Math. 350-02
Spring, 2016
R. B. Kearfott

Final Exam
Monday, May 2, 2016, 2:00PM-4:30PM
This exam is closed book, but you may use calculators. Make sure your name is on all pages. Show all work, and show it in a logical and organized manner. Each problem is worth 25 points.

1. Use the characteristic equation, as well as undetermined coefficients, to find the solution to the following initial value problem.

$$
y^{\prime \prime}+2 y^{\prime}+2 y=5 \sin (t), \quad y(0)=-2, \quad y^{\prime}(0)=1 .
$$

2. Consider $y(t)=3 \cos (2 t)+3 \sqrt{3} \sin (2 t)$.
(a) Rewrite $y(t)$ in the form $y(t)=R \cos (\omega t-\delta)$. (That is, find R, ω, and δ.)
(b) State the amplitude, natural frequency, and phase shift of y.
3. Write down the terms of the power series solution to the following initial value problem, up to and including the x^{4} term.

$$
y^{\prime \prime}+2 y^{\prime}+x y=x, \quad y(0)=1, \quad y^{\prime}(0)=-1 .
$$

4. (Refer to Table 1 to do this problem.) Use Laplace transforms to find the solution to

$$
y^{\prime \prime}-y=1, \quad y(0)=0, \quad y^{\prime}(0)=0 .
$$

Table 1: Table of Laplace Transforms
6.2 Solution of Initial Value Problems

TABLE 6.2.1 Elementary Laplace Transforms

	$f(t)=\mathcal{L}^{-1}\{F(s)\}$	$F(s)=\mathcal{L}\{f(t)\}$	Notes
1. 1	$\frac{1}{s}$,	$s>0$	Sec. 6.1; Ex. 4

2. $e^{a t}$
3. $t^{n}, n=$ positive integer
4. $t^{p}, \quad p>-1$
$\frac{\Gamma(p+1)}{s^{p+1}}, \quad s>0$
Sec. 6.1;Ex. 5
$\frac{n!}{s^{n+1}}, \quad s>0$
Sec. 6.1; Prob. 27
$\frac{a}{s^{2}+a^{2}}, \quad s>0$
Sec. 6.1; Prob. 27
5. $\sin a t$
6. $\cos a t$
7. $\sinh a t$
8. $\cosh a t$
$\frac{s}{s^{2}-a^{2}}, \quad s>|a|$
9. $e^{a t} \sin b t$
$\frac{b}{(s-a)^{2}+b^{2}}, \quad s>a$
$\frac{s-a}{(s-a)^{2}+b^{2}}, \quad s>a$
10. $t^{n} e^{a t}, n=$ positive integer
$\frac{n!}{(s-a)^{n+1}}, \quad s>a$
11. $u_{c}(t)$
$\frac{e^{-c s}}{s}, \quad s>0$
$e^{-c s} F(s)$
12. $e^{c t} f(t)$
13. $f(c t)$
14. $\int_{0}^{t} f(t-\tau) g(\tau) d \tau$
15. $\delta(t-c)$
16. $f^{(n)}(t)$
17. $(-t)^{n} f(t)$
$F^{(n)}(s)$

Sec. 6.1;Ex. 6

Sec. 6.1; Prob. 6

Sec. 6.1; Prob. 8

Sec. 6.1; Prob. 7

Sec. 6.1; Prob. 13

Sec. 6.1; Prob. 14

Sec. 6.1; Prob. 18

Sec. 6.3

Sec. 6.3

Sec. 6.3

Sec. 6.3; Prob. 19

Sec. 6.6

Sec. 6.5

Sec. 6.2

Sec. 6.2; Prob. 28

