Second Exam

Friday, February 13, 2009
This exam is closed book. Make sure your name is on all pages. Show all work, and show it in a logical and organized manner. Each entire problem is worth 32 points, and 4 points are "free."

1. Solve the following initial value problem. (Show all steps.)

$$
\frac{d y}{d t}+\frac{1}{t} y=\frac{1}{t}, \quad y(1)=0 .
$$

2. Consider the initial value problem from Problem 1.
(a) Do one step of Euler's method with $h=0.1$, starting at $t=1, y=0$. Carry 4 significant digits in your computations.
(b) Do two steps of Euler's method with $h=0.05$, starting at $t=1$, $y=0$. Carry at least 4 significant digits in your computations.
(c) Compare the values obtained from the previous two parts of this problem to the value $y(1.1)$ you obtain by plugging 1.1 into the exact solution from Problem 1. Which of the values is closer to the exact value?
3. Suppose runoff from a farm enters a stream and pollutes it with 5 parts per million of an insecticide that does not degrade in the environment. Suppose the stream's flow per year is 5×10^{5} units, and suppose the stream flows into a lake with volume 10^{6} units. Suppose the lake initially has no insecticide in it, and a stream flows out of the lake at 5×10^{5} units per year.
(a) Write down and solve a differential equation for the total amount $A(t)$ of insecticide in the lake at time t years.
(b) After how long will the insecticide in the lake reach 75% of its equilibrium value?
