Math. 350-04
Spring, 2018
R. B. Kearfott

Final Exam
Tuesday, May 1, 2018, 8:00AM to 10:30AM
This exam is closed book, but you may use calculators. Make sure your name is on all pages. Show all work, and show it in a logical and organized manner. (Do it carefully, and check it.) Each entire problem is worth 25 points.

1. A tank contains 300 gallons of water and 15 pounds of salt. Water containing a salt concentration of .125 pounds per gallon flows into the tank at a rate of 3 gallons per minute, and the mixture in the tank flows out at the same rate.
(a) Write down a differential equation relating the quantity Q of salt in the tank at time t and the derivative of Q.
(b) Solve that differential equation.
(c) Determine the amount of salt in the tank after a long time.
2. Consider the initial value problem

$$
y^{\prime \prime}+8 y^{\prime}+17 y=\sin (t), \quad y(0)=1, \quad y^{\prime}(0)=0 .
$$

(a) Solve the initial value problem. Be sure to carefully write down all steps in your solution process.
(b) Write down the steady-state solution.
3. Write down the degree 5 polynomial approximation to the series solution to the following initial value problem.

$$
y^{\prime}+x^{2} y=0, \quad y(0)=-1 .
$$

4. Use Laplace transforms to solve the following initial value problem. You may use the table on the back of this sheet.

$$
y^{\prime \prime}+4 y^{\prime}+3 y=f(t), \quad y(0)=0, y^{\prime}(0)=1, \quad \text { where } \quad f(t)=\left\{\begin{aligned}
0, & 0 \leq t<2 \\
-1, & 2 \leq t<3 \\
0, & t \geq 3
\end{aligned}\right\} .
$$

TABLE 6.2.1 Elementary Laplace Transforms

	$f(t)=\mathcal{L}^{-1}\{F(s)\}$	$F(s)=\mathcal{L}\{f(t)\}$	Notes
1. 1	$\frac{1}{s}, \quad s>0$	Sec. 6.1; Ex. 4	

2. $e^{a t}$
$\frac{1}{s-a}, \quad s>a$
Sec. 6.1; Ex. 5
3. $t^{n}, n=$ positive integer
$\frac{n!}{s^{n+1}}, \quad s>0$
Sec. 6.1; Prob. 27
4. $t^{p}, \quad p>-1$
5. $\sin a t$
6. $\cos a t$
7. $\sinh a t$
8. $\cosh a t$
9. $e^{a t} \sin b t$
10. $e^{a t} \cos b t$
11. $t^{n} e^{a t}, \quad n=$ positive integer
12. $u_{c}(t)$
13. $u_{c}(t) f(t-c)$
14. $e^{c t} f(t)$
15. $f(c t)$
$\frac{1}{c} F\left(\frac{s}{c}\right), \quad c>0$
16. $\int_{0}^{t} f(t-\tau) g(\tau) d \tau$
17. $\delta(t-c)$
18. $f^{(n)}(t)$
19. $(-t)^{n} f(t)$ \qquad
$s^{n} F(s)-s^{n-1} f(0)-\cdots-f^{(n-1)}(0)$
$F^{(n)}(s)$
Sec. 6.2; Prob. 28
