Math. 350-01
Summer, 2015
R. B. Kearfott

Final Exam

Thursday, July 30, 2015, 7:30-10:00
This exam is closed book, but you may use calculators. Make sure your name is on all pages. Show all work, and show it in a logical and organized manner. You may generally use graphing calculators, but you may not use any device with wireless communication capabilities. Each problem is worth 33 points, and 1 point is free.

1. Write down the terms up to and including x^{5} for the power series solution to

$$
y^{\prime \prime}+x y^{\prime}+x^{2} y=1, \quad y(0)=0, \quad y^{\prime}(0)=1
$$

2. Use the table of Laplace transforms on the back of this page to write down the solution to the following initial value problem.

$$
y^{\prime \prime}+3 y^{\prime}+2 y=f(t), \quad y(0)=1, \quad y^{\prime}(0)=0
$$

where

$$
f(t)=\left\{\begin{array}{ll}
0 & t<\pi \\
1 & \pi \leq t<2 \pi \\
0 & t \geq 2 \pi
\end{array}\right\}
$$

3. Solve

$$
y^{\prime \prime}+3 y^{\prime}+2 y=0, \quad y(0)=1, \quad y^{\prime}(0)=0
$$

by finding the roots of the characteristic equation, and compare with the solution of Problem 2.

TABLE 6.2.1 Elementary Laplace Transforms

	$f(t)=\mathcal{L}^{-1}\{F(s)\}$	$F(s)=\mathcal{L}\{f(t)\}$	Notes
1. 1	$\frac{1}{s}, \quad s>0$	Sec. 6.1; Ex. 4	

2. $e^{a t}$
$\frac{1}{s-a}, \quad s>a$
Sec. 6.1; Ex. 5
3. $t^{n}, n=$ positive integer
$\frac{n!}{s^{n+1}}, \quad s>0$
Sec. 6.1; Prob. 27
4. $t^{p}, \quad p>-1$
5. $\sin a t$
6. $\cos a t$
7. $\sinh a t$
8. $\cosh a t$
9. $e^{a t} \sin b t$
10. $e^{a t} \cos b t$
11. $t^{n} e^{a t}, \quad n=$ positive integer
12. $u_{c}(t)$
13. $u_{c}(t) f(t-c)$
14. $e^{c t} f(t)$
15. $f(c t)$
$\frac{1}{c} F\left(\frac{s}{c}\right), \quad c>0$
16. $\int_{0}^{t} f(t-\tau) g(\tau) d \tau$
17. $\delta(t-c)$
18. $f^{(n)}(t)$
19. $(-t)^{n} f(t)$ \qquad
$s^{n} F(s)-s^{n-1} f(0)-\cdots-f^{(n-1)}(0)$
$F^{(n)}(s)$
Sec. 6.2; Prob. 28
