prob. 6
7.	sinh at	$\frac{a}{s^2 - a^2}, \qquad s > a $	Sec. 6.1; Prob. 8
8.	cosh at	$\frac{s}{s^2 - a^2}, \qquad s > a $	Sec. 6.1; Prob. 7
9.	$e^{at} \sin bt$	$\frac{b}{(s-a)^2+b^2}, \qquad s > a$	Sec. 6.1; Prob. 13
10.	$e^{at}\cos bt$	$\frac{s-a}{(s-a)^2+b^2}, \qquad s>a$	Sec. 6.1; Prob. 14
11.	$t^n e^{at}$, $n = \text{positive integer}$	$\frac{n!}{(s-a)^{n+1}}, \qquad s > a$	Sec. 6.1; Prob. 18
12.	$u_c(t)$	$\frac{e^{-cs}}{s}, \qquad s > 0$	Sec. 6.3
	$u_c(t)f(t-c)$	$e^{-cs}F(s)$	Sec. 6.3
14.	$e^{ct}f(t)$	F(s-c)	Sec. 6.3
ز .15	f(ct)	$\frac{1}{c}F\left(\frac{s}{c}\right), \qquad c > 0$	Sec. 6.3; Prob. 19
16.	$\int_0^t f(t-\tau)g(\tau)d\tau$	F(s)G(s)	Sec. 6.6
17. δ	b(t-c)	e^{-cs}	Sec. 6.5
18. <i>f</i>	$f^{(n)}(t)$	$s^{n}F(s) - s^{n-1}f(0) - \dots - f^{(n-1)}(0)$	Sec. 6.2
<u>19.</u> ($(-t)^n f(t)$	$F^{(n)}(s)$	Sec. 6.2; Prob. 28